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 L-P0mrS OP TYPICAL FUNCTIONS IN THE ZAHORSKI CLASSES

 Functions considered in this paper will belong to the space the

 space of Bai re class one functions on the interval [0,1] equipped with the

 metric of uniform convergence. Ever since Lebesgue [6], it has been known

 that any function in the space of bounded Bai re class one functions on [0,1],

 tffi1, is the derivative of its indefinite integral except at a set of points

 which is both of measure zero and of first category. As in [4], for f « a,

 we call X an L-point of f if lim if f(x + t)dt * f (x) , and we let
 IWO nj0

 N(f) = {x « [0,1]: lim ¿f f(x + t)dt does not exist}.
 h-*0 RJo

 Although the set of L-points for any function in ha1 is large in terms of

 measure and category-, it was. shown in [5] that for the typical (in the sense

 of category) function f e ba1 the set N(f) fails to be a -porous . More

 specifically, it was shown in that paper that if n = (f e a*: N(f) is

 o -porous} , and if ? is any of the spaces $*, b®*, (the Baire one
 Darboux functions ) , or ba^a , then n n ? is closed and ncwhere dense in ? .

 Thus, using Zahorski 's [11] notation, we have the situation that the

 typical function in -the space bnQ = bmļ = b®1® has a non-o-porous set of
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 points which fail to be L-points, while according to the classical result of

 Den joy [3], every point of [0,1] is an L-point for every function in

 the space of bounded approximately continuous functions on [0,1]. Thus, it

 seems natural to inquire about the situation in the intermediate spaces

 b«3, and bn4, especially in light of the recent interesting results dealing
 with the behavior of typical functions in the Zahorski classes presented by

 Rinne in [8] and [9].

 For the reader not familiar with the definitions of the Zahorski classes,

 we present them again here. Throughout we shall use - |E| to denote the

 Lebesgue measure of a measurable set E, E ' S to represent the intersection

 of the set E with the complement of the set S, and x to denote the
 S

 characteristic function of the set S.

 A set È is in class M. if it is an ? set and:
 i o

 i s o every x in E is a bilateral accumulation point of E

 i = 1 every x in E is a bilateral condensation point of E

 i * 2 for x in E and ö > 0, | (x - s,x) n E| > 0 and | (x,x + s) n Eļ >0

 i = 3 for x in E and any sequence {In> of intervals converging to x

 with |In n E| » 0 for all n, lim |In|/dist(x,In) = 0
 rw»

 i = 4 if there exists a sequence of closed sets Kn and a sequence of

 positive numbers rR such that E = U Kß and for every x in Kß
 and for every number c > 0 there is an e(x,c) > 0 such that

 |E n (x + h,x + h + h2) |/ļh£ ļ > rR forali h and ^ satisfying

 hhŁ > 0, h/hj < c, and ļh + < fc(x,c)
 i = 5 every x in E is a point of density of E.
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 A function f on [0,1] is in class /tL (i = 0,1,2,3,4,5) if each

 associated set is in class M^. We then have ^ s 3 ^ 3 ^ 3 ^4 3 ^5-

 Properties of typical functions in the subspace use of a1, consisting

 of the upper semi -continuous functions, have recently been investigated by

 Mustafa in [7]. (See also [2] by Ceder and Pearson.) We shall investigate

 the size of the set of L-points for functions in this and related classes as

 well. Indeed, the key to the present paper is the next theorem, wherein we

 construct a bounded, upper semi -continuous , function f (i.e.,

 f « busoB^) , having a given perfect set for its N(f) .

 THEOREM 1. If P is any perfect set of measure zero in [0,1], there is a

 function f € buscMj on [0,i] such that ( i ) P - N (f), and ( ¿¿ ) f is
 continuous at each x « P.

 Proof. Before beginning the construction of the function f, we

 introduce a. sequence of busc/n^ functions, : [0,1] -> [-2,1]. To this end,
 for each natural number n, and for each integer i = 0, 1, ... 2n-l, let

 I = i-i - 1+1 + 1 _ł . * )
 n,i 22n+l 23n+2 ' ¿x 22n+l

 and

 J = I J. - 1+1 ' -1 - i+1 + 1 )
 n,i 2n 22n+l ' 2n 22n+l 23n *

 It is then easily verified that both of the sets

 ~ 2n~*-l , « 211-1-!
 > = U u I . and > = u u I

 n=l j=0 ,J n=l j=0 ,J
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 have right density one half at zero, and that the set

 * 2n-l

 > " U U Jn ' i n=l i=0 '

 has right density zero at zero. Define the function ß : [0,1/2] -» [-2,1] by
 #

 setting ß(x) = -2 for x e *, ß(x) = 1 for x € * , and then making ß a

 linear function with range [-2,1] on the closure of each J . in such a
 il / Z

 manner that the resulting function is continuous on (0,1/2). Finally, set

 /3(0) = 1, and /3(1/2) ="-2. Then ß is continuous on (0,1/2] and, as noted by
 *

 Bruckner in [1, pp. 22,23,93J, the density properties of the sets *, * , and

 / at zero are sufficient to readily conclude that ß is in class , and it

 is clearly upper semicontinuous.

