Real Analysis Exchange Vol. 12 (1986-87)

E.R. Love, Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia.

LEBESGUE POINTS OF FRACTIONAL INTEGRALS

1. Introduction.

<u>Fractional integrals</u>. Let $f \in L(a,b)$ and re c > 0. We define a <u>cth</u> <u>integral of f</u> to be the function I^Cf given by

$$I^{c}f(x) = (I^{c}f)(x) = \int_{a}^{x} \frac{(x-t)^{c-1}}{\Gamma(c)} f(t) dt; \qquad (1)$$

this is the Riemann-Liouville fractional integral of f of order c.

Much work has been done on integrability- and continuity-type properties of I^cf for various kinds of function f. The main landmark in this is the work of Hardy and Littlewood [1], and it is sometimes thought that they exhausted this field. However, they did not consider Lebesgue points of I^cf, and this is the subject of this paper. The main interest is in 0 < c < 1, to which we confine attention.

A fundamental property is that

 $I^{C}f(x)$ exists for almost all $x \in (a,b)$ and is integrable thereon. (2) This follows from $I^{C}f$ being a convolution of integrable functions. However, much more may be true; for instance, considering c = 1,

$$I^{1}f(x) = \int_{a}^{x} f(t) dt$$

exists for all $x \in [a,b]$ and is absolutely continuous thereon.

This suggests, and Hardy and Littlewood's many theorems in [1] support, the view that the continuity-type properties of $I^{C}f$ improve as c increases. For instance, their Theorem 12 shows that under certain conditions $I^{C}f$ belongs to a Lipschitz class which contracts as c increases. Indeed, the essential message of that theorem amounts, in brief, to:

$$\underline{\text{If}} \quad f \in L^{p} \quad \underline{\text{and}} \quad \frac{1}{p} < c < l, \quad \underline{\text{then}} \quad I^{c}f \in \text{Lip}(c - \frac{1}{p}).$$

Many of their results in [1], like this one, were for $f \in L^p$ with p > 1; and they showed that most of them were false for p = 1. In this present paper all results are concerned with $f \in L^1$.

2. <u>Lebesgue points</u>.

<u>Lebesgue points</u> of $g \in L$ are points ξ such that both

$$\frac{1}{h} \int_0^h |g(\xi \pm s) - g(\xi)| \, ds \rightarrow 0 \quad as \quad h \rightarrow 0^+ ; \qquad (3)$$

a continuity-type property, weaker than continuity. We shall abbreviate "Lebesgue point" to "L-point".

By a fundamental theorem, for $g \in L$ almost all points are L-points. Consequently for $f \in L$

almost all points are L-points of I^Cf,

by (2). But (2) also gives that

almost all points are existence-points of I^Cf.

My theme in this paper is <u>broadly</u> that L-points and existence-points of I^Cf are the same points.

Every L-point is an existence-point, merely by the definition (3); so my task is to prove the converse, that every existence-point is a L-point. The converse is not quite true in this simple form; the final form will be seen in Theorem 3.

Throughout the paper the same things can be said with "L-point" replaced by "point of approximate continuity", since Lebesgue points are necessarily points of approximate continuity.

3. Left Lebesgue points.

<u>Theorem 1.</u> If 0 < c < 1, $f \in L(a,b)$, $\xi \in (a,b]$ and $I^{C}f(\xi)$ exists, then ξ is a left L-point of $I^{C}f$; that is,

$$\frac{1}{h}\int_0^h |\mathrm{I}^{\mathrm{c}}f(\xi-s)-\mathrm{I}^{\mathrm{c}}f(\xi)| \,\mathrm{d} s \to 0 \qquad \underline{\mathrm{as}} \qquad h \to 0+.$$

<u>**Proof.**</u> Let $0 < h < \eta < \frac{1}{2} (\xi - a)$. Since by (2) I^Cf exists almost everywhere in (a,b) we have, for almost all $s \in (0,h)$,

$$\Gamma(c) \{ I^{c}f(\xi) - I^{c}f(\xi-s) \} = \left(\int_{a}^{a+s} + \int_{a+s}^{\xi-\eta} + \int_{\xi-\eta}^{\xi} \right) (\xi-t)^{c-1} f(t) dt$$
$$- \left(\int_{a+s}^{\xi-\eta} + \int_{\xi-\eta}^{\xi} \right) (\xi-u)^{c-1} f(u-s) du,$$

