E.R. Love, Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia.

LEBESGUE POINTS OF FRACTIONAL INTEGRALS

1. Introduction.

Fractional integrals. Let $f \in L(a, b)$ and $r e c>0$. We define a cth integral of f to be the function. $I^{C_{f}}$ given by

$$
\begin{equation*}
I^{C_{f}(x)}=\left(I^{C_{f}}\right)(x)=\int_{a}^{x} \frac{(x-t)^{c-1}}{\Gamma(c)} f(t) d t \tag{1}
\end{equation*}
$$

this is the Riemann-Liouville fractional integral of f of order c.
Much work has been done on integrability- and continuity-type properties of $I^{C_{f}}$ for various kinds of function f. The main landmark in this is the work of Hardy and Littlewood [1], and it is sometimes thought that they exhausted this field. However, they did not consider Lebesgue points of $\mathrm{I}^{\mathrm{C}} \mathrm{f}$, and this is the subject of this paper. The main interest is in $0<c<1$, to which we confine attention.

A fundamental property is that
$I^{C} f(x)$ exists for almost all $x \in(a, b)$ and is integrable thereon. (2)
This follows from $I_{f} f_{f}$ being a convolution of integrable functions. However, much more may be true; for instance, considering $c=1$,

$$
I^{1} f(x)=\int_{a}^{x} f(t) d t
$$

exists for all $x \in[a, b]$ and is absolutely continuous thereon.
This suggests, and Hardy and Littlewood's many theorems in [1] support, the view that the continuity-type properties of I_{f} improve as c increases. For instance, their Theorem 12 shows that under certain conditions I_{f} belongs to a Lipschitz class which contracts as c increases. Indeed, the essential message of that theorem amounts, in brief, to:

If $f \in L^{p}$ and $\frac{1}{p}<c<1$, then $I_{f} C_{f} \operatorname{Lip}\left(c-\frac{l}{p}\right)$.

Many of thcir results in [1], like this one, were for $f \in L^{p}$ with $p>1$; and they showed that most of them were false for $p=1$. In this present paper all results are concerned with $f \in L^{1}$.

2. Lebesgue points.

Lebesgue points of $g \in L$ are points ξ such that both

$$
\begin{equation*}
\frac{1}{h} \int_{0}^{h}|g(\xi \pm s)-g(\xi)| d s \rightarrow 0 \quad \text { as } \quad h \rightarrow 0+ \tag{3}
\end{equation*}
$$

a continuity-type property, weaker than continuity. We shall abbreviate "Lebesgue point" to "L-point".

By a fundamental theorem, for $g \in L$ almost all points are L-points. Consequently for $f \in L$
almost all points are L-points of I^{C},
by (2). But (2) also gives that
almost all points are existence-points of I_{f}.
My theme in this paper is broadly that L-points and existence-points of $I^{C_{f}}$ are the same points.

Every L-point is an existence-point, merely by the definition (3); so my task is to prove the converse, that every existence-point is a L-point. The converse is not quite true in this simple form; the final form will be seen in Theorem 3.

Throughout the paper the same things can be said with "L-point" replaced by "point of approximate continuity", since Lebesgue points are necessarily points of approximate continuity.

3. Left Lebesgue points.

Theorem 1. If $0<c<1, f \in L(a, b), \xi \in(a, b]$ and $I^{C} f(\xi)$ exists, then ξ is a left L-point of $I^{C} f$ that is,

$$
\frac{1}{h} \int_{0}^{h}\left|I^{C_{f}}(\xi-s)-I^{C_{f}}(\xi)\right| d s \rightarrow 0 \quad \text { as } \quad h \rightarrow 0+
$$

