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 SOME REMARKS ON DIFFERENTIAL EQUIVALENCE

 The main purpose of this article is to answer some questions arising from
 the articles of S. Leader [6], [7]. Using the Henstock-Kurzweil
 integral he introduces a definition of the "differential" df of a
 function f . This concept is rather broad with not too many properties in
 general. In order to develop a nice theory a class of functions, called
 "dampable", is introduced and it is shown chat most of the familiar
 calculus manipulations with differentials can be verified for this class
 of functions in a satisfying and natural manner. Neither article charac-
 terizes this class, and it is our purpose here to give that characteriza-
 tion.

 The characterization will be no surprise. Just as for the Lebesgue
 integral the classes of VB and AC functions arise with compelling
 regularity, in any study of the Henstock-Kurzweil (alias Denjoy-Perron)
 integral the classes of VBG* and ACG* functions intrude everywhere.
 Indeed Ward [14] in his study of the Perron-Stieltjes integral, which is
 intimately related to these matters, suggests that the class of VBG*
 functions is the largest class that should arise in these kind of matters.

 The key concept needed in presenting this material is the notion of
 "differential equivalence" (in the language of Kolmogorov [5]) or
 "variational equivalence" (in the language of Henstock [4]). This is a
 true equivalence relation and the equivalence classes are what Leader
 calls his "differentials". In the first section we sketch the apparatus
 needed for this presentation, in what appears to be a convenient and
 useful language. Most of the terminology is modelled after standard
 sources; for example the term "covering relation" is taken from Federer
 [2]. Proofs here are omitted but .may be constructed' from the material in
 [12] and [13]. Section two contains a brief account of the notion of
 differential equivalence and some basic differentiation results; the
 proofs of the main results (2.8), (2.9), and (2.10) are given in detail.
 Finally section three • then contains the characterization of dampable
 functions and its proof.

 Si. Notation and preliminaries. Throughout [a, b] C R is a fixed
 interval and all functions are real-valued functions defined on that
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 interval.

 (1.1) A covering relation is a collection of pairs (I, x) where I is a
 closed subinterval of [a, b] and x e I.

 For convenience the collection of all such closed intervals may be
 called I and so an. covering relation is a subset of the product
 I x [a, b] .

 (1.2) If s is an covering relation and E is a set of real numbers
 then 0(E) and 0[E] denote the following sets:

 (i) 0(E) - [ (I, x) € 0 : I c E } ,
 (ii) g [E] » { (I, x) € 0 : x € E } .

 The expressions 0(E) and 0[E] are also covering relations, and in
 fact subsets of 0. The passage to 0(E) and 0[E] from 0 is a common
 device in the theory and this notation is a convenient one. In some
 settings 0(E) is called a '.'pruning" of 0 where the language is meant
 to indicate that some inessential members of 0 have been removed.

 (1 .3) A packing is a finite covering relation ir with the property
 that for distinct pairs (Ix, xt) and (It, x2) belonging to ir the
 intervals Ix and I, do not overlap.

 The most important packings are those that form partitions. Conven-
 tionally a partition of an interval is a finite collection of non-
 overlapping subintervals that covers the interval; here we use the same
 word to denote that idea but with t"he associated points incorporated into
 the concept.

 (1.4) A packing * is said to be a partition of the interval [a, b]
 provided

 I - [a, b] .

 (I, x) € *
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 (1.5) A covering relación e is said to be a full covering relation at a
 point X provided that there exists a 5 > 0 so that

 ([x,y], x) € 0 for every y s (x, x + ,5)
 and

 ( [ y , x], x) e a for every y e (x - 6, x).
 Such a relation is said to be a full covering relation on a set E if it
 is a full covering relation at each point of E.

 These covering relations have been chosen so as to correspond to the
 theory of ordinary limits and ordinary derivatives. For the study of
 approximate derivatives or symmetric derivatives there would be an
 appropriate version of the covering relations needed. We give also a
 relation that is dual to this; the duality is expressed in (1.7).

 (1 .6) A covering relation s is said to be a fine covering relation at a
 point x provided that for every e > 0 either there is a point y with
 x < y < x + e and ([x,y], x) « ß , or else there is a point y with
 x > y > x - e and ([y, x] , x) £ s. Again ß is a fine covering relation
 on a set E if it is a fine covering relation at each point of E.

