Real Analysis Exchange Vol. 12 (1986-87)
Michael J. Evans, Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
Paul D. Humke, Deparment of Mathematics, St. Olaf College, Northfield, Minnesota 55057

L-POINIS OF TYPICAL FUNCTIONS IN THE ZAHORSKI CLASSES

Functions considered in this paper will belong to the space ${ }^{3}{ }^{1}$, the space of Baire class one functions on the interval $[0,1]$ equipped with the metric of uniform convergence. Ever since Lebesgue [6], it has been known that any function in the space of bounded Baire class one functions on $[0,1]$, bab^{1}, is the derivative of its indefinite integral except at a set of points which is both of measure zero and of first category. As in [4], for $f \in \mathfrak{B}^{1}$, we call x an L-point of f if $\lim _{h \rightarrow 0} \frac{1}{\hbar} \int_{0}^{h} f(x+t) d t=f(x)$, and we let

$$
N(f)=\left\{x \in[0,1]: \lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} f(x+t) d t \text { does not exist }\right\} .
$$

Although the set of L-points for any function in los^{1} is large in terms of measure and category, it was. shown in [5] that for the typical (in the sense of category) function $f \in \operatorname{bos}^{1}$ the set $N(f)$ fails to be σ-porous. More specifically, it was shown in that paper that if $N=\left\{f \in \mathcal{F}^{1}: N(f)\right.$ is o-porous\}, and if \mathcal{F} is any of the spaces $\mathcal{B}^{1}, b_{B}{ }^{1}, \mathcal{B}^{1}{ }^{D}$. (the Baire one Darboux functions), or $\operatorname{bos}^{1} \mathscr{D}$, then $N \cap \mathscr{F}$ is closed and nowhere dense in \mathcal{F}.

Thus, using Zahorski's [11] notation, we have the situation that the typical function in the space $b M_{0}=b M_{1}=b B^{1}{ }_{D}$ has a non-o-porous set of
points which fail to be L-points, while according to the classical result of Denjoy [3], every point of $[0,1]$ is an L-point for every function in ba ${ }_{5}$, the space of bounded approximately continuous functions on $[0,1]$. Thus, it seems natural to inquire about the situation in the intermediate spaces $\quad b m_{2}$, $b M_{3}$, and $b M_{4}$, especially in light of the recent interesting results dealing with the behavior of typical functions in the Zahorski classes presented by Rinne in [8] and [9].

For the reader not familiar with the definitions of the Zahorski classes, we present them again here. Throughout we shall use $|E|$ to denote the Lebesgue measure of a measurable set $E, E \backslash S$ to represent the intersection of the set E with the complement of the set S, and X to denote the characteristic function of the set S.

A set E is in class M_{i} if it is an F_{σ} set and:
$i=0$ every x in E is a bilateral accumulation point of E
$i=1$ every x in E is a bilateral condensation point of E
$i=2$ for x in E and $\delta>0,|(x-\delta, x) \cap E|>0$ and $|(x, x+\delta) \cap E|>0$ $i=3$ for x in E and any sequence $\left\{I_{n}\right\}$ of intervals converging to x with $\left|I_{n} \cap E\right|=0$ for all $n, \lim _{n \rightarrow \infty}\left|I_{n}\right| / \operatorname{dist}\left(x, I_{n}\right)=0$
$1=4$ if there exists a sequence of closed sets K_{n} and a sequence of positive numbers r_{n} such that $E=U K_{n}$ and for every, x in K_{n} and for every number $c>0$ there is an $\epsilon(x, c)>0$ such that $\left|E \cap\left(x+h, x+h+h_{1}\right)\right| /\left|h_{i}\right|>r_{n}$ for all h and h_{1} satisfying $h h_{1}>0, h / h_{1}<c$, and $\left|h+h_{1}\right|<\epsilon(x, c)$
$i=5$ every x in E is a point of density of E.

A function f on $[0,1]$ is in class $M_{i}(i=0,1,2,3,4,5)$ if each associated set is in class M_{i}. We then have $M_{0}=M_{1} \supset M_{2} \supset M_{3} \supset M_{4} \supset M_{5}$.