so that

$$L = \frac{\Gamma(c)}{h} \int_{0}^{h} |I^{c}f(\xi) - I^{c}f(\xi-s)| ds$$

$$= \frac{1}{h} \int_{0}^{h} ds \int_{a}^{a+s} (\xi-t)^{c-1} |f(t)| dt + \frac{1}{h} \int_{0}^{h} ds \int_{a+s}^{\xi-\eta} (\xi-t)^{c-1} |f(t) - f(t-s)| dt$$

$$+ \frac{1}{h} \int_{0}^{h} ds \int_{\xi-\eta}^{\xi} (\xi-t)^{c-1} |f(t)| dt + \frac{1}{h} \int_{0}^{h} ds \int_{\xi-\eta}^{\xi} (\xi-t)^{c-1} |f(t-s)| dt$$

$$= L_1 + L_2 + L_3 + L_4$$
, say.

We aim to make as much of this as possible independent of h and s.

$$L_{1} + L_{3} \neq \int_{a}^{a+\eta} (\xi-t)^{C-1} |f(t)| dt + \int_{\xi-\eta}^{\xi} (\xi-t)^{C-1} |f(t)| dt = M_{1} + M_{3},$$

$$L_{2} \neq \eta^{C-1} \quad \frac{1}{h} \quad \int_{0}^{h} ds \int_{a+s}^{\xi-\eta} |f(t) - f(t-s)| dt$$

$$\neq \eta^{C-1} \quad \sup_{0 \le s \le h} \quad \int_{a+s}^{\xi-\eta} |f(t) - f(t-s)| dt = M_{2},$$

$$L_{4} = \frac{1}{h} \int_{0}^{h} ds \int_{s}^{s+\eta} (v-s)^{c-1} |f(\xi-v)| dv \qquad by \quad t-s = \xi-v,$$

$$= \frac{1}{h} \int_{0}^{h} ds \int_{s}^{2\eta} (v-s)^{c-1} |f(\xi-v)| dv \qquad 329$$

$$\begin{aligned} & = \frac{1}{h} \int_{0}^{2h} ds \int_{s}^{2h} (v-s)^{C-1} |f(\xi-v)| dv + \frac{1}{h} \int_{0}^{h} ds \int_{2h}^{2\eta} (v-s)^{C-1} |f(\xi-v)| dv \\ & = \frac{2}{2h} \int_{0}^{2h} |f(\xi-v)| dv \int_{0}^{v} (v-s)^{C-1} ds + \frac{1}{h} \int_{0}^{h} ds \int_{2h}^{2\eta} (\frac{1}{2}v)^{C-1} |f(\xi-v)| dv \\ & = 2 \int_{0}^{2h} \frac{|f(\xi-v)|}{v} \frac{v^{C}}{c} dv + \frac{2}{2c} \int_{2h}^{2\eta} v^{C-1} |f(\xi-v)| dv \\ & = \frac{2}{c} \left(\int_{0}^{2h} + \int_{2h}^{2\eta} \right) v^{C-1} |f(\xi-v)| dv = \frac{2}{c} \int_{\xi-2\eta}^{\xi} (\xi-t)^{C-1} |f(t)| dt = M_{4}. \end{aligned}$$

Now M_1 , M_3 and M_4 are independent of h; but they all tend to zero with η because $I^{C}f(\xi)$ exists. Thus given $\varepsilon > 0$, η can be chosen small enough to make all three less than $\frac{1}{4} \varepsilon$. With η so fixed, $M_2 \rightarrow 0$ as $h \rightarrow 0$ by continuity-in-L¹-norm of f. So, given $\varepsilon > 0$ there is $\delta > 0$ such that

$$L \neq M_1 + M_2 + M_3 + M_4 < \varepsilon$$
 whenever $0 < h < \delta$,

as required.

4. Right Lebesgue points.

It is evident from (1) that existence of $I^{C}f(\xi)$ exercises no control over the values of f(x) or of $I^{C}f(x)$ for $x > \xi$. So no analogue of Theorem 1 for right L-points of $I^{C}f$ can be expected without some extra hypothesis. This explains the need for (4) in the following theorem.

