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 1. Introduction.

 In recent years, the notion of "Path Derivative" has proved useful in

 clarifying why certain generalized derivatives are good substitutes for

 the ordinary derivative when the latter is not known to exist. When the

 system of paths satisfies certain conditions, the functions that are

 differentiate w:it:h respect to that system, as well as their derivatives

 with respect to that system, will exhibit many of the desirable

 properties of functions dlfferentiable in the ordinary sense and of their

 ordinary derivatives. Similarly, the extreme path derivates will serve

 as good substitutes for the ordinary extreme derivates. Various results

 of this nature can be found in the recent articles CAI, CBJ1, [BOT],

 CBTa] , ÜBT J, and [Ta J.

 Prominent among the conditions a system of paths may satisfy are so-

 called "intersection conditions" and "porosity conditions". These two

 types of conditions are of different natures. An intersection condition

 involves interactions of the paths within the system, while porosity

 conditions involve the paths individually. Nonetheless, appropriate

 porosity conditions can sometimes compensate for lack of an intersection

 condition [BTal, [LP3, [Ta3. In other cases, such conditions do not

 suffice [BLPT] .

 In the present paper we introduce notions of "Near intersection

 conditions." With any system of paths, E, we can associate certain

 16



 functions F such that the pair <E,F) satisfy a near intersection

 condition. We study the extent to which various near intersection

 conditions on a pair (E,F) can compensate for the lack of a (full)

 intersection condition. We focus on external near intersection

 conditions. A development of other forms of near intersection

 conditions, together with a more complete development of the external

 version will appear in CCD.

 2. Preliminaries.

 In this section we present four conclusions that follow when a path

 system satisfies the External Intersection Condition (EIC). In the next

 section wo will indicate how the EIC can be weakened without losing these

 conclusions.

 Definition: A path system E = tE^lx e satisfies the EIC if there
 is a positive function & so that if

 0 < y - X < miri{<.S(y> , <5(x)} then

 <*> E iì E il C2x-y, x] t 0 and E DE 0 [y, 2y-x] * 0.
 X y x y

 In order to make the connection between the EIC and the conditions of

 the next section more clear note that the statement (*) is equivalent to

 the following: there are points a^, a^ which satisfy

 <i> a , a e E^ fi E and (ii) a e C2x-y, xl, a e [y, 2y-xl.
 i z x y x z

 Theorem 0. Suppose E and E* are patli systems that satisfy the EIC.

 (1) If F is E-continuous (i.e. for each x, lim F(t) = F<x)),
 t-»x

 tc-Ex

 then F is a Baire one function. (CBOTl, 5.2)

 17



 (2) If F is E-differentiable on a set X, then F is ACG on

 X. ( CBOT] , 5.4)

 (3) If F is E-differentiable , then f' is a Baire one function.
 Ł.

 ([BOT], 6.3)

 (4) If F is both E and E* dif ferentiable on a set X then

 F' = F'* n.e. on X. (CCD
 h h

 Conclusion (4) is an EIC version of the result ([BOT], 7.8) for the

 Intersection condition.

 Here, as usual, the "n.e." (nearly everywhere) indicates that the

 equality holds except possibly on a denumerable subset of X.

 3. Results.

 In this section we will define a sequence of conditions which weaken

 the EIC yet still give the conclusions discussed in section 2. It is

 important to keep in mind that while the EIC is a condition on the path

 system, the following are conditions on both the function and the path

 system. The proofs of the results and the examples discussed may all br:

 found in [C].

 In the remainder of this section <p denotes a positive non-

 decreasing function defined on the positive real numbers with tp < 0 ) = 0.

 (3.1) Definition: The function F arid the path system E together

 satisfy the condition E^ if there is a function (p continuous at zero
 and a positive function 6 so that whenever 0 < y - x < min{6(y), <5(x)3

 there are points x , x , y , y for which the following hold:
 J. ù JL Ła

 (i' xļt x2 » Ex and y^ y., s Ey.
 (ii) xA, y± e [2x-y, xl and x2> y 2 e [y, 2y-x].

 (iii) IF(xļ) - F(yļ)l < tp(y-x), for i = 1,2.
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 Notice that this condition does not guarantee that the paths and

 E intersect, only that there are points in E where F assumes
 y X

 values which are near (in terms of <o) values assumed at points in E .
 y

 (3.2) Theorem: If F and E satisfy E. and F is E-continuous ,
 1

 then F is a Baire one function.

 Now we define a property for functions which is similar to the

 properties VBG and ACG.

 (3.3) Definition: A function F is generalized Lipshitz (denoted LG)

 on a set X if X may be expressed as a countable union of sets on each

 of which F satisfies a Lipschitz condition. If each of the sets may be

 taken as closed then F is [LG3.

 Remark: LG implies ACG but the converse does not hold. Many results

 which conclude that a function is ACG can be strengthed to get LG with

 only minor modifications of the proofs. For example, this is true for

 the result; (2) given in the previous section.

 (3.4) Definition: The function F and the path system E together

 satisfy the condition E^ if there is a function <p with finite
 derivative at zero and a positive function 6 so that whenever

 0 < y - X < min{ó(y), 6(x)} there are points , x^, y^ , y^ which
 satisfy:

 (i) X, , x„ e E and y 7 , y„ ' e E 12 , x„ X y 7 V , y„ ' 2 y
 (il) X , y e [2x-y, x] and x , y e [y, 2y-x]

 XX Là Là

 (iii) IF(x^) - F(y^)l < cp(y-x) for i = 1,2.
 The only difference between E and E is that we require <p to be

 X La

 differentiate at the origin for E£.