Properties of typical functions in the subspace usc of \mathbb{B}^{1}, consisting of the upper semi-continuous functions, have recently been investigated by Mustafa in [7]. (See also [2] by Ceder and Pearson.) We shall investigate the size of the set of L-points for functions in this and related classes as well. Indeed, the key to the present paper is the next theorem, wherein we construct a bounded, upper semi-continuous, M_{4} function f (i.e., $f \in$ buscm $_{4}$), having a given perfect set for its $N(f)$.

THEOREM 1. If P is any perfect set of measure zero in $[0,1]$, there is a function $f \in$ buscm $_{4}$ on $[0,1]$ such that (i) $P=N(f)$, and (ii) f is continuous at each $x \& P$.

Proof. Before beginning the construction of the function f, we introduce a.sequence of buscm $_{4}$ functions, $\beta_{k}:[0,1] \rightarrow[-2,1]$. To this end, for each natural number n, and for each integer $i=0,1, \ldots 2^{n}-1$, let

$$
I_{n ; i}=\left(\frac{1}{2^{n}}-\frac{i+1}{2^{2 n+1}}+\frac{1}{2^{3 n+2}} \cdot \frac{1}{2^{n}}-\frac{i}{2^{2 n+1}}\right)
$$

and

$$
J_{n, i}=\left(\frac{1}{2^{n}}-\frac{i+1}{2^{2 n+1}} \cdot \frac{1}{2^{n}}-\frac{i+1}{2^{2 n+1}}+\frac{1}{2^{3 n+2}}\right)
$$

It is then easily verified that both of the sets

$$
q=\bigcup_{n=1}^{\infty}{\underset{j}{2 n-1}}_{U^{n-1}-1} I_{n, 2 j} \text { and } q^{*}=\bigcup_{n=1}^{\infty} \bigcup_{j=0}^{2^{n-1}-1} I_{n, 2 j+1}
$$

have right density one half at zero, and that the set

$$
y=\bigcup_{n=1}^{\infty} \bigcup_{i=0}^{2^{n}-1} J_{n, i}
$$

has right density zero at zero. Define the function $\beta:[0,1 / 2] \rightarrow[-2,1]$ by setting $\beta(x)=-2$ for $x \in \mathcal{y}, \beta(x)=1$ for $x \in q^{*}$, and then making β a linear function with range $[-2,1]$ on the closure of each $J_{n, i}$ in such a manner that the resulting function is continuous on $(0,1 / 2)$. Finally, set $\beta(0)=1$, and $\beta(1 / 2)=-2$. Then β is continuous on $(0,1 / 2$] and, as noted by Bruckner in [1, pp. 22,23,93], the density properties of the sets $3, q^{*}$, and g at zero are sufficient to readily conclude that β is in class M_{4}, and it is clearly upper semicontinuous.

Now, for each natural number k, let $\beta_{k}:[0,1] \rightarrow[-2,1]$ be defined by

$$
\beta_{k}(x)= \begin{cases}\beta\left(x / 2^{k-1}\right), & \text { if } 0 \leq x \leq 1 / 2 \\ \beta\left((1-x) / 2^{k-1}\right), & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

Since β belongs to buscm $_{4}$, so does each ' β_{k}. It is worth pausing at this point to take note of some of the properties of these β_{k} 's. Fix a number h strictly between 0 and 1 . It is then easily seen that both of the sequences $\left\{\left|\left\{x \in(0, h): \beta_{k}(x)=1\right\}\right| / h: k=1,2, \ldots\right\}$ and $\{\mid\{x \in(h, 1):$ $\left.\left.\beta_{k}(x) .=1\right\} \mid /(1-h): k=1,2, \ldots\right\}$ have limit $1 / 2$ as $k \rightarrow \infty$. This, of course, follows from the earlier observation that the set q^{*} has right density $1 / 2$ at 0 . For future reference, we note that every term in both of these sequences is greater than $1 / 4$, and we shall refer to this property of β_{k} as PROPERTY A. Now, fix a k. It is readily seen that for any positive constant $c<2^{k-1}$, the following property, which we shall denote as PROPERTY B, holds: If h and h_{1} are two positive numbers such that $\frac{h}{h_{1}}<c$
and $h+h_{1} \in[0,1]$, then $\frac{\left|\left\{x: \beta_{k}(x)=1\right\} \cap\left[h, h+h_{1}\right]\right|}{h_{1}}>\frac{1}{6}$. (The fact that PROPERTY B holds for larger and larger values of c as k increases is a feature that will be taken advantage of in the construction of the function f.) A third essential and easily verified feature of each β_{k} is that