 Now, for each natural number k, let ß ^ : [0,1] -» [-2,1] be defined by

 " ß(x/^~X) , if 0 < x < 1/2
 Vx) K = Ì k-1 . K Ì I ß( (l-x)/2 k-1 A), . if 1/2 < x < 1.

 Since ß belongs to busc/n^ , so does each ' /3^. It is worth pausing at this

 point to take note of some of the properties of these /J^'s. Fix a number h

 strictly between 0 and 1. It is thai easily seen that both of the

 sequences { | {x « (0,h) : /^(x) =l}|/h:k=l,2, ...} and { ļ (x € (h,l) :

 Pk(x) - = 1> ļ /( 1- h) : k = 1,2, ...} have limit 1/2 as k -» This, of
 #

 course, follows from the earlier observation that the set > has right

 density 1/2 at 0. For future reference, we note that every term in both of

 these sequences is greater than 1/4, and we shall refer to this property of

 as PROPERTY A. Now, fix a k. It is readily seen that for any positive

 constant c < 2^-1 , the following property, which we shall denote as

 PROPERTY B, holds: If h and h, are two positive numbers such that r- < c
 l "i
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 ļ{x: A (X) = 1} n [h, h + h ] ļ
 and h + hŁ e [0,1], then - :

 that PROPERTY B holds for larger and larger values of c as k Increases is a

 feature that will be taken advantage of In the construction of the function

 f . ) A third' essential and easily verified feature of each is that

 j1 Pk(x)dx < -1/4,

 and we shall refer to this inequality as PROPERTY C of fi^. Finally, if

 X « [0,1], we agree to set /^(x) = O'

 Let P be the given perfect set of measure zero in IQ = [0,1], and

 enumerate the component intervals of IQ ' P as a sequence {G^ = (a^,b^) :
 N1

 i = 1, 2, ... }. Choose N. 1 so large that |I ° n ( u G.)| 1 > 5/6. In 1 ° i=l 1

 general, if has been defined, let R +ļ be large enough to insure that

 if I is any component interval of I ' u G. 1 , then ļl n n G. 1 ļ >
 i=l 1 i=Nk+1 1

 5|I|/6. For notational purposes we shall set = 0. Then for each natural
 N N
 2k- 1 „ 2k «o

 number k set H. » U G, , H. = U G. , H » u H. , and

 "W1 "W1
 * ^ *

 H = U H. . Then H and H are disjoint open sets with HUH = I ' P.
 k=l °

 For each i we shall let k(i) denote that unique value of k for which

 either or Gi£h£(1).
 We now define our function f on [0,1] by

 oo . oo .

 V f . V fX . ~ ai 1
 f (x) ■ X (X) + V ) X (x) + X. ,(x) • V ) fi. T-

 p X. "k Á 1 T-

 We shall first show that this function is in buson^. It is clearly

 continuous at each point of Iq ' P and sińce the range of f is [-2,1]
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 and f is identically 1 on P, it is obviously use at each point of P.

 Suppose that -2 < a < 1 (All other cases are immediate. ) and consider the

 associated sets Ea = {x: f(x) <• a} and = {x: f(x) > a}. Both are

 readily seen to be 3^ sets. Indeed, Ea is open and therefore an M4 set.
 Me must show that E is an M. set. Clearly, P <= E . Let G = E ' P. oc 4 oc a

 It is easy to see that G is open. Indeed, if x € G, then x « G^ for some
 *

 unique i, and either G^ c or G^ « ^(i)' Consequently, f is
 continuous 'on the open interval Gj containing x, and, therefore, there is

 an open interval containing x which is completely contained in G.

 Consequently, we have Ea expressed as

 (1) Ea = P U G,

 where G is open and P is closed. Hence, to show that Ea is an set,

 it will suffice to produce a number, r1 > 0, with the property that for each

 x s p, and for every positive number c there is an «■ (x,c) > 0 such that

 |E n (x + h, x + h + h^) ļ/ļhj > rļ for all h and satisfying hhj > 0,

 h/hŁ < c. and ļh + h^ < c(x,c). Indeed, we shall show that = 1/6 will
 work.