Theorem 2. If 0 < c < 1, $f \in L(a,b)$, $\xi \in [a,b)$, $I^{C}f(\xi)$ exists and

$$\frac{1}{h}\int_{0}^{H}|f(\xi+t)|dt = o(h^{-C}) \qquad \underline{as} \qquad h \to 0+, \qquad (4)$$

then f is right L-point of ICf; that is,

$$\frac{1}{h}\int_0^h |\mathrm{I}^{\mathrm{c}}f(\xi+s) - \mathrm{I}^{\mathrm{c}}f(\xi)|\,\mathrm{d} s \to 0 \quad \underline{\mathrm{as}} \quad h \to 0+$$

<u>Proof</u>. Since $I^{c}f \in L(a,b)$ by (2) and since $I^{c}f(\xi)$ exists, the

expression

$$R = \frac{\Gamma(c)}{h} \int_0^h |I^c f(\xi+s) - I^c f(\xi)| ds$$

has meaning for $0 < h < b-\xi$.

(i) Since
$$I^{c}f(a) = 0$$
 by (1), $\xi = a$ is possible. In that case

$$R = \frac{1}{h} \int_{0}^{h} \left| \int_{a}^{a+s} (a+s-t)^{C-1} f(t) dt \right| ds \neq \frac{1}{h} \int_{0}^{h} ds \int_{0}^{s} (s-u)^{C-1} |f(a+u)| du$$

$$= \frac{1}{h} \int_{0}^{h} |f(a+u)| du \int_{u}^{h} (s-u)^{C-1} ds \neq \frac{h^{c}}{c} \frac{1}{h} \int_{0}^{h} |f(a+u)| du \neq 0$$

as $h \rightarrow 0+$, by (4); thus a is a right L-point of f, as required.

(ii) Suppose that $a < \xi < b$ and $0 < h < \eta < \min\{b-\xi,\xi-a\}$. For almost all $s \in (0,h)$,

$$\Gamma(c) \{ I^{c}f(\xi+s) - I^{c}f(\xi) \} = \left(\int_{a-s}^{a} + \int_{a}^{\xi-\eta} + \int_{\xi-\eta}^{\xi} \right) (\xi-u)^{c-1} f(u+s) du$$
$$- \left(\int_{a}^{\xi-\eta} + \int_{\xi-\eta}^{\xi} \right) (\xi-t)^{c-1} f(t) dt;$$

and so R is no greater than

$$\frac{1}{h} \int_{0}^{h} ds \int_{a}^{a+s} (\xi+s-t)^{C-1} |f(t)| dt + \frac{1}{h} \int_{0}^{h} ds \int_{a}^{\xi-\eta} (\xi-t)^{C-1} |f(t+s) - f(t)| dt$$
$$+ \frac{1}{h} \int_{0}^{h} ds \int_{\xi-\eta}^{\xi} (\xi-u)^{C-1} |f(u+s)| du + \frac{1}{h} \int_{0}^{h} ds \int_{\xi-\eta}^{\xi} (\xi-t)^{C-1} |f(t)| dt$$
$$= R_{1} + R_{2} + R_{3} + R_{4}, \quad say.$$

As before we make as much of this as possible independent of h and s.

$$R_{1} + R_{4} \leq \int_{a}^{a+\eta} (\xi-t)^{C-1} |f(t)| dt + \int_{\xi-\eta}^{\xi} (\xi-t)^{C-1} |f(t)| dt = S_{1} + S_{4},$$
331

$$R_{2} \neq \eta^{C-1} \frac{1}{h} \int_{0}^{h} ds \int_{a}^{\xi-\eta} |f(t+s) - f(t)| dt$$

$$\neq \eta^{C-1} \sup_{0 \le s \le h} \int_{a}^{\xi-s} |f(t+s) - f(t)| dt = S_{2},$$

$$R_{3} = \frac{1}{h} \int_{0}^{h} ds \int_{s-\eta}^{s} (s-v)^{C-1} |f(\xi+v)| dv \qquad by \quad u + s = \xi + v,$$

$$= \frac{1}{h} \left(\int_{0}^{h} ds \int_{s-\eta}^{0} dv + \int_{0}^{h} ds \int_{0}^{s} dv \right) (s-v)^{C-1} |f(\xi+v)|$$

$$\neq \frac{1}{h} \int_{0}^{h} ds \int_{-\eta}^{0} (-v)^{C-1} |f(\xi+v)| dv + \frac{1}{h} \int_{0}^{h} |f(\xi+v)| dv \int_{v}^{h} (s-v)^{C-1} ds$$

$$= \int_{\xi-\eta}^{\xi} (\xi-t)^{C-1} |f(t)| dt + \frac{1}{h} \int_{0}^{h} |f(\xi+v)| \frac{(h-v)^{C}}{c} dv$$

$$\notin S_{4} + \frac{h^{C}}{c} \frac{1}{h} \int_{0}^{h} |f(\xi+v)| dv = S_{4} + S_{3}, \quad say.$$