$$
\int_{0}^{1} \beta_{k}(x) d x<-1 / 4
$$

and we shall refer to this inequality as PROPERTY C of β_{k}. Finally, if $x \in[0,1]$, we agree to set $\beta_{k}(x)=0$.

Let P be the given perfect set of measure zero in $I_{0}=[0,1]$, and enumerate the component intervals of $I_{0} \backslash P$ as a sequence $\left\langle G_{i}=\left(a_{i}, b_{i}\right)\right.$: $i=1,2, \ldots$. Choose N_{1} so large that $\left|I_{0} \cap\left(\bigcup_{i=1}^{N_{1}} G_{i}\right)\right| \geq 5 / 6$. In general, if N_{k} has been defined, let N_{k+1} be large enough to insure that if I is any component interval of $I_{0} \backslash \bigcup_{i=1}^{\mathrm{N}_{k}} G_{i}$, then $|I \cap \overbrace{i=N_{k}+1}^{N_{k+1}} G_{i}| \geq$ $5|I| / 6$. For notational purposes we shall set $N_{0}=0$. Then for each natural number k set $H_{k}=\bigcup_{i=N_{2 k-2}+1}^{N_{2 k-1}} G_{i}, H_{k}^{*}=\bigcup_{i=N_{2 k-1}+1}^{N_{2 k}} G_{i}, H=\bigcup_{k=1}^{\infty} H_{k}$, and $H^{*}=\bigcup_{k=1}^{\infty} H_{k}^{*}$. Then H and H^{*} are disjoint open sets with $H \cup H^{*}=I_{o} \backslash P$. For each i we shall let $k(i)$ denote that unique value of k for which either $G_{i} \subseteq H_{k(i)}$ or $G_{i} \subseteq H_{k(i)}^{*}$.

We now define our function f on $[0,1]$ by

$$
f(x)=x_{P}(x)+\sum_{k=1}^{\infty}\left[x_{H_{k}}(x)+x_{H_{k}}(x) \cdot \sum_{i=1}^{\infty} \beta_{k}\left[\frac{x-a_{i}}{b_{i}-a_{i}}\right]\right] .
$$

We shall first show that this function is in buscm 4_{4}. It is clearly continuous at each point of $I_{0} \backslash P$ and since the range of f is $[-2,1]$
and f is identically 1 on P, it is obviously usc at each point of P. Suppose that $-2 \leq \alpha<1$ (All other cases are immediate.) and consider the associated sets $E^{\alpha}=\{x: f(x)<\alpha\}$ and $E_{\alpha}=\{x: f(x)>\alpha\}$. Both are readily seen to be \mathcal{F}_{σ} sets. Indeed, E^{α} is open and therefore an M_{4} set. We must show that E_{α} is an M_{4} set. Clearly, $P \subseteq E_{\alpha}$. Let $G=E_{\alpha} \backslash P$. It is easy to see that G is open. Indeed, if $x \in G$, then $x \in G_{i}$ for some unique i, and either $G_{i} \subseteq H_{k(i)}$ or $G_{i} \subseteq H_{k(i)}^{*}$. Consequently, f is continuous on the open interval G_{i} containing x, and, therefore, there is an open interval containing x which is completely contained in G. Consequently, we have E_{α} expressed as

$$
\begin{equation*}
E_{\alpha}=P \cup G \tag{1}
\end{equation*}
$$

where G is open and P is closed. Hence, to show that E_{α} is an M_{4} set, it will suffice to produce a number, $r_{1}>0$, with the property that for each $x \in P$, and for every positive number c there is an $\epsilon(x, C)>0$ such that $\left|E \cap\left(x+h, x+h+h_{1}\right)\right| /\left|h_{1}\right|>r_{1}$ for all h and h_{1} satisfying $h h_{1}>0$, $h / h_{1}<c$. and $\left|h+h_{1}\right|<\epsilon(x, C)$. Indeed, we shall show that $r_{1}=1 / 6$ will work.