Proof. Let $0<h<\eta<\frac{1}{2}(\xi-a)$. Since by (2) $\quad I_{f}$ exists almost everywhere in (a, b) we have, for almost.all $s \in(0, h)$,

$$
\begin{aligned}
\Gamma(c)\left\{I_{f}(\xi)-I_{f}(\xi-s)\right\}= & \left(\int_{a}^{a+s}+\int_{a+s}^{\xi-\eta}+\int_{\xi-\eta}^{\xi}\right)(\xi-t)^{c-1} f(t) d t \\
& -\left(\int_{a+s}^{\xi-\eta}+\int_{\xi-\eta}^{\xi}\right)(\xi-u)^{c-1} f(u-s) d u
\end{aligned}
$$

so that

$$
\begin{aligned}
& L=\frac{\Gamma(c)}{h} \int_{0}^{h}\left|I_{f}(\xi)-I_{f}(\xi-s)\right| d s \\
& \leqslant \frac{1}{h} \int_{0}^{h} d s \int_{a}^{a+s}(\xi-t)^{c-1}|f(t)| d t+\frac{1}{h} \int_{0}^{h} d s \int_{a+s}^{\xi-\eta}(\xi-t)^{c-1}|f(t)-f(t-s)| d t \\
& \quad+\frac{1}{h} \int_{0}^{h} d s \int_{\xi-\eta}^{\xi}(\xi-t)^{c-1}|f(t)| d t+\frac{1}{h} \int_{0}^{h} d s \int_{\xi-\eta}^{\xi}(\xi-t)^{c-1}|f(t-s)| d t \\
& =L_{1}+L_{2}+L_{3}+L_{4}, \text { say. }
\end{aligned}
$$

We aim to make as much of this as possible independent of h and s.

$$
\begin{aligned}
L_{1}+L_{3} & \leqslant \int_{a}^{a+\eta}(\xi-t)^{c-1}|f(t)| d t+\int_{\xi-\eta}^{\xi}(\xi-t)^{c-1}|f(t)| d t=M_{1}+M_{3}, \\
L_{2} & \leqslant \eta^{c-1} \frac{1}{h} \int_{0}^{h} d s \int_{a+s}^{\xi-\eta}|f(t)-f(t-s)| d t \\
& \leqslant \eta^{c-1} \sup _{0<s<h} \int_{a+s}^{\xi-\eta}|f(t)-f(t-s)| d t=M_{2}, \\
L_{4} & =\frac{1}{h} \int_{0}^{h} d s \int_{s}^{s+\eta}(v-s)^{c-1}|f(\xi-v)| d v \\
\leqslant \frac{1}{h} \int_{0}^{h} d s \int_{s}^{2 \eta}(v-s)^{c-1}|f(\xi-v)| d v & b y \quad t-s=\xi-v,
\end{aligned}
$$

$\leq \frac{1}{h} \int_{0}^{2 h} d s \int_{s}^{2 h}(v-s)^{c-1}|f(\xi-v)| d v+\frac{1}{h} \int_{0}^{h} d s \int_{2 h}^{2 \eta}(v-s)^{c-1}|f(\xi-v)| d v$
$\leq \frac{2}{2 h} \int_{0}^{2 h}|f(\xi-v)| d v \int_{0}^{v}(v-s)^{c-1} d s+\frac{1}{h} \int_{0}^{h} d s \int_{2 h}^{2 \eta}\left(\frac{1}{2} v\right)^{c-1}|f(\xi-v)| d v$
$\leq 2 \int_{0}^{2 h} \frac{|f(\xi-v)|}{v} \frac{v^{c}}{c} d v+\frac{2}{2 c} \int_{2 h}^{2 \eta} v^{c-1}|f(\xi-v)| d v$
$\leq \frac{2}{c}\left(\int_{0}^{2 h}+\int_{2 h}^{2 \eta}\right) v^{c-1}|f(\xi-v)| d v=\frac{2}{c} \int_{\xi-2 \eta}^{\xi}(\xi-t)^{c-1}|f(t)| d t=M_{4}$.