Now S_1 and S_4 are independent of h; and they can be made less than $\frac{1}{5} \varepsilon$ by choosing η sufficiently small. With η so fixed, $S_2 \rightarrow 0$ as $h \rightarrow 0$ by continuity-in-L¹-norm of f; and $S_3 \rightarrow 0$ as $h \rightarrow 0$ by (4). Thus, given $\varepsilon > 0$ there is $\delta > 0$ such that

$$R \neq S_1 + S_2 + S_3 + 2S_4 < \varepsilon \quad \text{whenever} \quad 0 < h < \delta,$$

as required; this completes the proof of Theorem 2.

<u>Remarks</u>. Hypothesis (4) of Theorem 2 cannot be relaxed by replacing • by 0. For the function

$$f(x) = 0$$
 for $x \notin \xi$, $f(x) = (x-\xi)^{-C}$ for $x > \xi$

satisfies all the hypotheses except (4), and

$$\frac{1}{h} \int_{0}^{h} |f(\xi+t)| dt = \frac{h^{-c}}{1-c} = 0(h^{-c}).$$
332

But ξ is not a right L-point of I^Cf, because I^Cf has a simple discontinuity on the right at ξ ; for if $x > \xi$

$$\Gamma(c)I^{c}f(x) = \int_{\xi}^{x} (x-t)^{c-1} (t-\xi)^{-c} dt = \Gamma(c)\Gamma(1-c),$$

and so as $x \rightarrow \xi^+$

$$I^{c}f(x) \rightarrow \Gamma(1-c) \neq 0 = I^{c}f(\xi).$$

This example is also significant in another way. If it were true that for all integrable f <u>all</u> points were L-points of $I^{c}f$, Theorems 1 and 2 would be relatively pointless. But the example shows that not all points need be L-points of $I^{c}f$.

5. <u>Left-handed fractional integrals</u>.

For $f \in L(a,b)$ and re c > 0, define $J^{C}f$ by

$$J^{c}f(x) = (J^{c}f)(x) = \int_{x}^{b} \frac{(s-x)^{c-1}}{\Gamma(c)} f(s) ds.$$
 (5)

Writing g(t) = f(a+b-t), the substitutions s = a + b - t and x = a + b - y show that

$$\int_{x}^{b} (s-x)^{C-1} f(s) ds = \int_{a}^{y} (y-t)^{C-1} g(t) dt,$$

and hence that

$$J^{C}f(x) = I^{C}g(y), \qquad (6)$$

either side existing whenever the other does. This indicates the well-known fact that J^{C} has properties like those of I^{C} .

We need some assorted lemmas involving properties like (4).

<u>Lemma 1</u>. If 0 < c < 1, $f \in L(a,b)$, $\xi \in (a,b]$ and $I^{C}f(\xi)$ exists, then

$$\frac{1}{h}\int_0^h |f(\xi-t)|dt = o(h^{-c}) \qquad \underline{as} \qquad h \to 0+.$$

Proof.
$$\Gamma(c)I^{c}f(\xi) = \int_{a}^{\xi} (\xi-t)^{c-1}f(t)dt = \int_{0}^{\xi-a} u^{c-1}f(\xi-u)du,$$

so by hypothesis $u^{C-1}|f(\xi-u)|$ is integrable on $0 < u < \xi-a$.

$$h^{c} \frac{1}{h} \int_{0}^{h} |f(\xi-u)| du = \int_{0}^{h} h^{c-1} |f(\xi-u)| du \leq \int_{0}^{h} u^{c-1} |f(\xi-u)| du;$$

this tends to 0 as $h \rightarrow 0+$, by the integrability just proved.

Lemma 2. If 0 < c < 1, $f \in L(a,b)$, $\xi \in [a,b)$ and $J^{C}f(\xi)$ exists, then

$$\frac{1}{h}\int_0^h |f(\xi+t)|dt = o(h^{-c}) \qquad \underline{as} \qquad h \to 0+.$$

<u>Proof</u>. Let g(t) = f(a+b-t) and $\eta = a + b - \xi \in (a,b]$. Then $g \in L(a,b)$, and $I^{C}g(\eta) = J^{C}f(\xi)$ exists by (6), so by Lemma 1

$$\frac{1}{h}\int_0^h |f(\xi+t)|dt = \frac{1}{h}\int_0^h |g(\eta-t)|dt = o(h^{-c}).$$

<u>Lemma 3.</u> If 0 < c < 1, $f \in L(a,b)$, $\xi \in [a,b)$ and $J^{C}f(\xi)$ exists, then ξ is a right L-point of $J^{C}f$. (Compare Theorem 1.)