Let $x \in P$. As a first case, suppose that x is a limit point from the right for P. Let c be any given positive number. Choose k so large that $2^{k-1}>c$, and then let $\epsilon=\epsilon(x, c)$ be so small that $(x, x+\epsilon) \subseteq I_{0}$ and the only $G_{i}{ }^{\prime} s$ which intersect $(x, x+\epsilon)$ have subscripts greater than $N_{2 k-2}$. Now, suppose that h and h_{1} are positive numbers satisfying $h / h_{1}<c$, and $\left|h+h_{1}\right|<\epsilon$. We shall show that $\left|E_{\alpha} \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 6$. Note that it will suffice to show that $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 6$, where $E=$ (x: $f(x)=1\}$. We shall establish this latter inequality by considering the possible locations of the points $x+h$ and $x+h+h_{1}$.

Case I. Suppose that $x+h \in P$ and $x+h+h_{1} \in P$. Let $\mathcal{L}=\{i$: $\left.G_{i} \subseteq\left(x+h, x+h+h_{1}\right)\right\}$. For each $i \in \mathscr{L}$, either $G_{i} \subseteq H_{k(i)}$ or $G_{i} \subseteq H_{k(i)}^{*}$. If $G_{i} \subseteq H_{k(i)}$, then $G_{i} \subseteq E$, and if $G_{i} \subseteq H_{k(i)}^{*}$ then PROPERTY A of $\beta_{k(i)}$ assures that $\left|E \cap G_{i}\right|>\left|G_{i}\right| / 4$. Consequently, $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|=\left|E \cap \underset{i \in \mathscr{L}}{\cup} G_{i}\right|=\left|\cup_{i \in \mathscr{L}}\left(E \cap G_{i}\right)\right|=\underset{i \in \mathscr{L}}{\sum}\left|E \cap G_{i}\right|>$ $\sum_{i \in \mathscr{L}}\left|G_{i}\right| / 4=h_{1} / 4$.

Case II. Suppose that $\mathrm{x}+\mathrm{h} \in \mathrm{P}$ and $\mathrm{x}+\mathrm{h}+\mathrm{h}_{1} \notin \mathrm{P}$. In this situation, there are two possibilities: $x+h$ and $x+h+h_{1}$ belong to the same G_{i} or they do not. Consider the former situation. Then $G_{i} \subseteq H_{k(i)}$ or $G_{i} \subseteq H_{k(i)}^{*}$. If $G_{i} \subseteq H_{k(i)}$, then $G_{i} \subseteq E$ and hence $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|=h_{1}$. If $G_{i} \subseteq H_{k(i)}^{*}$, the selection of ϵ assures that $2^{k(i)-1}>c$, and since $0<\left(x+h-a_{i}\right) / h_{1}<h / h_{1}<c$, we may apply PROPERTY B of $\beta_{k(i)}$ to obtain $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 6$. Consider now the latter situation where $x+h \in G_{i_{0}}, x+h+h_{1} \in G_{j_{0}}$ and $i_{0} \neq j_{0}$. Letting $\mathscr{L}=\left\{i: b_{i_{0}}<a_{i}<b_{i}<a_{j_{0}}\right\}$ and applying the same reasoning as in. Case I, we obtain $\left|E \cap\left(b_{i_{0}}, a_{j_{0}}\right)\right|>\underset{i \in \mathscr{E}}{\sum}\left|G_{i}\right| / 4=\left(a_{j_{0}}-b_{i_{0}}\right) / 4$. Applying PROPERTY A of $\beta_{k\left(i_{0}\right)}$ and $\beta_{k\left(j_{0}\right)}$, we obtain $\left|E \cap\left(x+h, b_{i_{0}}\right)\right|>$ $\left(b_{i_{0}}-x-h\right) / 4$ and $\left|E \cap\left(a_{j_{0}}, x+h+h_{1}\right)\right|>\left(x+h+h_{1}-a_{j_{0}}\right) / 4$, respectively. Consequently, $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 4$.

