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 ON THE GENERAL THEORY OF POINT SETS, II.

 In the present article we state the most important open problems of

 the general theory and we indicate to what extent analogies between Baire

 category and Lebesgue measure are valid for other classifications of sets.

 Specifically, we shall enunciate general theorems true of all six primal

 examples discussed in [19], concerning Baire category, Lebesgue measure,

 Hausdorff measure, Hausdorff dimension, topological dimension, and Marczewski' s
 classification.

 We recall that the foundation of the general theory is the axiomatically

 defined notion of a category base. A pair (X,?p), where X is a nonempty set
 and is a family of subsets of X, is called a category base if the nonempty

 sets in ë , called regions, satisfy the following axioms:
 1. Every point of X belongs to some region; i. e. X =U^
 2. Suppose A is a region and S is a nonempty family of disjoint regions

 which has power less than the power of fé .
 a. If An((J<0) contains a region then there is a region D such

 that A ft D contains a region.

 b. If An(yj)) contains no region then there is a region BCA
 which is disjoint from every region in ft.

 With respect to a given category base (X,fê) the subsets of X are
 classified as follows: A set S is singular iff every region contains a

 subregion disjoint from S. . A countable union of singular sets is called a

 meager set. A set which is not meager is called an abundant set. A set

 is called a Baire set iff every region contains a subregion whose intersection

 with either the set or its complement is meager.

 We recall

 (I) The singular sets form an ideal and the meager sets form a o-ideal.

 (II) The Baire sets form a a-field containing all regions and all meager

 sets.

 (Ill) The family of Baire sets is closed under operation A .
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 In the case that (X,S) is a topology, the singular, meager, and Baire sets

 are the nowhere dense sets, first category sets, and sets which have the Baire

 property (in the wide sense), respectively.

 The following result due to K. Schilling (in a letter to the author)

 generalizes a theorem of Birkhoff and Ulam.

 (IV) The quotient algebra of Baire sets modulo meager sets is a complete

 Boolean algebra.

 We say a set S is meager (abundant) in a region A iff SA A is meager

 (abundant). A set S is abundant everywhere in a region A iff S is abundant

 in every subregion of A. The fundamental theorem of the general theory of

 point sets is

 (V) Any abundant set is abundant everywhere in some region.

 The topological version of this theorem, known as the Banach Category Theorem,

 provided the break-through necessary to extend several theorems concerning

 Baire' s category concepts from separable metric spaces to arbitrary topological

 spaces (cf. [1], [11], [15], [21], [28]). The generalization (V) of Banach's

 theorem enables the further extension of most of these theorems beyond topo-

 logical spaces. It is surprising to observe that, in spite of its theoretical

 importance and the fact that it is virtually the only non-trival theorem true

 of every topological space, Banach's theorem is rarely encountered in modern

 textbooks on topology.

 By a neighborhood of a point we understand any region containing the point.

 If $ is a property of sets then we say a set has the property <t> locally at a
 *

 given point iff every neighborhood of the point contains a neighborhood of the

 point in which the set has the property $. Concerning this notion of local-

 ization, we have for any category base

 (VI) A set is meager if and only if it is locally meager at every point.

 (VII) A set is a Baire set if and only if it is a Baire set locally at

 every point.

 A category base is called a normal base iff every countable set is a meager

 set. For such bases one can use an Ulam matrix of sets to establish

 (VIII) Every abundant set of power can be decomposed into an uncount-

 able family of disjoint abundant sets.

 (IX) Every set of power which is not a Baire set can be decomposed

 into an uncountable family of disjoint sets, none of which is a

 Baire set.
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 Having noted these basic properties we turn to formulate open problems,

 the most important of which is the

 PRODUCT PROBLEM. Can the Kuratowski-Ulam theorem of topology and its measure

 analogue, Fubini's theorem, be unified within the context of

 the general theory?

 We have shown in [20] that, for certain complete measures, the measurable

 sets coincide with the Baire sets for a suitable category base of measurable

 sets. For instance, if (X, ¿L, u) is the completion of a a-finite measure

 structure (X, 0Lo, U0) then the family £ of all immeasurable sets of positive
 measure is a category base for which the singular and meager sets coincide

 with the sets of U-measure zero and the Baire sets coincide with the

 U-measurable sets. On the other hand, resolving the question raised in

 [20], K. Schilling (in a letter to the author) has shown that there are
 complete measure structures for which the measurable sets do not coincide

 with the Baire sets for any category base of measurable sets.

 MEASURABILITY PROBLEM. Characterize those complete measure structures

 (x,a, u) for which tne measurable sets coincide
 with the Baire sets for a suitable category base

 of immeasurable sets.

 We recall that two category bases are called equivalent iff they yield

 the same meager sets and the same Baire sets. For example, the category base

 of all linear Borei sets of positive Lebesgue measure is equivalent to the

 density topology. In [18] it was shown that every finite category base is

 equivalent to a topology and the following problem, which remains unsolved,

 was posed.

 EQUIVALENCE PROBLEM. Is every category base equivalent to a topology?