 The duality between full and fine covering relations is expressed by
 the following result.

 (1.7) Let B be a covering relation and let
 a ■ { (I, x) : IC[a, b], x e I, (I, x) not in 8 } .

 Then « is a full covering relation at a point x if and only if ß is
 not a fine covering relation at x.

 A covering theorem is a statement about subsets of covering
 relations, usually to the effect that some subset has a specified
 property, or that a subset exists with a specified property. We state
 some simple covering theorems needed. Deeper results will depend on
 essentially deeper covering theorems such as the Vitali covering theorem,
 for example.

 (1.8) Let ß1 .and e2 be full covering relations on a set E. Then
 8, 11 is a full covering relation on E.
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 (1.9) Let 01 be a full covering relation on a set E and let be a
 fine covering relation on E. Then 8ļ n ß2 is a fine covering relation
 on E.

 (1.10) Let S be a full [fine] covering relation on a set E and let
 G be an open set containing E. Then 0(G) is a full [fine] covering
 relation on E.

 (1.11) Let 8a be a full [fine] covering relation on a set Ea for
 each a € A. Then

 « - U 8,
 a € A

 is a full [fine] covering relation on the union of the { E0 } .

 The covering theorems that are available for full and fine covering
 relations are among our most used tools in the general theory that is
 developed. The first of these, due apparently to Pierre Cousin [1] in
 1895, is equivalent to the Bolzano-Weierstrass theorem; it seems to be
 doomed to a history of frequent rediscovery (cf. [3], [8], [9] and
 [11]). The second is a useful way of expressing as a covering theorem a
 common device in analysis.

 (1.12) [P. Cousin] Let 8 be a full covering relation on an interval
 [c, d]. Then 0 contains a partition of the interval [c, d].

 (1.13) Let 8 be a full covering relation on a set E. -Then there is a

 disjointed sequence of sets | Et, Ë„ E,, ... ļ with union E that has the
 following property: if x e Eh and

 inf En<z<x<y< sup Eh
 then both pairs ([x, y] , x) and ([z, x] , x) belong to 0.

 We turn now to a discussion of the functions that arise in this

 study. An interval function is a real-valued function whose domain is the
 collection of all closed subintervals of .our fixed interval [a, b].
 Functions defined on [a, b] shall be called point functions in order to
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 distinguish the notions.

 (1.14) If f is a point function then the interval functions Af and
 ļ Af I , associated with f are defined as follows:

 Af([c, d]) - f(d) - f (c) ,
 and

 I Af I <[c, d]) - I f(d) - f(c) I ,

 (1.15) For the identity function on [a, b], f(x) = x, we shall use the
 notation ax to denote the increment Af. Thus ax(I) » | I | is just
 the length of the interval I.

 The notion of an interval function, as important as it is for many of
 our applications, does not offer quite the flexibility that we require.
 Instead we shall need frequently to use functions whose domains are
 covering relations.

 (1.16) An interval-point function is a real-valued function whose

 domain is an covering relation.

 Generally we may assume that an interval-point function is defined
 on the entire product

 I x [a, bj » ( (I, x) : I an interval, x e [a, b] } ,
 although, since we shall work here exclusively with full and fine
 covering relations, such an h need be defined only for pairs ([x, y] , x)
 and ([x, y] , y) where the associated point is at an endpoint. If h is
 an interval function then it shall be considered as well as an interval-

 point function by agreeing that h(I, x) - h(I). If h is an interval-
 point function and f is a point function then the product fh shall be
 considered as the interval-point function

 fh : (I, x) * (fh)(I, x) » f(x)h(I, x).
 We require a limit concept for interval-point functions.

 (1.17) Let h be an interval-point function. Then at a point x# we
 write

 lim i ^ * h^' x) " c
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 provided

 lim t + o+ h([xo» x#+ t], x,) - lim t ^ 0+ h([x# - t, xt], x,) » c .
 Such a number c (including the case c = ±») is called the limit of h

 at X,. The extreme limits lim sup x ♦ x an<^ I * x are
 0 0

 similarly defined. A number c (including ±<») for which there are
 positive numbers tx, t,, ... such that * 0 for which

 h([x,, X, + tjj] , x¿ * c
 or

 h([x, - t^, X,] , X,) - c .
 is called a weak limit of h at x#. Continuity and weak continuity of
 interval-point functions at a point x# are defined in the obvious manner
 using these limits.