Case III. Suppose that $\mathrm{x}+\mathrm{h} \in \mathrm{P}$ and $\mathrm{x}+\mathrm{h}+\mathrm{h}_{1} \in \mathrm{P}$. Say $\mathrm{x}+\mathrm{h} \in$ $\mathrm{G}_{\mathrm{i}_{0}}=\left(\mathrm{a}_{\mathrm{i}_{0}}, \mathrm{~b}_{\mathrm{i}_{0}}\right)$ and let $\mathscr{L}=\left\{\mathrm{i}: \mathrm{b}_{\mathrm{i}_{0}}<\mathrm{a}_{\mathrm{i}}<\mathrm{b}_{\mathrm{i}} \leq \mathrm{x}+\mathrm{h}+\mathrm{h}_{1}\right\}$. Either $G_{i_{0}} \subseteq E$ or PROPERTY A of $\beta_{k\left(i_{0}\right)}$ applies to Yield $\left|E \cap\left(x+h, b_{i_{0}}\right)\right|>$ $\left.\left(b_{i_{o}}-x-h\right) / 4\right)$). Likewise, for each $i \in \mathscr{L}$, either $G_{i} \subseteq E$ or PROPERTY A
of $\quad \beta_{k(i)}$ applies to yield $\left|E \cap G_{i}\right|>\left|G_{i}\right| / 4$. Consequently, $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 4$.

Case IV. The remaining case, where $x+h \in P$ and $x+h+h_{1} \in P$, can be handled in a manner similar to Case III.

We have shown in all cases that $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 6$.
Similarly, if \mathbf{x} is assumed to be a limit point from the left of P, then a symmetric argument shows that for each positive c there is a positive $\epsilon(x, c)$ such that if h and h_{1} are negative numbers satisfying $h / h_{1}<c$, and $\left|h+h_{1}\right|<\epsilon$, then $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>\left|h_{1}\right| / 6$.

On the other hand, if the point x in P is not a limit point from the right for P, then the situation is considerably simpler. For then $x=a_{i}$ for some $G_{i}=\left(a_{i}, b_{i}\right)$ and either $G_{i} \subseteq H_{k(i)}$ or $G_{i} \subseteq H_{k(i)}^{*}$. If $G_{i} \subseteq H_{k(i)}$, then $G_{i} \subseteq E_{;}$and if $G_{i} \subseteq H_{k(i)}^{*}$, then since $f(t)=\beta_{k(i)}\left[\frac{t-a_{i}}{\sigma_{i}-a_{i}}\right]$ for $t \in G_{i}$, we can, for any positive c, revert to the properties of the original function β to find an $\epsilon(x, c)>0$ such that if h and h_{1} are positive numbers satisfying $h / h_{1}<c$, and $\left|h+h_{1}\right|<\epsilon$, then $\left|E \cap\left(x+h, x+h+h_{1}\right)\right|>h_{1} / 6$. The symmetric situation holds in the case where the point $x \in P$ is not a limit point from the left for P. Consequently, for any $x \in P$ and any $c>0$, by selecting. $\epsilon(x, c)$ to be the minimum of those two candidates obtained as described above, depending upon whether x is a right (left) limit point or isolated from the right (left), we have that $\left|E \cap\left(x+h, x+h+h_{1}\right)\right| /\left|h_{1}\right|>1 / 6$ for all h and h_{1} satisfying $\quad h h_{1}>0, h / h_{1}<c$. and $\left|h+h_{1}\right|<\epsilon(x, c)$. This, together with (1), yields that E_{α} is an M_{4} set, and, consequently, $f \in$ buscm $_{4}$.

