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 DERIVATIVES OF TYPE 1

 1. Functions of type k.

 The main obstacle in attempts to characterize the class bA of bounded

 derivatives stems from the fact that this class is not closed under outside

 composition with continuous functions. For example, the following holds (See

 [1], page 138.):

 If f € bA and f 2 € bA, then f is approximately continuous.

 From this result one easily sees that every subclass of bA admitting a

 topological characterization or a characterization in terms of associated sets is

 contained in the class bA of bounded approximately continuous functions.

 There are some bounded derivatives whose properties change after an

 outside composition with a continuous function in a rather drastic way.

 Nevertheless, there are also some approximately discontinuous derivatives

 which behave well even after such a compostion.

 Example (See [3], Chapter II, §1, no. 6, exercise 7.):

 sin(l/x) if x * 0
 Put f(x) =

 0 if X = 0.

 If •* R is a continuous function, then the function V • f may fail

 to be a derivative, but it is easy to see that

 - 1 fs 1 f
 lim s - 1 J V(f(t))dt = 7T 1 f I V(y)d(arc sin y).

 0 (-1,1)
 Thus the function

 ' *(f(x)) if X * 0

 g(x) =

 ■ rr 1 <p( y)d(arc sin y) if x = 0
 (-1,1)
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 is a derivative.

 In a similar way we can construct a bounded derivative h which is

 approximately discontinuous at any point of a given perfect set of measure

 zero, such that for any continuous function <P and any x e IR

 -i fx+s
 lim s J 9(h(t))dt exists. Again, there is a function g € bd such
 s-X) x

 that 9 • h = g a. e.

 From these examples it seems to be clear that the class of those bounded

 functions f such that for any continuous function V one may find g € bd

 such that 9 • f = g a. e., is a rather interesting (and topolo gicall y

 characterizable! - see theorem 3) class of "almost derivatives". (Note that

 "almost derivative" means "equivalent to a derivative" and not "being a

 generalized derivative".)

 The above examples suggest also some possibility of classification of

 bounded derivatives. To explain it, denote by C the space of all continuous

 functions on R endowed with the topology of locally uniform convergence, by

 C* the dual of C with the weak* topology (i.e. the space of signed measures

 with compact support) and by JR the set of all nonnegative measures in C*
 with total mass one. Recall also that for m € m the barycenter r (m) is

 defined by r(¿») = J t dp(t).
 R

 Let f:R •* R be a bounded measurable (with respect to the Lebesgue

 measure X) function. We note that f is a derivative of its indefinite

 integral at a point x « R iff lim (X(I)) 1 f f(t) dX(t) = f(x)..' (Here
 I+K I

 I •* x means: I is an interval, x « I and X(I) -» 0.) Rewriting

 (*) (MI))"1 f f(t)dx(t) = f t df[(XLi)/x(i)](t)
 I R

 where (XuI)(E) = X(I n E) and where the image f[/*] of a measure m is
 defined by f|>](E) = ^Cf'^E)) for all Borei sets E), we easily see that
 the question of whether f . is a derivative of its indefinite integral at _ x
 or not depends on the set My(f) of all limit points of the measures
 f[(XuI)/X(I)] as I -> x. More precisely, we define Mx(f) =
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 il C t (f [(XuI)/X(I)] ; I is an interval, x e I and X(I) < e}. The above
 e>0

 discussion together with the compactness of the sets {m € JH; support

 M c [-K,K]} easily gives the assertions- (a),(b) of the following proposition.

 Proposition 1: Let f:lR ■* IR be a bounded measurable function and let x

 « F. Then

 (a) Mx(f) is a nonempty compact subset of M.
 (b) f is a derivative of its indefinite integral at x iff = f(x) for

 each m « Mx(f).

 (c) f is approximately continuous at x iff Mx(f) = (cf(x)ł» where £y
 denotes the Dirac measure concentrated at y.

 (d) If V:F •* F is a continuous function, then Mx(<P«f) =

 (»W| A» € Mx(f)}.

 (e) The following statements are equivalent:

 (i) For any homeomorphism 9:F -> F the indefinite integral of

 is differentiate at x.

 (ii) For any continuous function f:IR -» F the indefinite integral

 of f'f is differentiable at x.

 (iii) Mx(f) contains exactly one measure.

 The assertion (d) follows from (*) and 'from the formula

 9 df[A»] = 9»f du which holds whenever V is a Borei function
 F F

 and one of the integrals exists. The statement (e) follows from (d) and (b).

 One can easily see that (b) can be replaced by the stronger statement:

 (r(p) ; m e Mx(f)} = [D( J f,x), Ď( J f,x)].