Proof. Let
$$g(t) = f(a+b-t)$$
, $\eta = a+b-\xi$ and $0 < h < b-\xi$; then
$$\frac{1}{h} \int_{0}^{h} |J^{c}f(\xi+s) - J^{c}f(\xi)| ds = \frac{1}{h} \int_{0}^{h} |I^{c}g(\eta-s) - I^{c}g(\eta)| ds$$

by (6). Since $g \in L(a,b)$, $\eta \in (a,b]$ and $I^{c}g(\eta)$ exists, η is a left L-point of $I^{c}g$ by Theorem 1. So the above expressions tend to 0 as $h \rightarrow 0+$, whence $J^{c}f$ has a right L-point at ξ .

Lemma 4. If 0 < c < 1, $f \in L(a,b)$, $\xi \in (a,b]$, $J^{c}f(\xi)$ exists and $\frac{1}{h} \int_{0}^{h} |f(\xi-t)| dt = o(h^{-c}) \qquad \underline{as} \quad h \to 0+,$

then & is a left L-point of J^cf. (Compare Theorem 2.)

Proof. Let
$$g(t) = f(a+b-t)$$
, $\eta = a+b-\xi$ and $0 < h < \xi-a$; then

$$\frac{1}{h} \int_{0}^{h} |g(\eta+t)| dt = \frac{1}{h} \int_{0}^{h} |f(\xi-t)| dt = o(h^{-C})$$

as $h \rightarrow 0+$. Also $I^{c}g(\eta)$ exists since $J^{c}f(\xi)$ does, by (6); so by Theorem 2 η is a right L-point of $I^{c}g$. Since

$$\frac{1}{h}\int_0^h |J^cf(\xi-s) - J^cf(\xi)|ds = \frac{1}{h}\int_0^h |I^cg(\eta+s) - I^cg(\eta)|ds \to 0$$

as $h \rightarrow 0+$, ξ is a left L-point of J^Cf, as required.

6. <u>Two-sided fractional integrals</u>.

The lemmas of 95 enable us to make the following synthesis of Theorems 1 and 2, involving two-sided Lebesgue points.

Theorem 3. If 0 < c < 1 and $f \in L(a,b)$, then the L-points of

$$K^{c}f(x) = \int_{a}^{b} \frac{|x-t|^{c-1}}{\Gamma(c)} f(t)dt$$

<u>in</u> (a,b) <u>are just the points</u> x <u>at which</u> $K^{C}f(x)$ <u>exists</u>.

<u>**Proof.</u>** Every L-point is a point of existence, by the definition (3). For the converse, suppose that $\xi \in (a,b)$ and that $K^{c}f(\xi)$ exists. Then $I^{c}f(\xi)$ and $J^{c}f(\xi)$ exist, and their sum is $K^{c}f(\xi)$.</u>

By Lemma 1,

$$\frac{1}{h}\int_0^h |f(\xi-t)|dt = o(h^{-C}) \quad \text{as} \quad h \to 0+,$$

so by Lemma 4 ξ is a left L-point of $J^{C}f$. And by Lemma 3 ξ is a right L-point of $J^{C}f$. Thus ξ is a L-point of $J^{C}f$.

By Lemma 2,

$$\frac{1}{h}\int_0^h |f(\xi+t)|dt = o(h^{-C}) \quad \text{as} \quad h \to 0+,$$

so by Theorem 2 ξ is a right L-point of I^Cf. And by Theorem 1 ξ is a left L-point of I^Cf. Thus ξ is a L-point of I^Cf.

Since $I^{c}f(x) + J^{c}f(x) = K^{c}f(x)$ for almost all $x \in (a,b)$,

$$\frac{1}{h} \int_0^h |K^c f(\xi \star s) - K^c f(\xi)| ds$$

$$\frac{1}{h} \int_0^h |I^c f(\xi \star s) - I^c f(\xi)| ds + \frac{1}{h} \int_0^h |J^c f(\xi \star s) - J^c f(\xi)| ds;$$

these all tend to zero as $h \rightarrow 0+$, and so f is a L-point of K^Cf, as required.

7. <u>Reference</u>.

 G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals. I. Math. Zeitschr. 27#(1928), 565-606.

Received July 29, 1986