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 LEBESGUE POINTS OF FRACTIONAL INTEGRALS

 1. Introduction.

 Fractional integrals. Let f e L(a,b> and re c > 0. We define a cth

 integral of f to be -the function Icf given by

 rc (x~^} - i rc (x~^} f(t) dt; (1)

 this is the Riemann-Liouville fractional integral of f of order c.

 Much work has been done on integrability- and continuity- type properties

 of Icf for various kinds of function f. The main landmark in this is the

 work of Hardy and Littlewood [1], and it is sometimes thought that they

 exhausted this field. However, they did not consider Lebesgue points of Icf,

 and this is the subject of this paper. The main interest is in 0 < c < 1, to

 which we confine attention.

 A fundamental property is that

 Icf(x) exists for almost all x € (a,b) and is integrable thereon. (2)

 This follows from Icf being a convolution of integrable functions. However,

 much more may be true; for instance, considering c = 1,

 Pfix) = f f(t) dt
 a

 exists for all x e [a,b] and is absolutely continuous thereon.

 This suggests, and Hardy and Littlewood's many theorems in [1] support,

 the view that the continuity-type properties of I^f improve as c increases.

 For instance, their Theorem 12 shows that under certain conditions Icf

 belongs to a Lipschitz class which contracts as c increases. Indeed, the

 essential message of that theorem amounts, in brief, to:

 327



 If f € and - < c < 1, then Icf e Lip(c - - ) .
 -

 Many of their results in [1], like this one, were for f e Lp with p > 1;
 and they showed that most of them were false for p = 1. In this present

 paper all results are concerned with f € L1.

 2. Lebesgue points.

 Lebesgue points of g € L are points £ such that both

 è h I l£(f * s) - g(f)| ds -» 0 as h ■* 0+ ; (3) h Jo

 a continuity- type property, weaker than continuity. We shall abbreviate

 "Lebesgue point" to "L-point".

 By a fundamental theorem, for g e L almost all points are L-points.

 Consequently for f € L

 almost all points are L-points of Icf.

 by (2). But (2) also gives that

 « Imnat, all points are existence-points of Icf.

 My theme in this paper is broadly that L-points and existence-points of Icf
 are the same points.

 Every L-point is an existence-point, merely by the definition (3); so my
 task is to prove the converse, that every existence-point is a L-point. The
 converse is not quite true in this simple form; the final form will be seen
 in Theorem 3.

 Throughout the paper the same things can be said with "L- point" replaced
 by "point of approximate continuity", since Lebesgue points are necessarily
 points of approximate continuity.

 3. Left Lebesgue points.

 Theorem 1. If ' 0 < c < 1, f e L(a,b), ( e (a,b] and lcf(0 exists,
 then ( is a left L-point of Icf; that is,
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 r h f |Icf(£ - s) - Icf(f)| ds -» 0 as h -> 0+. h O

 Proof. Let 0<h<7j<^(£-a). Since by (2) Icf exists almost
 everywhere in (a,b) we have, for almost all s € (0,h),

 3+g Ç £

 r(c){icf(i) - icfu-s)} = ( J + J + J ) (f-t^fU) dt
 a a+s f-n

 - ( J + J ) (£-u)° 1 f(u-s) du,
 a+s É-17

 so that

 L = 4s* f |Icf(f) - Icf(f-s)| ds
 0

 * ± J11 ds J3 3 (*-t)°~ł|f(t)|dt + jj J ds f~* (f-t)c_1|f(t). - f(t-s)|dt
 0 a 0 a+s

 + 5 f 08 í* ( f - t ) C- 1 1 f ( t ) I dt + J"** ds J* U-t^lftt-sXdt
 0 t-V 0 t-V

 = Lļ + La + Is + L4, say.

 We aim to make as much of this as possible independent of h and s.

 ra+v c-i ff c-i
 Lj + L3 * J (f-t)^ c-i |f(t)|dt + j (4- 1)°^ c-i |f(t)|dt = Mi + M3,

 a

 L2 < riC~1 jj jb ds J*"7' J f (t) - f ( t-s ) I dt
 0 a+s

 .

 * V .
 0<s<h a+s

 , -h fs+v
 L* = £ J ds j ( v- s ) C~~ 1 1 f ( f - v ) I dv by t-s = |-v,

 0 s

 < g J11 ds J ( v- s ) 0-1 1 f ( f - v ) I dv
 0 s
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 , ç2h ç2h ļ Ji çZv
 ú ïï h J fe I (v*"s) ł|f(f-v)|dv + r h ļ ds (v-s)0"1 |f(í-v) |dv ïï h O s h O 2h

 ť ÕT ¿ü í |f(f-v) |dv í (v-s)0-1 ds + £ f1 ds f v)C 1 |f(£-v)|dv ¿ü O O O 2h

 , 2 r2h illízvli v£ dv + _2 r277 vc-^|f(f_v)|dv J0 v c dv + 2C J2h

 4 I C ( 1 J + J ' Iv0"1 |f(í-v) |dv = I C J (£-t)c 1 I f ( t ) I dt = M*. C 1 J0 2h ' C Jí~2r,

 Now Mj , M3 and M4 aure independent of h; but they all tend to zero with

 7J because Icf(f) exists. Thus given t > 0, v can be chosen small enough

 to make all three less than -r e. With v so fixed, M2 •* 0 as h -» 0 by

 continuity-in-Lł-nona of f. So, given e > 0 there is 6 > 0 such that

 Ł < Mt + Ma + M3 + M4 < t whenever 0 < h < ó,

 as required.