Now M_{1}, M_{3} and M_{4} are independent of h; but they all tend to zero with η because $\mathrm{I}_{\mathrm{f}}(\xi)$ exists. Thus given $\varepsilon>0, \eta$ can be chosen small enough to make all three less than $\frac{1}{4} \varepsilon$. With η so fixed, $M_{2} \rightarrow 0$ as $h \rightarrow 0$ by continuity-in- L^{1}-norm of f . So, given $\varepsilon>0$ there is $\delta>0$ such that

$$
L \leqslant M_{1}+M_{2}+M_{3}+M_{4}<\varepsilon \text { whenever } 0<h<\delta,
$$

as required.

4. Right Lebesgue points.

It is evident from (1) that existence of $I^{C_{f}}(\xi)$ exercises no control over the values of $f(x)$ or of $I^{C} f(x)$ for $x>\xi$. So no analogue of Theorem 1 for right l-points of I_{f} can be expected without some extra hypothesis. This explains the need for (4) in the following theorem.

Theorem 2. If $0<c<1, f \in L(a, b), \xi \in[a, b), I_{f} f(\xi)$ exists and

$$
\begin{equation*}
\frac{1}{h} \int_{0}^{h}|f(\xi+t)| d t=o\left(h^{-c}\right) \quad \text { as } \quad h \rightarrow 0+ \tag{4}
\end{equation*}
$$

then ξ is right L-point of $I^{C_{f}}$; that is,

$$
\frac{1}{h} \int_{0}^{h}\left|I^{c_{f}}(\xi+s)-I^{c_{f}}(\xi)\right| d s \rightarrow 0 \quad \text { as } \quad h \rightarrow 0+.
$$

Proof. Since $I^{C} f_{f} \in L(a, b)$ by (2) and since $I^{C_{f}(\xi)}$ exists, the
expression

$$
R=\frac{\Gamma(c)}{h} \cdot \int_{0}^{h}\left|I^{C_{f}}(\xi+s)-I^{C_{f}}(\xi)\right| d s
$$

has meaning for $0<h<b-\xi$.
(i) Since $\mathrm{IC}_{\mathrm{f}}(\mathrm{a})=0$ by (1), $\xi=\mathrm{a}$ is possible. In that case $R=\frac{1}{h} \int_{0}^{h}\left|\int_{a}^{a+s}(a+s-t)^{c-1} f(t) d t\right| d s \leq \frac{1}{h} \int_{0}^{h} d s \int_{0}^{s}(s-u)^{c-1}|f(a+u)| d u$ $=\frac{1}{h} \int_{0}^{h}|f(a+u)| d u \int_{u}^{h}(s-u)^{c-1} d s \leq \frac{h^{c}}{c} \frac{1}{h} \int_{0}^{h}|f(a+u)| d u \rightarrow 0$
as $h \rightarrow 0+$, by (4); thus a is a right L-point of f, as required.
(ii) Suppose that $a<\xi<b$ and $0<h<\eta<\min \{b-\xi, \xi-a\}$. For almost all $s \in(0, h)$,

$$
\begin{aligned}
& \Gamma(c)\left\{I^{C_{f}}(\xi+s)-I^{C_{f}}(\xi)\right\}=\left(\int_{a-s}^{a}+\int_{a}^{\xi-\eta}+\int_{\xi-\eta}^{\xi}\right)(\xi-u)^{c-1} f(u+s) d u \\
&-\left(\int_{a}^{\xi-\eta}+\int_{\xi-\eta}^{\xi}\right)(\xi-t)^{c-1} f(t) d t
\end{aligned}
$$

and so R is no greater than

$$
\begin{gathered}
\frac{1}{h} \int_{0}^{h} d s \int_{a}^{a+s}(\xi+s-t)^{c-1}|f(t)| d t+\frac{1}{h} \int_{0}^{h} d s \int_{a}^{\xi-\eta}(\xi-t)^{c-1}|f(t+s)-f(t)| d t \\
\quad+\frac{1}{h} \int_{0}^{h} d s \int_{\xi-\eta}^{\xi}(\xi-u)^{c-1}|f(u+s)| d u+\frac{1}{h} \int_{0}^{h} d s \int_{\xi-\eta}^{\xi}(\xi-t)^{c-1}|f(t)| d t \\
=R_{1}+R_{2}+R_{3}+R_{4}, \text { say. }
\end{gathered}
$$