 Let x s P. As a first case, suppose that x is a limit point from the

 right for P. Let c be any given positive number. Choose k so large that

 2^""* > c, and thai let *. - e. (x,c) be so small that (x, x+e. ) c Iq and the

 only Gi's which intersect (x, x-k ) have subscripts greater than N2k-2-

 Now', suppose that h and are positive numbers satisfying h/1^ < c, and

 ļh + hj < We shall show that |Ea n (x + h, x + h + hj) | > t^/6. Nòte

 that it will suffice to show that |E n (x + h, x + h + h^) ļ > h^/6, where E =

 {x: f (x) =1}. We shall establish this latter inequality by considering the

 possible locations of the points x + h and x + h + h^.
 342



 Case I. Sappose that x + h s p and x + h + h^ € p. Let '■£ = {i:

 Gļ £ (x + h, x + h + hj)}. For each i € either or

 GiSHk(iC If GiSHk(i) ' 016,1 ūļ S E. and if Gd S <(1) then
 PROPERTY A of A,/ 1 m assures that |E n G. 11 | > |G. 1/4. Consequently, K( 1 m ) 11

 |E n (x + h, x + h + hj) ļ = |E n u G.| = | u (En G.)ļ = z (E n G.ļ x > i€í£ ie£ ie¿ x

 Z |G |/4 = h /4.
 i eie

 Case II. Suppose that x + h « P and x + h + ^ ť P, In this

 situation, there are two possibilities: x + h and x + h + Iv^ belong to the

 same G^ or they do not. Consider the former situation. Then G^ £ ^kfi)
 *

 or Gj £ Hj^j. If G^ £ Hk(i) , then G^, £ E and hence
 ♦

 |E n (x + h, x + h + h^) ļ = h^ . If G^ £ ^(i) ' °f assures
 that 2^*^ 1 > c, and since 0 < (x + h - a^)/hŁ < h/i^ < c, we may apply

 PROPERTY B of ß,. i . . to obtain |E n (x + h, x + h + h 11 ) ļ > h /6. Consider iC( i ) 11

 now the latter situation where x + heG. , x + h + h, € G . and i * j . i , 1 . o o
 o o

 Letting £ = {i: b. < a. < b. < a. } and applying the same reasoning as in
 Ao 1 1 Jo

 Case I, we obtain ļE n (b. ,a. )ļ > Z ļ G 1 . ļ /4 = (a. - b. )/4. Applying O J0 i€2 1 O aO

 PROPERTY A of ß.. . . and ß,. . . , we obtain |E n (x + h, b. ) ¡ >
 - 1 o^ *ÍJo' ao

 (b. - x - h)/4 and |E n (a . ,x + h + h ) | > (x + h + h - a . )/4,
 o ^o ^o

 respectively. Consequently, |E n (x + h, x + h + h^) ļ > 1^/4.

 Case III. Suppose that x + h « P and x + h + hŁ € P. Say x + h €

 G. = (a. , b. ) and let ¡¿ = {i: b. < a. < b. < x + h + hj}. Either
 o o . o o

 G. c E or PROPERTY A of ß. . . . applies to yield |E n (x + h, b. ) | >
 o K(V Zo

 (b^ - x - h)/4)). Likewise, for each i e £, either G. £ E or PROPERTY A
 o
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 of Ą. X . . applies to yield |E n G 11 ļ > |G. 1/4. Consequently, K( X / 11

 |E n (x + h, X + h + hŁ) ļ > 1^/4.

 Case IV. The remaining case, where x + h € p and x + h + hŁ « P, can
 be handled in a manner similar to Case III.

 We have shown in all cases that |E n (x + h, x + h + h^) ļ > hj/6.

 Similarly, if x is assumed to be a limit point fron the left of P, then

 a symmetric argument shows that for each positive c there is a positive

 e(x,c) such that if h and hj are negative numbers satisfying h/hj < c,

 and ļh + hj < e., then (En (x + h, x + h + hj) ļ > ļh^ ļ /6 .
 On the other hand, if the point x in P is not a limit point from the

 right for P, then the situation is considerably simpler. For then x = a^
 *

 for some = (a^,b^) and either G^ £ ^(j.) or Gļ - ^(i)' ^
 * íť " ai "

 Gi £ Gi S E; and if G., ç since f(t) = b. - a.

 for t € Gj, we can, for any positive c, revert to the properties of the
 original function ß to find an e(x,c) > 0 such that if h and are

 positive numbers satisfying h/ł^ < c, and ļh + h^ļ < then
 |E n (x + h, x + h + hj) I > h^/6. The symmetric situation holds in the case

 where the point "x € P is not a limit point from the left for P.