As noted earlier, if $x \in I_{0} \backslash P$, then f is continous at x. Hence, it only remains to show that $P \subseteq N(f)$. Suppose $x \in P$. For each natural number k there is a component interval, call it I_{k}, of $I_{0} \backslash \underset{i=1}{u_{i}} G_{i}$ containing x.

If k is even, say $k=2 j-2$ for some natural number j, then $\left|I_{k} \cap H_{j}\right|>5\left|I_{k}\right| / 6$, and consequently,

$$
\begin{aligned}
\frac{1}{\left|I_{k}\right|} \int_{I_{k}} f(t) d t & =\frac{\left|I_{k} \cap H_{j}\right|}{\left|I_{k}\right|} \frac{1}{\left|I_{k} \cap H_{j}\right|} \int_{I_{k} \cap H_{j}} f(t) d t+\frac{1}{\left|I_{k}\right|} \int_{I_{k} \backslash H_{j}} f(t) d t \\
& >\frac{5}{6} \cdot \frac{1}{T I_{k} \cap H_{j} \mid} \int_{I_{k} \cap H_{j}} 1 d t-\frac{1}{\left|I_{k}\right|} \int_{I_{k} \backslash H_{j}} 2 d t \\
& >\frac{5}{6}-\frac{1}{3}=\frac{1}{2} .
\end{aligned}
$$

On the other hand, if $k=2 j-1$ for some natural number j, then $\left|I_{k} \cap H_{j}^{*}\right|>5\left|I_{k}\right| / 6$. If $\boldsymbol{L}=\left\{i: G_{i} \subseteq I_{k} \cap H_{j}^{*}\right\}$, then $I_{k} \cap H_{j}^{*}=\underset{i \in \mathscr{S}}{\cup} G_{i}$, and for each $i \in \mathscr{L}$ we have

$$
\frac{1}{\mid G_{i}} \left\lvert\, \int_{G_{i}} f(t) d t=\frac{1}{\left|G_{i}\right|} \int_{G_{i}} \beta_{j}\left[\frac{t-a_{i}}{b_{i}-a_{i}}\right] d t<-\frac{1}{4}\right.
$$

where the inequality is a consequence of PROPERTY C of β_{j}. Thus we have

$$
\frac{1}{\left|I_{k} \cap H_{j}^{*}\right|} \int_{I_{k} \cap H_{j}^{*}} f(t) d t<-\frac{1}{4}
$$

and hence

$$
\begin{aligned}
\frac{1}{T_{k} T} \int_{I_{k}} f(t) d t & =\frac{\left|I_{k} \cap H_{j}^{*}\right|}{\left|I_{k}\right|} \frac{1}{\left|I_{k} \cap H_{j}^{*}\right|} \int_{I_{k} \cap H_{j}^{*}} f(t) d t+\frac{1}{T I_{k} T} \int_{I_{k} \backslash H_{j}^{*}} f(t) d t \\
& <-\frac{5}{6} \cdot \frac{1}{4}+\frac{1}{6}=-\frac{1}{24} .
\end{aligned}
$$

Consequently, $x \in N(f)$, and the proof is complete.

The following simple observation, which is used in the proof of the next theorem, is quite probably well known, but since a reference is not known to us and since the proof is short, it is included.

REMARK If f and g are $M_{i}(i=1,2,3,4$, or 5) functions, and the sets of points of discontinuity of f and g are disjoint, then $f+g$ is also an M_{i} function.