As before we make as much of this as possible independent of h and s.

$$
\dot{R}_{1}+R_{4} \leqslant \int_{a}^{a+\eta}(\xi-t)^{c-1}|f(t)| d t+\int_{\xi-\eta}^{\xi}(\xi-t)^{c-1}|f(t)| d t=S_{1}+S_{4}
$$

$$
\begin{aligned}
R_{2} & \leq \eta^{c-1} \frac{1}{h} \int_{0}^{h} d s \int_{a}^{\xi-\eta}|f(t+s)-f(t)| d t \\
& \leq \eta^{c-1} \sup _{0<s<h} \int_{a}^{\xi-s}|f(t+s)-f(t)| d t=s_{2}, \\
R_{3} & =\frac{1}{h} \int_{0}^{h} d s \int_{s-\eta}^{s}(s-v)^{c-1}|f(\xi+v)| d v \quad \text { by } u+s=\xi+v, \\
& =\frac{1}{h}\left(\int_{0}^{h} d s \int_{s-\eta}^{0} d v+\int_{0}^{h} d s \int_{0}^{s} d v\left|(s-v)^{c-1}\right| f(\xi+v) \mid\right. \\
& \leq \frac{1}{h} \int_{0}^{h} d s \int_{-\eta}^{0}(-v)^{c-1}|f(\xi+v)| d v+\frac{1}{h} \int_{0}^{h}|f(\xi+v)| d v \int_{v}^{h}(s-v)^{c-1} d s \\
& =\int_{\xi-\eta}^{\xi}(\xi-t)^{c-1}|f(t)| d t+\frac{1}{h} \int_{0}^{h}|f(\xi+v)| \frac{(h-v)^{c}}{c} d v \\
& \leqslant S_{4}+\frac{h^{c}}{c} \frac{1}{h} \int_{0}^{h}|f(\xi+v)| d v=s_{4}+s_{3}, \quad s a y .
\end{aligned}
$$

Now S_{1} and S_{4} are independent of h; and they can be made less than $\frac{1}{5} \varepsilon$ by choosing η sufficiently small. With η so fixed, $S_{2} \rightarrow 0$ as $h \rightarrow 0$ by continuity-in- L^{2}-norm of f; and $S_{3} \rightarrow 0$ as $h \rightarrow 0$ by (4). Thus, given $\varepsilon>0$ there is $\delta>0$ such that

$$
R \leqslant S_{1}+S_{2}+S_{3}+2 S_{4}<\varepsilon \quad \text { whenever } 0<h<\delta,
$$

as required; this completes the proof of Theorem 2.

Remarks. Hypothesis (4) of Theorem 2 cannot be relaxed by replacing o by 0 . For the function

$$
f(x)=0 \quad \text { for } \quad x \leqslant \xi, \quad f(x)=(x-\xi)^{-c} \quad \text { for } \quad x>\xi
$$

satisfies all the hypotheses except (4), and

$$
\frac{1}{h} \int_{0}^{h}|f(\xi+t)| d t=\frac{h^{-c}}{1-c}=0\left(h^{-c}\right) .
$$

But ξ is not a right L-point of $I^{C} f$, because $I_{f} f$ has a simple discontinuity on the right at ξ; for if $x>\xi$

$$
\Gamma(c) I_{f}(x)=\int_{\xi}^{x}(x-t)^{c-1}(t-\xi)^{-c} d t=\Gamma(c) \Gamma(1-c)
$$

and so as $x \rightarrow \xi+$

$$
I_{f}(x) \rightarrow \Gamma(1-c) \pm 0=I_{f}(\xi)
$$

This example is also significant in another way. If it were true that for all integrable f all points were L-points of $I_{f} f_{\text {, Theorems }} 1$ and 2 would be relatively pointless. But the example shows that not all points need be L-points of I_{f}.