 The study of interval-point functions focusses mainly on the limit
 properties of such functions taken together with their variation
 properties. We define firstly a variation taken relative to covering
 relations, and then relative to the families of full and fine covering
 relations.

 (1.18) Let 8 be an covering relation and let h be an interval-point
 function. Then by Var(h, 8) we denote

 Var(h, S) » sup ' X | h(I, x) | : it <= 8, ir a packing /
 ( (I,x) € w )

 We refer to this as the variation of the function h relative to the

 covering relation 8.

 (1.19) Let h be an interval-point function and E a set of real

 numbers. Then by V*(h, E) and V*(h, E) we denote

 V*(h, E) - inf { Var(h, 8) : 8 a full covering relation on E },
 V*(h, E) - inf { Var(h, 8) : 8 a fine covering relation on E } .
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 It is convenient to have some additional suggestive notation for

 these two variations. We write h* and h* for the two set functions

 h*(E) - V*(h, E) and h*(E) = V*(h, E) .
 If some nomenclature is required we might refer to these as the full and
 fine variational outer measures generated by h. It should be remarked
 at this stage that these outer measures depend directly on the covering
 relations used. One might wish to study other types of covering
 relations in which case other outer measures would arise. Our study
 focusses on these two outer measures because they express properties
 related to the differentiation and integration of functions, with the
 derivative understood in the "ordinary" sense.

 The elementary properties of the variation are developed in the
 ensuing statements.

 (1.20) Let h be an interval -point function and x# € [a, b]. Then
 h*( (x# }) is

 limsup t ^ 0+ h([x#, x#+t], x#) + limsup t ^ 0+ x J ' xo>
 and h*({x#}) is

 min { liminf t ^ Q+ h([x#, x#+t],x#), liminft ^ 0+ h([x#-t,xj ,x#) }

 (1.21) An interval -point function h is continuous at a point x if

 and only if h ( í x# } ) » 0 and is weakly continuous at a point x if and
 only if h*({x# }) - 0.

 CI -22) (h, + h,)* ¿ h,* + h,* .

 This is an easy consequence of the covering theorem (1.8). Since fine
 covering relations do not have this property the same relation cannot be
 obtained for the fine outer measures. For example take ht(I) to be |I|
 if this is rational and 0 otherwise, and take h2(I) » |I| - hx(I). Then
 (hj+hj)* will give a nonvanishing outer measure (in fact Lebesgue outer
 measure) while both (ht)* and (h,)* vanish.

 300



 (1.23) h* < h* .

 (1.24) Let h be a subadditive interval function of bounded variation
 on the interval [a, b] and let Vh be its total variation function.
 Then Vh is an additive interval function, and

 V*(Vh - h, [a, b]) » 0.

 The full and fine variations h and h* asssociated with an

 interval -point function h are genuine outer measures on the real line
 that have nice topological properties.

 (1.25) For any interval-point function h thè set functions h and
 h* are metric outer measures on [a, b].

 The regularity behaviour has not been commented upon in the
 literature. Let us mention, without proofs, the following facts.

 (1.26) In general h* and h* need not be Borei regular even if h is
 an interval function.

 (1 .27) Suppose that h is a continuous interval function. Then the
 ★

 outer measure h is Fff6 regular.

 If g is a continuous, nondecreasing function on the interval [a, b]

 then the outer measure ¿g corresponds to the usual Lebesgue-Stieltjes
 outer measure on [a, b] generated by g. This in turn could lead to a
 construction of the Lebesgue-Stieltjes integral by the standard devices
 of measure theory. In the present setting this will correspond to
 natural variational computations.

 (1 .28) Let g be continuous and nondecreasing, let f be a nonnegative

 Ag*-measurable point function f, and write
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 F(x) = [Xf(0 dg(t)
 ■ a

 as the Lebesgue-Stieltjes indefinite integral of f. Then

 V* (a F - fAg, [a, b]) = 0
 and

 aF*(E) - (fAg)*(E) - [b f(t)xE(t) dg(t)
 . a

 it

 for any a g -measurable set E.