 4. Right Leb es true points.

 It is evident from (1) that existence of Icf(£) exercises no control

 over the values of f(x) or of Icf(x) for x > £. So no analogue of

 Theorem 1 for right L-points of Icf can be expected without some extra

 hypothesis. This explains the need for (4) in the following theorem.

 Theorem 2. If 0 < c < 1, f € L(a,b), f € [a,b), Icf(f) exists and

 è n J |f(f+t)|dt = o(h c) as h -* 0+, (4) n 0

 then I is right L-point of Icf; that is.

 ļ n f |Icf(f+s) - Icf(f) |ds -> 0 as h -» 0+. n 0

 Proof. Since Icf € L(a,b) by (2) and since Icf(f) exists, the
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 expression

 R = h J Ilcf(í+s) - Icf(f)|ds h Jo

 has meaning for 0 < h < b-f.

 (i) Since Icf(a) = 0 by (1), £ = a is possible. In that case

 R = è h | I f (a+s-t)C *f(t)dt ds < r h f ds f (s-u)c ł|f(a+u)|du h J0 1 a h 0 J0

 = £ J** |f(a+u)|du (s-u)° 1ds < ~ |f(a+u)|du -* 0
 Ou 0

 as h -» 0+, by (4); thus a is a right L-point of f, as required.

 (ii) Suppose that a < £ < b and 0 < h < v < min{b-£ , f-a} . For almost

 all s € (0,h),

 r(c){Icf(f+s) - Icf(f)} = ( J + J + J ] (f-uJ^fCu+sJdu
 a-s a t~v

 - ( + J* ) U-tļ^fCtļdt;
 a (-v

 and so R is no greater than

 i Ji .a+s , Jbt
 ļ i j ds J (É+s-t)0-1 |f(t) |dt + ¿ j ds J (f-t)°~ł|f(t+3) - f(t)|dt
 0 a 0 a

 + jj J11 ds J (f-u)0-1 |f(u+s) |du + è J*11 ds J (f-t)0-1 |f(t) I dt
 0 t-v 0 (-v

 = Rx + Ra + R3 + R4, say.

 As before we make as much of this as possible independent of h and s.

 fa+7» c- i r* c-i
 Ri + R4 ' J (f-t)c^l|f(t)|dt c- i + J (ť^-t)0^1 c-i |f(t) |dt = S,.+ S4ł

 a (~v
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 Ra * 77e"1 jj f1 ds V |f(t+s) - f(t)|dt
 0 a

 Q - 1 p£"S
 á 71 Q - 1 sup J |f(t+s) - f(t)|dt = S3 ,

 0<s<h a

 R3 = ¿ J^1 ds J (s-v)° 'ifif+vJIdv by u + s = f + v,
 0 s-17

 = r [ J"*1 ds J dv + J ds J dv] (s-v)°~l ļ f (í+v) |
 O S-7J 0 • 0

 'if à* ¡ (-v)C 'ifCf+vJIdv + ¿ J11 |f(f+v) I dv J11 (s-v)c-1ds
 O-17 O v

 = Jf (f-t)®"l|f(t)|dt + ¿ jb 't«+v) dv
 Ç-V 0

 é s4 + 7- c r ù J |f(f+v) I dv = S4 + S3, say. c ù J0

 Now Si and S4 are independent of h; and they can be made less than

 ^ e by choosing v sufficiently small. With v so fixed, S2 ** 0 as
 h -» 0 by continuity-in-I^-norm of f; and S3 -> 0 as h •* 0 by (4). Thus,

 given e > 0 there is S > 0 such that

 H < Sj + Sj + S3 + 2S4 < s whenever 0 < h < <5,

 as required; this completes the proof of Theorem 2.

 Remarks ♦ Hypothesis (4) of Theorem 2 cannot be relaxed by replacing 0

 by 0. For the function

 f(x) =0 for X * t, f(x) = (x-f)~° for x > t

 satisfies all the hypotheses except (4), and

 ļ f |f(f+t)|dt = = 0(h"c).
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 But ( is not a right L-point of Icf , because Icf has a simple dis-

 continuity on the right at f ; for if x > (

 r(c)icf(x) = J (x-t)°~l (t-t^dt = r(c)rd-c),
 t

 and so as x •*

 ICf(x) -> r(l-c) * 0 = Icf(£).

 This example is also significant in another way. If it were true that

 for all integrable f all points were L-points of Icf, Theorems 1 and 2

 would be relatively pointless. But the example shows that not all points

 need be L-points of Icf .