 Our next problem concerns the extension of Sierpiński 's duality theorem
 according to which there exists a one-to-one mapping f of the real line onto

 itself having the property that a set S is of the first category if and only

 if f(S) has Lebesgue measure zero (cf. [5], [22], [25]).

 We call a set ScR, an absolute null-set iff it has measure zero with

 respect to the completion of every continuous, a-finite measure defined on

 the Borei sets in 1R ; or, equivalently , iff every homeomorphic image of S
 in TR. has Lebesgue measure zero.
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 DUALITY PROBLEM. Does there exist a one-to-one mapping f of the real line

 onto itself having the properties

 (i) a set S is of the first category if and only if f ( S )

 has Lebesgue measure zero,

 (ii) a set S is always of the first category if and only

 if f ( S ) is an absolute null-set?

 Of particular importance are the following category bases, which include

 bases equivalent to five of the category bases of [19]. All perfect sets

 considered below are assumed to be nonempty.

 EXAMPLE A. X »TR" and % is the family of all closed rectangles. The
 singular, meager, and Baire sets coincide with the nowhere dense sets, first

 category sets, and sets with the Baire property (in the wide sense),

 respectively.

 EXAMPLE B. X -Ifc and % is the family of all perfect sets of positive
 Lebesgue measure in every open ball containing one of their points. The

 singular and meager sets both coincide with the sets of measure zero and the

 Baire sets are the Lebesgue measurable sets.

 EXAMPLE C. X ■tR.'and fé is the family of all product sets A x B, where A
 and B are linear perfect sets of positive Lebesgue measure in every open

 interval containing one of their points.

 EXAMPLE D. X »1R.1 and & is the family of all product sets A * B, where A
 is a linear perfect set of positive Lebesgue measure in every open interval

 containing one of its points and B is a closed interval.

 EXAMPLE E. X »IR* and is the family of all perfect sets. This yields
 Marczewski' s classification of [30].

 A set singular for this classification necessarily contain no perfect

 sets. The first person to construct an uncountable set containing no perfect

 sets was G. H. Hardy (cf. [8], [9]), however he did not prove this fact. The

 proof that there exist uncountable sets which have no perfect subsets is due

 to Bernstein [2]. In [13] Luzin established the fact that Hardy's set is of

 the first category relative to every perfect set, from which it follows that

 it contains no perfect sets and is singular for the present classification.

 EXAMPLE F. ' X = V? , L is a fixed line and £ is the family of all closed
 line segments parallel to L.
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 EXAMPLE G. (Assume the Continuum Hypothesis). Let X ■ IR* , let u denote
 the Hausdorff measure associated with a monotone increasing, continuous func-

 tion h: [0,°°) - *[0,°°) with h(0) = 0 and h(t) > 0 for t > 0, and let ë be the
 family of all perfect sets of positive Hausdorff measure u in every open ball

 containing one of their points. The singular and meager sets both coincide

 with the sets having no subset of finite, positive outer measure, while the

 Baire sets are identical to the u-measurable sets.

 If u is not a-finite then, assuming the Continuum Hypothesis, there

 exists an uncountable set in IR™ every uncountable subset of which has in-
 finite measure. Such a set is singular and has been so-termed by Choquet

 (cf. [3], [4], [20], [29]).

 EXAMPLE H. (Assume the Continuum Hypothesis). Let X =lRn , let p be a real

 number with 0 £ p < n, and let % be the family of all perfect sets of Haus-
 dorff dimension larger than p in every open ball containing one of their

 points. For this example, a Borei set is meager if and only if it has

 Hausdorff dimension <_ p .
 These category bases are instances of what we have called perfect bases

 (cf. [16], [17]). For such bases, in complete metric spaces X without isolated

 points, we have

 (X) Every region is abundant and every countable set is meager.

 (XI) Every analytic set is a Baire set.

 (XII) Every abundant Baire set contains a perfect set.

 (XIII) A set is meager if and only if every one of its subsets is a
 Baire set .

 If the space X is also separable then, using Bernstein sets, one can show

 (XIV) For each cardinal number fJl-. with 2 <_wi < 2 ° , the space X can
 be decomposed into m disjoint sets, none of which is a Baire set.

 i'

 (XV) The space X is representable as the union of more than 2 • sets,

 the intersection of any different pair of which has power < 2 ' 0
 and none of which is a Baire set.

 Now, in order to extend the validity of these results to include the

 sixth classification of [19] we introduce the notion of an essentially perfect
 base.
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 Let X be a complete metric space with no isolated points. A category

 base (X, fe) is called an essentially perfect base iff there exists a subfamily
 of fé consisting of perfect sets and a family of subsets of X such that

 ÍS * {A - M : A € S and M 6

 and the following conditions hold :
 Ca*

 (a) For every set Ač Tá and every point x 6 A there exists a descend-

 ing sequence néjjvj sets ^ such that x é Ar , ArCA,
 and diam (A ) < - for each n

 n - n

 (b) If T is any set in ^6 then every region in % contains a subregion
 ca*

 in Tg which is disjoint from T.