 1 2. Differential equivalence. Most of the results that are developed
 in this theory concern derivatives and integrals of interval-point
 functions, and are identical for those interval -point functions that
 belong to the same differential equivalence class. The terminology for
 this equivalence relation and the general idea of exploiting it, in a
 related setting, are due to Kolmogorov. Henstock uses the same idea in
 his concept of "variational" equivalence.

 (2.1) Let ht and ha be interval-point functions. We áay that ht
 and hJ are differentially equivalent and we write ht s h2 provided
 that

 V*(h, - h,, [a, b]) - 0 .

 The fundamental properties are listed below.

 (2.2) Let hx and ht be interval -point functions. If ht = h2 then,
 for any point function f, fht s fh2.

 (2.3) Let hx, hj, and k be interval-point functions. If ht = h2 and
 limsup ļ + x I k(I, x) I < +-

 everywhere, then khx = kh2 .
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 (2.4) Let h be an interval-point function and f a point function.

 Then fh s 0 if and only if f(x) » 0 for h -almost every point x.

 (2.5) Let h be an interval-point function and f,g point functions.
 •Jç

 Then fh s gh if and only if f(x) - g(x) for h -almost every point x.

 (2.6) Let f be a point function. Then Af s 0 if and only if f is
 constant.

 (2.7) Let ht and h2 be interval -point functions. If ht s h2 then

 (')* - (h,)* and (h,)* - (h,)*.

 The remainder of this section is devoted to some concerns regarding

 the differentiation of interval-point functions. The relation between
 differentiation and integration on the real line is commonly refered to
 as the fundamental theorem of the calculus. In the presentation here
 another viewpoint may be taken: rather than first developing an
 integration theory we can use the central concept of differential
 equivalence to obtain our relation. Then the version for the integration
 theory will follow as a corollary. Roughly the theorem asserts that the
 differential equivalence

 h s fk

 for a pair of interval-point functions h and k, and a point function f
 is equivalent to the fact of f being the derivative of h with respect
 to k.

 The notation for the derivative of an interval-point h with respect
 to another interval-point k might be taken as

 h(I, x)

 * h(x) " lim 1 - * ST«
 with the understanding that a zero denominator forbids the existence.
 Since all differentiation statements in this section are made k*-almost

 everywhere this vanishing denominator plays no role. We shall avoid the
 derivation notation and express our results as limit theorems, with the
 understanding that the motivation is in terms of derivatives. These
 results are rather compactly and generally expressed and so the proofs
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 shall be given.

 (2.8) Let h and k be interval-point functions, f a point function
 and suppose that h s fk. Then at k*-almost every point x

 h(I, x)
 lim T 1 _ *

 T 1 _ * k(X, x)

 PROOF. For each integer n let

 I k(I, x) I .
 Sn - I (I, x) : |h(I, x) - f(x)k(I, x) I >

 n

 and let Yn denote the set of all points y at which the collection cn
 is a fine covering relation. Let Y denote the union of the sequence of
 sets Y^ we shall show that k*(Y) » 0 and. that for every point x not
 in Y the limits stated in the theorem must hold.

 Let e > 0 be given. Since h s fk we may select a full covering
 relation a on [a, b] so that

 Var(h - fk, a) < e .

 By the covering theorem (1.9) each a n 8n is a fine covering relation
 on YJ1 and hence

 k*(Yn) - V*(k, Yjj) < Var(k, a n ßn )
 Var( n(h - fk), o n gn) n Var(h - fk, o) C ne .

 Since e is arbitrary it follows that each Yjj has k*-measure zero and
 so k*(Y) » 0 as stated.

 Now for each integer n define the collection of interval -point
 pairs an by / '

 / -1- I k(I, x) I L >
 an - I (I, x) : |h(I, x) - f(x)k(I, x) I < -1-

 By the way in which the sets Yn were defined and because of (1.7) each
 an must be a full covering relation on the set [a, b] ' Y. Thus at each
 point x in [a, b] ' Y we easily verify the required limits.

 (2.9) Let h and k ' be interval -point functions, let f be a point

 function and suppose that the outer measure k is a -finite. Suppose
 that the limit
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 h(I, X)
 lim i L - x X

 i L - X x k(I, X)
 « jf

 holds both h -almost everywhere and k -almost everywhere. Then
 h s fk.