 The above proposition leads us to the following classification of functions and

 derivatives:

 Definition 1: A bounded function of the first class is said jto be of type k

 if, for any x € F, the dimension of the linear span of Mx(f) is at most k.
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 The set of all functions of type k we shall denote by If

 f « 3"k n bA» we say that f is a derivative of type k. It is not difficult to

 see that the classes Jķ are closed under uniform convergence and under

 outside composition with continuous functions. Hence they are characterizable

 in terms of pseudouniformities. (See theorem 3.) However, for k * 2 the

 families JTķ are rather far from derivatives and even the derivatives of
 type 2 seem to have no nice properties.

 Before passing to the description of our results concerning the functions

 of type 1, let us note the following corollary of proposition 1:

 Proposition 2: Whenever 3" is a family of bounded functions of the first

 class such that

 (i) ?«f € 3" for any f « 3" and any homeomorphism <P:R •* IR

 (ii) for each f « J there is a derivative g such that f = g a.e.f

 then J' J,.

 Hence- one can interpret the class iTi as a maximal "characterizable"

 subfamily of "almost derivatives".

 2. The of type 1.

 Let f : IR ■* R - be a function of type 1 and let x € R. Then, by

 definition, Mjc(f) contains exactly one measure and we shall denote this
 f

 measure by From proposition 1 it follows that

 lim h"1 f 9(f(t)) dt = f 9 d /
 h-K) , (x,x+h) R X , (x,x+h)

 for any continuous function 9:R IR. It is not difficult to show the
 following:

 f

 If S c IR is a Borei set such that Px(3S) = 0, then the density of

 f_1(S) at- x exits and d(x,f l(S)) = ^x(s)-
 For a function f:Ř ■* R we shall denote by A-f the set of the points

 at which f is approximately continuous. It is not difficult to show that
 if f e JTx, then Af is of type G¿.
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 The main result concerning the functions of type 1 is the following:

 t

 Theorem 1. Let f : IR -> IR be a function of type 1, S c IR a G^-set of

 measure zero containing IR - Af, e a positive number and Y = {yi , • . . «ym) c IR
 a finite set such that dist(f(x),Y) < e/4 for any x € IR. Then there exists

 a function h of type 1 such that Ah 3 Af, |f-h| < c, and, for any x € S,

 h * Ï Ï , .
 "x * 1=1 Ï ai(x> , . V J1 1=1 J1

 The following theorem gives a characterization of level sets of

 derivatives of type 'l:

 Theorem 2. For a set B c IR the following conditions eure equivalent:

 (i) E = {x,f(x) > 0} for some f e Jļ n bů

 (ii) There exist a sequence {Fn} of closed sets, a sequence {An} of
 measurable sets and a sequence of positive numbers {Vn) such that, for each

 0»

 n, Fn c An c E = U Fn, the density of An at each of its points exists,
 n=l

 and d(x,An) > i7n for any x e Fn.

 (iii) E = {x,f(x) > 0} for some f € Jt n bA and f * 0.

 Remarks . 1. It seans to be interesting to compare the condition (ii)

 from the preceding theorem with an equivalent definition of the Zahorski

 class M«:

 Lemma. A set E c IR belongs to the class M4 iff there exist a sequence

 of closed sets {Fn} and a sequence of positive numbers {łjn} such that E =
 09

 U Fn and for each x € Fn there exists a set B c E having a density at
 n=l

 x such that d(x,B) > 7jn.

 The lemma follows easily from [2] .

 2. It is easy to construct an M4-set which does not satisfy the

 condition (ii) from theorem 2.

 .Finally, let us briefly consider the problem of characterizing the
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 functions of type 1 in terms of pseudouniformities. We refer to [4] for

 basic definitions pertaining to uniform spaces.

 Definition 2: A pseudouniformi ty on a set X is a system p of covers

 of X satisfying the following conditions:

 (i) u € ß, u < v ®> v € m

 (ii) U e p ■> there exists V « p such that V < *U.
 A pseudouniform space is a set together with a pseudouniformity on it.

 In pseudouniform spaces we can define the notions of the basis of pseudo-

 uniformity and uniformly continuous functions in an obvious way.

 The following theorem shows which systems of functions can be described

 sis functions uniformly continuous with respect to some pseudouniformity.

 Theorem 3. For a system ? of real functions on a set X the following

 conditions are equivalent:

 (i) There is a pseudouniformity n on X such that f € ? iff f is

 ¿»-uniformly continuous.

 (ii) The system F is closed under uniform convergence and satisfies

 the following condition:

 If f « J and V:f(X) -* F is a function uniformly continuous on

 f(X), then <P'f e J.

 In particular, if all functions in I are bounded, then ?

 satisfies (i) iff it is closed under uniform convergence and under

 outside composition with continuous functions.

 From the remark after definition 1 it follows that there is a pseudo-

 uniformity m on R such that ^-uniformly continuous functions sure

 exactly the functions of type 1. We are able to give an explicit description

 of a basis of such a pseudouniformity.
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