5. Left-handed fractional integrals.

For $f \in L(a, b)$ and rec>0, define $J C_{f}$ by

$$
\begin{equation*}
J C_{f}(x)=\left(J C_{f}\right)(x)=\int_{x}^{b} \frac{(s-x)^{C-1}}{\Gamma(c)} f(s) d s \tag{5}
\end{equation*}
$$

Writing $g(t)=f(a+b-t)$, the substitutions $s=a+b-t$ and $x=a+b-y$ show that

$$
\int_{x}^{b}(s-x)^{c-1} f(s) d s=\int_{a}^{y}(y-t)^{c-1} g(t) d t
$$

and hence that

$$
\begin{equation*}
J C_{f}(x)=I C_{g}(y) \tag{6}
\end{equation*}
$$

either side existing whenever the other does. This indicates the well-known fact that $J C$ has properties like those of I^{C}.

We need some assorted lemmas involving properties like (4).

Lemea 1. If $0<c<1, f \in L(a, b), \xi \in(a, b]$ and $I^{C} f(\xi)$ exists, then

$$
\frac{1}{h} \int_{0}^{h}|f(\xi-t)| d t=o\left(h^{-c}\right) \quad \text { as } \quad h \rightarrow 0+
$$

Proof. $\quad \Gamma(c) I^{C} f(\xi)=\int_{a}^{\xi}(\xi-t)^{c-1} f(t) d t=\int_{0}^{\xi-a} u^{c-1} f(\xi-u) d u$,
so by hypothesis $u^{C-1}|f(\xi-u)|$ is integrable on $0<u<\xi-a$.

$$
h^{c} \frac{1}{h} \int_{0}^{h}|f(\xi-u)| d u=\int_{0}^{h} h^{c-1}|f(\xi-u)| d u \leqslant \int_{0}^{h} u^{c-1}|f(\xi-u)| d u ;
$$

this tends to 0 as $h \rightarrow 0+$, by the integrability just proved.

Lemman 2. If $0<c<1, f \in L(a, b), \xi \in[a, b)$ and $J C_{f}(\xi)$ exists, then

$$
\frac{1}{h} \int_{0}^{h}|f(\xi+t)| d t=o\left(h^{-c}\right) \quad \text { as } \quad h \rightarrow 0+
$$

Proof. Let $g(t)=f(a+b-t)$ and $\eta=a+b-\xi \in(a, b]$. Then $g \in L(a, b)$, and $I^{C_{g}}(\eta)=J C_{f}(\xi)$ exists by (6), so by Lemma l

$$
\frac{1}{h} \int_{0}^{h}|f(\xi+t)| d t=\frac{1}{h} \int_{0}^{h}|g(\eta-t)| d t=o\left(h^{-c}\right) .
$$

Lemm 3. If $0<c<1, f \in L(a, b), \xi \in[a, b)$ and $J^{C} f(\xi)$ exists, then ξ is a right l-point of $J C_{f}$. (Compare Theorem 1.)

Proof. Let $g(t)=f(a+b-t), \eta=a+b-\xi$ and $0<h<b-\xi ;$ then

$$
\frac{1}{h} \int_{0}^{h}\left|J C_{f}(\xi+s)-J C_{f}(\xi)\right| d s=\frac{1}{h} \int_{0}^{h}\left|I_{g}(\eta-s)-I C_{g}(\eta)\right| d s
$$

by (6). Since $g \in L(a, b), \eta \in(a, b]$ and $I^{C} g(\eta)$ exists, η is a left L-point of $I^{C} g$ by Theorem 1 . So the above expressions tend to 0 as $h \rightarrow 0^{+}$, whence $J^{C_{f}}$ has a right L-point at $\boldsymbol{\xi}$.

