Real Analysis Exchange Vol. 12 (1986-87)

T. Natkaniec, Department of Mathematics, Pedagogical University of Bydgoszcz, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

SOME REMARKS ON CATEGORY PROJECTIONS OF PLANAR SETS

The authors of [1] provide that the measure projection of the subset $A \times B$ of R^2 is non-empty and open whenever A and B are measurable sets with positive finite Lebesgue measure /the assumption that A and B have finite measure may be omited/.

In Proposition 1 the same conclusion is proved for second category A having the property of Baire and second category B. This fact is an improvement of Theorem 2.6 of [1] /see also [2], Th. 2/.

In [5] Sierpiński constructed a second category set SCR² which meet every line at most in 2 points. In Proposition 2 we improve the construction of S and give an example of a linear set A of second category for which category projections of A*A are empty. This fact is a stronger version of the Theorem of [3].

387

We use the notation introduced in [2]/and [1]/. Let $E \subset R^2$. By $P_m(E) / R_m(E) /$ we denote the projection /the category projection/ of E in direction m. Recall that

$$P_{m}(E) = \{c \in R: gr(y=mx+c) \land E \neq \emptyset \}$$

and

 $R_{m}(E) = .\{c \in R: dom[gr(y=mx+c) \cap E] \text{ is of second} \\ category \}. \\ In this paper we assume that \\ m \neq \emptyset . \\ Notice that R_{m}(A^{*}B) = \{c \in R: (mA+c) \cap B \text{ is of second} \\ category \}. \end{cases}$

LEMMA 1. If $A \subset R$ is a second category set then there exists an open /and non-empty/ set $G \subset R$ such that A is of second category at every point $x \in G$ and the set $A \supset G$ is of first category.

P r o o f . Let B be the set of all $x \in R$ such that A is of first category at x and let G = int($R \setminus B$). The set G has the desired properties.

388

LEMMA 2. /a/ If $A riangle A_1$ and $B riangle B_1$ /the symmetric differences/ are of first category then $R_m(A^*B) = R_m(A_1^*B_1)$. /b/ If a set A has the property of Baire, i.e. A = G riangle K, where G is an open set and K is of first category then $R_m(A^*B) = R_m(G^*B)$.

/c/ If G,H are open sets and BCH is of second category at every point x \in H then P_m(G×H) = P_m(G×B) = R_m(G×B). Proof. The parts /a/ and /b/ are obvious.

/c/ The inclusion $R_m(G \times B) \subset P_m(G \times B) \subset P_m(G \times H)$ are clear. Let $c \in P_m(G \times H)$. Then y=mx+c for some $x \in G$ and $y \in H$. Since the set $(mG+c) \cap H$ is open and non-empty, the set $(mG+c) \cap B$ is of second category and therefore $P_m(G \times H) \subset P_m(G \times B)$. If $c \in P_m(G \times B)$ then $(mG+c) \cap B$ is non-empty. Since B is of second category at every point of B, the set $(mG+c) \cap B$ is of second category. Hence $P_m(G \times B) \subset R_m(G \times B)$.

PROPOSITION 1. If either of second category sets A and B has in addition the property of Baire, then the set $R_m(A \times B)$ is open and non-empty.

Proof. Assume that A has the property of Baire and G is the non-empty open set of Lemma 2.b.

389

Let H be an open set such that: B is of second category at every point $x \in H$, $B_1 = B \cap H$ and $B \setminus B_1$ is of first category.

By Lemma 2.c we have $R_m(G \times B_1) = P_m(G \times H)$. Since $P_m(G \times H) = H - mG$ /see e.g. [1]/, it follows that the set $P_m(G \times H)$ is open and non-empty. It follows from Lemma 2.a that $R_m(A \times B) = R_m(G \times B_1) = P_m(G \times H)^2$.

The case when A does not have the property of Baire and B has this property is analogous.

PROPOSITION 2. There exists a second category set A such that the set A*A meets every non-horizontal and non-vertica line, except of the line y=x, at most in 2 points. Proof. Let G_{α} , $\alpha < \omega_{c}$ be a well-ordering of all residual G_{δ} subsets of the line. Choose $x_{0} \in G_{0}$, $x_{1} \in G_{1}$. Suppose we have chosen x_{β} for all $\beta < \alpha$. Put $A_{\alpha} = \{x_{\beta}: \beta < \alpha\}$. Let \mathcal{P}_{α} denotes the family of all non-horizontal and non-vertical lines, different from the line y=x, which

meet the set $A \times A$ at least in 2 points.

Put $B_{\chi} = \{x: \exists p \in \mathcal{D}_{\chi} \quad \exists y \in A_{\chi} [(x, y) \in p \lor (y, x) \in p \lor (x, x) \in p]\},$

and $C_{\chi} = \{x: \exists y, z, t, w \in A_{\chi} [(x, y), (z, x) and (t, w) are collinear]\}.$

Observe that the sets B_{d} and C_{d} have cardinality less than continuum.

At level \propto choose $\mathbf{x}_{\mathbf{x}} \in \mathbf{G}_{\mathbf{x}} \setminus (\mathbf{B}_{\mathbf{x}} \cup \mathbf{C}_{\mathbf{x}})$. By letting $A = \{\mathbf{x}_{\mathbf{x}} : \mathbf{x} < \mathbf{\omega}_{\mathbf{c}}\}$, it is relatively straightforward to show that A has the desired properties.

COROLLARY 1. There exists a second category set $A \subset R$ with $R_m(A \times A) = \emptyset$ for $m \notin \{0, 1\}$ and $R_m(A \times A) = \{0\}$ for m=1.

COROLLARY 2. There exists a second category, Lebesgue measurable set C C R with $R_m(C \times C) = \emptyset$ for $m \notin \{0, 1\}$ and $R_m(C \times C) = \{0\}$ for m=1.

Proof. Let $B \subseteq R$ be a first category set of full measure /see e.g. [4], Corollary 1,7/.

Let A be a second category set for which the conclusion of Corollary 1 holds. Then the set $C = A \lor B$ has the desired properties.

REFERENCES

- R. Anantharaman and J.P. Lee, Planar sets whose complements do not contain a dense set of lines, Real Anal. Exchange 11, No.1 1985-86, 168-179.
- J. Ceder and D.K. Ganguly, On projection of big planar sets, Real Anal. Exchange 9, No1 1983-84, 206-214.
- 3. T. Natkaniec, On category projections of cartesian product A*A, Real Anal. Exchange 10, No.1 1984-85, 233-234.
- J.C. Oxtoby, Measure and category, Springer Verlag, New York- Heidelberg - Berlin, 1971.
- W. Sierpiński, Sur un problème concernant les ensembles measurables superficiellement, Fund. Math. 1, 1920, 112-115.

Received August 29, 1986