PROOF. Let a be a real number and consider the associated set $E=$ $\{x: f(x)+g(x)<\alpha\}$. Then $E=E(f) \cup E(g)$, where $E(f)=$ $\{x \in E: f$ is continuous at $x\}$ and $E(g)=\{x \in E: g$ is continous at $x\}$. For each $x_{0} \in E(g)$, there is a rational number r such that $f\left(x_{0}\right)<r<$ $a-g\left(x_{0}\right)$. Since g is continuous at x_{0} there is an open interval I with rational endpoints containing x_{0} so that $g(x)$ is within $\epsilon=a-r-g\left(x_{0}\right)$ of $g\left(x_{0}\right)$ on I. Then E contains the set $I \cap\{x \mid f(x)<r\}$, an M_{i} set. Similarily, if $x_{0} \in E(f)$, there is a rational number s such that $g\left(x_{0}\right)<r$ $<a-f\left(x_{0}\right)$. Since f is continuous at x_{0} there is an open interval J with rational endpoints containing x_{0} so that $f(x)$ is within $\epsilon=\alpha-s$ $f\left(x_{0}\right)$ of $f\left(x_{0}\right)$ on J. Then E contains the set $J \cap\{x \mid g(x)<s\}$, an M_{i} set. Thus E can be expressed as a countable union of M_{i} sets and therefore is an M_{i} set itself. The other associated set $\{x: f(x)+g(x)>\alpha\}$ can be handled similarly.

The proof of the next theorem is virtually identical to that of Theorem 2 in [5], but, again, since it is short, it is included.

THEOREM 2. Let \mathcal{F} be any of the following subsets of $\mathcal{B}^{1}: M_{i}(i=$ $1,2,3,4), b M_{i}(i=1,2,3,4), \operatorname{uscm}_{i}(i=1,2,3,4)$, buscm $_{i}(i=1,2,3,4)$, usc, busc. Then $N \cap \mathcal{F}$ is a closed, nowhere dense subset of \mathcal{F}.

Proof. Let \mathcal{F} be any of the subspaces of \mathscr{B}^{1} listed in the theorem statement. From the lemma in [5], we have that $N \cap \mathscr{F}$ is closed in f. Let $g \in N \cap \mathcal{F}$ and let ϵ denote an arbitrary positive number. Let $C(g)$ be the dense ${ }^{6} \delta$ set consisting of the continuity points of g . According to Theorem 2 in [10], there is a perfect, non-o-porous set P of measure zero contained in $C(g)$. Let f be the function from Theorem 1 of the current paper constructed using this set P. Let $h(x)=g(x)+\epsilon f(x)$. Regardless which of the various possibilities that f may be, the fact that the points of discontinuity of f and g are disjoint assure that $h \in \mathscr{F}$. It is then an easy matter to verify that $N(h) \geq N(f)=P$, implying that $N(h)$ is non-o-porous, and, hence, that $h \in \mathcal{F} \backslash N$. Consequently, $N \cap \mathcal{F}$ is nowhere dense in \mathcal{F}.

The authors wish to thank the referees for their suggestions, which have yielded improvements in the proofs presented in this paper.

REFFERENCES

1. A.M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics 659, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
2. J. Ceder and T. Pearson, A survey of Darboux Baire l functions, Real Analysis Exchange 9 (1983-84), 179-194.
3. A. Denjoy, Sur les fonctions derivees sommables, Bull. de la Soc. Math. de France 43 (1915), 161-248.
4. M.J. Evans and P.D. Humke, Approximate continuity points and L-points of integrable functions, Real Analysis Exchange 11 (1985-86), 390-410.
5. \qquad , A typical property of Baire 1 Darboux functions, Proc. Amer. Math. Soc. (to appear)
6. H. Lebesgue, Sur l'integration des fonctions discontinuous, Ann. Ecole Norm. (3) 27 (1910), 361-450.
7. I. Mustafa, Some properties of semicontinuous functions, Real Analysis Exchange 11 (1985-86), 228-243.
8. D. Rinne, On typical bounded functions in the Zahorski classes, Real Analysis Exchange 9 (1983-84), 483-494.
9. \qquad , On typical bounded functions in the Zahorski classes II, Real Analysis Exchange 10 (1984-85), 155-162.
10. J. Tkadlec, Construction of some non-a-porous sets on the real line, Real Analysis Exchange 9 (1983-84), 473-482.
11. Z. Zahorski, Sur la primiere derivee, Trans. Amer. Math. Soc. 69 (1950), 1-54.