Lema 4. If $0<c<1, f \in L(a, b), \xi \in(a, b], J C_{f}(\xi)$ exists and

$$
\frac{1}{h} \int_{0}^{h}|f(\xi-t)| d t=o\left(h^{-c}\right) \quad \text { as } \quad h \rightarrow 0+
$$

then ξ is a left L-point of JC_{f}. (Compare Theorem 2.)

Proof. Let $g(t)=f(a+b-t), \quad \eta=a+b-\xi$ and $0<h<\xi-a ;$ then

$$
\frac{1}{h} \int_{0}^{h}|g(\eta+t)| d t=\frac{1}{h} \int_{0}^{h}|f(\xi-t)| d t=o\left(h^{-c}\right)
$$

as $h \rightarrow 0+$. Also $I^{C} g(\eta)$ exists since $J^{C_{f}(\xi)}$ does, by (6); so by Theorem $2 \boldsymbol{\eta}$ is a right L-point of $I^{C g}$. Since

$$
\frac{1}{h} \int_{0}^{h}\left|\mathrm{~J}_{f}(\xi-s)-\mathrm{J}_{f}(\xi)\right| d s=\frac{1}{h} \int_{0}^{h}\left|I^{c_{g}}(\eta+s)-I^{c_{g}}(\eta)\right| d s \rightarrow 0
$$

as $h \rightarrow 0+, \xi$ is a left L-point of $J C_{f}$, as required.

6. Two-sided fractional integrals.

The lemmas of 55 enable us to make the following synthesis of Theorems 1 and 2, involving two-sided Lebesgue points.

Theore 3. If $0<c<1$ and $f \in L(a, b)$, then the L-points of

$$
K^{C} f(x)=\int_{a}^{b} \frac{|x-t|^{c-1}}{\Gamma(c)} f(t) d t
$$

in (a, b) are just the points x at which $K^{C} f(x)$ exists.

Proof. Every L-point is a point of existence, by the definition (3). For the converse, suppose that $\xi \in(a, b)$ and that $K^{C} \mathcal{C}_{f}(\xi)$ exists. Then $I^{C} f(\xi)$ and $J^{C} f(\xi)$ exist, and their sum is $K^{C} f(\xi)$.

By Lerma 1,

$$
\frac{1}{h} \int_{0}^{h}|f(\xi-t)| d t=o\left(h^{-c}\right) \quad \text { as } \quad h \rightarrow 0+
$$

so by Lemma 4ξ is a left L-point of JC_{f}. And by Lemma $3 \boldsymbol{\xi}$ is a right L-point of $J^{C} C_{f}$. Thus ξ is a L-point of $J_{f} \mathbf{f}_{\text {. }}$

By Lemma 2,

$$
\frac{1}{h} \int_{0}^{h}|f(\xi+t)| d t=o\left(h^{-c}\right) \quad \text { as } \quad h \rightarrow 0+
$$

so by Theorem 2ξ is a right L-point of ICf. And by Theorem $\mathcal{\xi}$ is a left L-point of $I^{C_{f}}$. Thus ξ is a L-point of $I^{C_{f}}$.

Since $I^{C} f(x)+J^{C} f(x)=K^{C} f(x)$ for almost all $x \in(a, b)$, $\frac{1}{h} \int_{0}^{h}\left|K^{C_{f}}(\xi \pm s)-K^{C_{f}}(\xi)\right| d s$
$\left.\leq \frac{1}{h} \int_{0}^{h}\left|I^{C_{f}(\xi \pm s)}-I^{C_{f}(\xi) \mid d s}+\frac{1}{h} \int_{0}^{h}\right| J^{C_{f}}(\xi \pm s)-J C_{f}(\xi) \right\rvert\, d s ;$
these all tend to zero as $h \rightarrow 0+$, and so ξ is a L-point of $K^{c_{f}}$, as required.

7. Reference.

[1] G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals. I. Math. Zeitschr. 27"(1928), 565-606.

Received July 29, 1986