 (c) If A £ Śj , F ■ B - N is a region in fê of the given basic form,
 and FC A then BCA.

 The term "perfect base" is retained for the case where % = S and = 0,
 in which case conditions (b) and (c) are redundant.

 The following two instances of essentially perfect bases are of particular

 interest, the second of which is equivalent to the sixth example of [19];

 EXAMPLE I. (Assume the Continuum Hypothesis). X ■ TRn and fé consists of all
 sets of the form A- M, where A is a closed line segment and M is a countable

 set. The non-measurable set of Sierpiński having at most two points on any

 line is singular for this category base, as well as for Example F (cf. [6], [23]).
 EXAMPLE J. (Assume the Continuum Hypothesis). Let X » IR." or X «TR™ (Hilbert

 space), let p be a non-negative integer smaller than the (topological) dimen-

 sion of X, and let consist of all sets of the form A- M, where A is a

 perfect set of' finite dimension > p having the property that if G is any open

 ball containing a point of A then AH G is not contained in an 3^-set of
 dimension <_ p and M is an ^^-set of dimension < p.

 In [10 ] Hurewicz proved the êxistence of an uncountable set in tR00.
 every uncountable subset of which has infinite dimension, is equivalent to

 the Continuum Hypothesis. Such a set is singular for the category base

 ( R00,^), for each p, and thus may be viewed as being "negligible".
 We now give some properties of functions which have their origin in

 well-known classical theorems on Lebesgue measure. In addition to all the

 properties enumerated above, these properties are valid for every essentially

 perfect base (X,fê).
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 We assume throughout that Y is a separable metric space and all functions
 referred to are functions from X to Y.

 A function f will be called a Baire function iff f ^(G) is a Baire set for
 every open set G C Y. In Example A the Baire functions coincide with the func-

 tions having the Baire. property (in the wide sense). In Example B the Baire

 functions are the Lebesgue measurable functions.

 First, we give a generalization of a weakened version of the so-called

 "Luzin theorem" for Lebesgue measurable functions (see[7] concerning the
 correct attribution of this theorem).

 (XVI) If f is a Baire function then every abundant Baire set contains

 a perfect set on which f is continuous.

 We note that the characteristic function of a Sierpiński set (i.e. an

 uncountable set every uncountable subset of which has positive Lebesgue outer

 measure; cf. [24]) is a non-measurable function satisfying the condition that

 in every Lebesgue measurable set of positive measure there is a perfect set on
 which the function is continuous.

 The characteristic function of a Mahlo-Luzin set (i.e. an uncountable set

 every uncountable subset of which is of the second category; cf. [12], [14]) is

 a function which does not have the Baire property, but does satisfy the condi-

 tion that in every second category set with the Baire property there is a

 perfect set on which the function is continuous.

 In the case of Example E, yielding Marczewski 's classification of sets,

 the converse of (XVI) is also true. For this category base, a function is a

 Baire function if and only if in every perfect set there is a perfect subset on

 which the function is continuous.

 In connection with Example. G we note that it is not in general true that

 if f is a Hausdorff measurable function then every measurable set of positive

 measure contains a perfect set on which f is continuous. It is however true

 that if f is a Hausdorff measurable function then every abundant measurable

 set contains a perfect set of positive measure on which f is continuous.

 From the property (XVI) one can derive, as in [26],

 (XVII) Assume X is also separable. Then there exists a function whose

 graph has a nonempty intersection with the graph of each Baire

 function.
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 Concerning sequences of functions we have

 (XVni) If a sequence of Baire functions converges pointwise to a func-

 tion f then f is a Baire function.

 (XIX) If a sequence of Baire functions converges pointwise to a func-

 tion f then in every abundant Baire set there is a perfect set

 on which the sequence converges uniformly to f.

 For Lebesgue measure, the well-known Egorov theorem yields a stronger

 conclusion than that given by (XIX). As shown in [22], the category analogue

 of Egorov' s theorem is not true. Nevertheless, (XIX) does include a category

 analogue of a weakened version of Egorov' s theorem.

 (XX) If the iterated limit of a dojible sequence of Baire functions con-

 verges pointwise to a function f then for every abundant Baire set

 S we can find a perfect set PCS and extract a single sequence from

 the double sequence which converges pointwise to f for all points

 of P.

 This result includes a weakened version of a measure-theoretic theorem

 of Fréchet. As shown in [27], the category analogue of Frechet's theorem also
 fails to hold. The statement (XX) does, however, include a category analogue

 of the weakened version of Frechet's theorem.

 We conclude this discussion with one further problem related to Cantor's

 unsolved problem of characterizing the sets of uniqueness for trigonometric

 series representations, which was the impetus behind his development of the

 basic topological concepts. A set EC[0, 2tt) is called a set of multiplicity

 iff there exists a trigonometric series converging to 0 for all points of

 [0, 2tt) - E whose coefficients are not all zero.

 PROBLEM. Does the family of all closed sets of multiplicity form a category
 base?

 Assuming the Continuum Hypothesis, this question reduces to that of de-

 termining whether every j£f^-set of multiplicity contains a closed set of
 multiplicity.
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