 Consequently, for any x € P and any c > 0, by selecting- e.(x,c) to be the

 minimum of those two candidates obtained as described above, depending upon

 whether x is a right (left) limit point or isolated fron the right (left),

 we have that |E n (x + h, x + h + ł^) |/ ļ > 1/6 for all h and ^

 satisfying hh^ > 0, h/h^ < c. and |h + h^| < &(x,c). Ulis, together with

 (1), yields that Ea is an M4 set, and, consequently, f € busc/i^.
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 As noted earlier, if x « I 'P, then f is continous at x. Hence, it only
 o

 remains to show that P ç N(f). Suppose x e P. For each natural number k

 "k
 there is a component interval, call it I. , of I ' u G. containing x.

 k , ° i-i 1
 If k is even, say k = 2j - 2 for some natural number j, then

 jlk n Hj| > 5 1 IjJ /6, and consequently,

 ih likf(t,dt = + Tçr Ļ.f(t,dt
 » I ' íIfcnHjldt - Tņ ĻHj2dt
 > I ' 3 = 7 *

 On the other hand, if k = 2j - 1 for sane natural number j, then

 |L n H j I > 5 ļ I. JC I /6 . If ï« {i: G.ÇL n H*}, then I. K n H% u G., 1 and KJ JC lKj K J 1

 for each i € X we have

 Ar i0ļf,t)dt ■ W '
 where the inequality is a consequence of PROPERTY C of ß . . Thus we have

 J

 W w~ Ļ«;
 and hence

 4-,.r f(t)dt = IV r f(t)dt +4-rf IV I Velina* J J k j k j
 <- 5 1 * 1 - 1
 <- <-S'4+ÏÏ""l4- * -

 Consequently, x e N(f), and the proof is complete.
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 The following simple observation, which is used in the proof of the next

 theorem, is quite probably well known, but since a reference is not known to

 us and since the proof is short, it is included.

 REMARK If f and g are A (i = 1,2,3,4, or 5) functions, and the

 sets of points of discontinuity of f and g are disjoint, then f + g is

 also an A. function.
 i

 PROOF. Let a be a real number and consider the associated set E -

 {x: f(x) + g(x) < a}. Then E = E(f) u E(g) , where E(f) =

 {x s E: f is continuous at x} and E(g) = {x e E: g is continous at x} . For

 each xQ « E(g), there is a rational number r such that f(xQ) < r <

 a - g(xQ) . Since g is continuous at xq there is an open interval I with

 rational endpoints containing xq so that g(x) is within & = a - r - g(xQ)

 of 9(xq) on 111:1611 E contains the set I n {xļf(x) < r}, an set.
 Similarly, if xQ e E(f), there is a rational number s such that g(xQ) < r
 < a - fix ) . Since f is continuous at x there is an open interval J
 o o

 with rational endpoints containing xQ so that f(x) is within & = a - s -

 f(xQ) of f(xQ) on J. Then E contains the set J n (xļg(x) < s}, an NT
 set. Thus E can be expressed as a countable union of sets and therefore

 is an set itself. The other associated set {x: f(x) + g(x) > a} can be

 handled similarly.

 The proof of the next theorem is virtually identical to that of Theorem 2

 in [5], but, again, since it is short, it is included.
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 THEOREM 2. Let 7 be any of the following subsets of ^ : M (i =

 1,2,3,4), bM^ ( i = 1,2,3,4), uscj IL (i = 1,2,3,4), buscM^ (i = 1,2,3,4), use,
 buse. Then ff D 7 is a closed, nov her e dense subset of 7.

 Proof. Let 7 be any of the subspaces of 5&1 listed in the theorem

 statement. From the lemma in [5], we have that m n 7 is closed in °f . Let

 g € K n 7 and let «. denote an arbitrary positive number. Let C(g) be the

 dense i set consisting of the continuity points of g. According to

 Theorem 2 in [10] , there is a perfect , non-o -porous set P of measure zero

 contained in C(g) . Let f be the function from Theorem 1 of the current

 paper constructed using this set P. Let h(x) = g(x) + &f (x) . Regardless

 which of the various possibilities that 7 may be, the fact that the points

 of discontinuity of f and g are disjoint assure that hey. It is then

 an easy matter to verify that N(h) 2 N(f) = P , implying that N(h) is

 non-o -porous , and, hence, that hey ' n . Consequently, ff n 7 is nowhere

 dense in 9 .

 The authors wish to thank the referees for their suggestions, which have

 yielded improvements in the proofs presented in this paper.
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