 5. Left-handed fractional Integrals.

 For f € L(a,b) and re c > 0, define Jcf by

 JCfCx) = (JCf)(x) = f v f(8) ds. (5) X v

 Writing g(t) = f(a+b-t), the substitutions s = a + b - t and

 x = a + b - y show that

 J (s-x)c~1f(s)ds = J (y-tJ^gCtJdt,
 x a

 and hence that

 JCf(x) = Icg(y) , (6)

 either side existing whenever the other does. This indicates the well-known

 fact that Jc has properties like those of Ie.

 We need some assorted lemmas involving properties like (4) .
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 Tamnmg i If O < c < 1, f € L(a,b), £ € (a,b] and Icf(f) exists,

 then

 r ñ J |f(f-t)|dt = o(h"°) as h ■+ 0+. ñ 0

 Proof. r(c)Icf(f) = Í* (f-t)c_1f(t)dt = a u^'fU-uļdu,
 a 0

 so by hypothesis u^'ļfd-u)! is integrale on 0 < u < f-a.

 hc r h f |f(f-u)|du = f h^ļfU-iOldu * j u0-1 | f (f-u) | du; h J0 0 0

 this tends to 0 as h ■+ 0+, by the integrability just proved.

 Łe- a 2. If 0 < c < 1, f e L(a,b), f € [a,b) and Jcf(f) exists,

 then

 ¿ f11 |f(f+t)|dt = o(h~C) as h -> 0+.
 0

 Proof. Let g(t) = f(a+b-t) and tj = a + b - f € (a,bj. Then

 g € L(a,b), and Icg(rç) = Jcf(l) exists by (6), so by Lemma 1

 r h J J l*(f+t)|dt «if |g(n-t)|dt = o(h~c). h J 0 0

 Łeaa 3. If 0 < c <1, f e L(a,b), f « [a,b) and Jcf(i) exists,

 then ( is a right L- point of Jcf. (Compare Theorem 1.)

 Proof. Let g(t) = f(a+b-t), v = a+b-f and 0 < h < b-f; then

 i h I |Jcf(f+s) - Jcf ( í ) I ds = r f I IcÄ(l- s) - Icg(rç)|ds h J0 hJ0

 by (6). Since g«L(a,b), ve (a,b] and Icg(*?) exists, v is a left
 L-point of Icg by Theorem 1. So the above expressions tend to 0 as
 h -> 0+, . whence Jcf has a right L-point at (.
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 Ļe»a_4. If O < c < 1, f€ L(a,b), £ € (a,b], Jcf(f) exists and

 ¿ h I | f (£-t) I dt = o(h~C) as h •* 0+, h Jo

 then £ is a left L-point of Jcf. (Compare Theorem 2.)

 Proof. Let g(t) = f(a+b-t), łj = a+b-$ and 0 < h < f-a; then

 è J11 I S(v+t) I dt = r J I f ( Í- t ) I dt = o(h~°)
 0 0

 as h -> 0+. Also Icg(rç) exists since Jcf(f) does, by (6); so by

 Theorem 2 is a right L-point of Icg. Since

 |JCf(*-s) - jcf(f)|ds = è J |Icg(*r+s) - Icg(7j)|ds -> 0
 n 0 0

 as h ■* 0+, f is a left L-point of Jcf , as required.

 6. Two- sided fractional integrals.

 The lemmas of §5 enable us to make the following synthesis of Theorems 1

 and 2, involving two-sided Lebesgue points.

 Theorem 3. If 0 < c < 1 and f € L(a,b), then the L-points of

 KCf(x) = f v f ( t ) dt a v '

 in (a,b) are .just the points x at which Kcf(x) exists.

 Proof. Every L-point is a point of existence, by the definition (3).

 For the converse, suppose that f e (a,b) and that Kcf(f) exists. Then

 Icf(f) and Jcf(f) exist, and their sum is Kcf(f).

 By Lemma 1 ,

 r f | f (£-t) I dt = o(h"C) as h ■* 0+,
 0
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 so by Lemma 4 f is a left L-point of Jcf. And by Lemma 3 ( is a right

 L-point of Jcf. Thus f is a L-point of Jcf.

 By Lemma 2,

 j; n J I f (|+t) I dt = o(h*C) as h -* 0+, n 0

 so by Theorem 2 f is a right L-point of Icf. And by Theorem 1 f is a

 left L-point of Icf. Thus ( is a L-point of Icf.

 Since Icf(x) + Jcf(x) = Kcf(x) for almost all x € (a,b),

 |Kcf(£*s) - Kcf(f)|ds
 n 0

 * r n J |icf(i*s) - icf(0|ds + r J ljCf(f±s) - Jcf(0|ds; n 0 0

 these all tend to zero as h •* 0+, and so ( is a L-point of Kcf , as

 required.

 7. Reference.

 [1] G.H. Hardy and J.E. Littlewood, Some properties of fractional

 integrals. I. Math. Zeitschr. 27#(1928), 565-606.

 Rececved July 29, 1986
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