 (3.5) Theorem: If F and E satisfy E^ and F is E
 differentiable on a set X, then F is LG on X. If the set X is
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 closed then F is [LG].

 We will now describe an example which shows that the condition

 is not strong enough to get the above conclusion. Begin with an

 absolutely continuous function F that has an infinite derivative

 everywhere on a nowhere dense perfect set P. Next, define a function G

 so that G = F on P b'jt so that G has zero as a bilateral derived

 number at each point of P. The path system E can be chosen so
 I

 Gg = 0 on P and so that G and E satisfy E^ (take <p to be the
 modulus of continuity for G). Such a function G cannot be LG since by

 the Baire category theorem a LG function must satisfy a Lipschitz

 condition on (a dense subset of) a nonempty portion of P.

 One may suspect that if in the definition of E^ a stronger

 requirement is made on (? (such as (p'(0) =0 or cp = 0) that it may

 be possible to obtain the conclusions (3) and/or (4). This is not the

 case. In fact, we have constructed examples which show that the

 requirement tp = 0 is not enough to get either (3) or (4). Since it is

 impossible to get these conclusions by only strengthening the requirement

 on <p, we will now add restrictions to the proximity of the points x^

 and y. .
 i

 (3.6) Definition: The function F and the path system E satisfy the

 condition E if there is a function ip with <p'(0) = 0 so that all
 O

 the requirements for E ^ are met and in addition:

 (iv) I (y - x^) - (y2 - x2) I i (p(y-x).
 (3.7) Theorea: If F and E satisfy E and F is E

 J

 I

 differentiate, then F„ e B . . E 1 .

 Condition E does not suffice, however, for conclusion (4), even
 J

 with tp=0. An example can be constructed along the following lines.
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 Let P0 be a perfect subset of a Hamel basis containing a rational, say
 1

 PA o c [0,11. For each non zero integer let P = P0 ü + . Define F on o n ü n
 00 4

 U P by F(x)=~, xeP (n * 0) and F(x) = 0 on PQ. ° It is n=-œ n n n °
 GO

 easy to verify that U P is closed and F is continuous on this set.
 n=-<*> n

 /'

 Extend F to a continuous function on R, F different iable on
 00

 R- U P . We choose E = E* in an obvious manner for x ií P.. For
 n=-œ n . X X 0

 A

 X e Pn. take E = Pn ° and E* = ix} U Cx + - : n t- 0} . One verifies X ° X n

 easily that F^(x) = 0 and Fģ*(x) = 1 for x e P0 so conclusion (4)
 fails. One can also verify that E satisfies the EIC on PQ while E*

 satisfies Eg with cp = 0. (Actually, E* satisfies a slight variant
 of E in that the intervals adjacent to tx.yj in the definition of

 J

 E have length 2(.y~x) rather than y - x. This distinction offers no
 O

 essential difficulty - we chose our example for simplicity of

 presentation. See EC J for a complete analysis).

 We obtain a condition that does suffice for conclusion (4) by

 replacing the requirement (iV) by the stronger condition (iv1)

 (iv1) ly -xli cp(y-x) and ly - x l Ś <p(y-x).
 1 1 Cà ù

 (3.8) Definition: The function F and the path system E satisfy the

 condition E if the requirements for E are met with (iv1) replacing
 Ł J

 (iv).

 We thus have an apparent improvement of (4) in Theorem 0. Theorem

 3.9 shows, however, that there is no real improvement.

 3.9. Theorea: If F and E satisfy E^ and F is E
 Ąl

 differentiable, then there is a system E satisfying the EIC so that F

 is E* differentiable and f'(x) = F**(x) for all x.
 h h.

 Thus, one can view E^ as a pre-EIC condition; the system E can be
 "improved" to a system E* satisfying EIC without altering F' .

 h.
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 Remark: A number of results In the literature can be stated in terms of

 "improvement of the path system." For example suppose F is E

 differentiable with d(Ex» x) = 1 for all x; that is, F is
 approximately differentiable. It then follows that F is differentiable

 at each point of some dense, open set G, and F* = F* on G. Thus,
 ap

 for the path system E* defined by

 „ ÍE , x i G
 E = ļ x
 x IR x e g

 we have

 1 1 *

 F„ - F„*, but E is a much "fuller" system than E.
 h h

 A similar statement is valid for a continuous function F that is

 differentiable with respect to a nonporous system E [BT]. (That system

 may, for example, consist of sequential paths). If F is a Lipschitz

 ♦

 function, then F is actually differentiable, so we can take E^ = E
 for all x.

 Suppose now that F and E satisfy E^. By Theorem 3.9, we can
 replace E with a system E* satisfying the EIC. It follows that F

 is LG and thus approximately differentiable a.e. with f' = F* a.e.
 E aP

 (because of conclusion (4)). In fact, by (3.S), and [BOT], F is

 actually differentiable a.e. on a dense-open set.

 The condition E^ may appear artificial, but it does provide a
 useful test for improvement to EIC. For example, one can show that if F

 1
 is in Lipschitz class ß (ß > ~) ar,d is E differentiable with respect

 to s system E satisfying, for all x e E,

 E il L fx + ~~r n+1 ' , x + ~1 nJ * to x L n+1 , ' nJ

 and

 E n fx L - - , x - ~' n+lJ * to, x L n , n+lJ
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 then F and E satisfy E^.
 It follows that E can be improved to a system E* satisfying EIC,

 and all the discussion above applies.

 For ß = 1, we obtain much stronger results, of course.

 This example also illustrates a way in which non-porosity conditions

 can substitute for the EIC. It would be of interest fo find general

 conditions relating conditions of non-porosity type on E to moduli of

 continuity on F that permit improvement of E to E* satisfying the

 EIC.
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