 PROOF. Let X be the set of points x at which the above stated
 equality holds. Then for every integer n the collection

 S =« { (I, x) : |h(I, x) - f(x)k(I, x) I < n~l |k(I,x) | 1
 must be a full covering relation on X. From this one deduces that

 V*(h - fk, Y) < n-1 k*(Y)

 for every subset Y of X. . As n is arbitrary and K* is a-finite on
 X we must have

 V*(h - fk, X) - 0 .

 Using (1.25), (2.2) and the fact that h* and k* vanish on the
 complement of X, we obtain

 V*(h - fk, [a, b]) < V*(h - fk, X) + h*([a, b] ' X)

 + (fk)*([a, b] ' X) - 0
 which gives, by definition, the required assertion h s fk.

 ★

 (2.10) Let h and k be interval-point functions, suppose that k is
 a-finite on a set E, and that for any real numbers ct and c, we have

 (Cjh + Cjk)* » (Cjh + c,k)*

 on the set E. Then at h - and k -almost every point x in E either
 the limit

 lim ļ ^ x h(I, x)/(k(I, x)
 exists finitely or else

 lim J * x I h(I, x)/k(I, x) I » +• .
 If h* is also a-finite on E then at k -almost every point the limit
 is finite.

 PROOF. (In the limit given here we may interpret a quotient c/0 as 0
 if c » 0, as +• ' if c > 0 and as -• if c < 0.) Without loss of
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 generality we may suppose that k (E) < +•. Let X denote the set of
 points X in E at which the stated limits do not exist. We observe
 that at each point x in X the ratio h(I, x)/k(I, x) must have two
 different limit numbers, one of which is finite. For rational numbers p,

 r, and s with r < s < p let Xprs denote the set of points x at
 which there is a limit number less than r and a limit number in the

 interval (s, p). We will show that

 h*(Xprs) = k*(Xprs) - 0 . (2.10.1)
 Let g be any full covering relation on Xprs and define the collections

 , , h(I, x)
 s' ■ 1 , (I,X) , : 5T7 ' r|'

 S, - I (I, X) : s < < p I.
 k(I, x)

 By our assumptions on the limit numbers of this quotient we see that

 and 8 j are both fine covering relations on Xprg. We shall use these to
 establish that

 (h - pk)*(Xprs) - k*(Xprg) - 0 (2.10.2)
 and from this we may then deduće (2.10.1). If (I, x) 6 then

 |h(I, x) - pk(I, x) I > (p - r) |k(I, x) |
 so that

 (p - r)k*(Xprg) < Var(h - pk, ļ n st) < Var(h - pk, 8) .
 Similarly if (I, x) « then

 |h(I, x) - pk(I, x) I < (p - s) |k(I, x) I
 so that

 (h - pk)*(Xprs) < Var(h - pk, s n gj) < (p - s)Var(k, g) .
 From these we deduce that

 (h - pk)*(Xprs) > (p - r) k*(Xprs) (2.10.3)
 and

 (h - pk)*(Xpr3) < (p - s) k*(Xprs) . (2.10.4)
 * ic

 Since (h - pk) » (h - pk)* and k - k* on the set E and the numbers
 in (2.10.3) and (2.10.4) are finite, this can occur only if (2.10.2) is
 valid, and then (2.10.1) must follow.
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 The sët X may be expressed as a denumerable union of sets of such a
 •ļķ

 type and so must have zero h - and k -measure. To complete the proof

 we have only to show that, under the additional hypothesis that h is

 a-finite on E, the infinite limits can occur only on a set of k -measure
 zero. Indeed we can establish the following fact under weaker hypotheses
 than in (2.10). The proof is then complete.

 (2.10.3) If h* is a-finite on E then
 lim sup i ♦ x |h(I, x)/k(I, x) I < +•

 at k*-almost every point x in' E.

 We may suppose that h (E) < +-. Then the set

 E, » { x e E : lim sup j „ x |h(I, x))/(k(I, x) | « +• }
 will have k*(E,) » 0: to see this let N > 0, let S be a full covering
 relation on E and define the collection

 8, « ( (I, x) : |h(I, x)/k(I, x) I > N J .
 Certainly 6, is a fine covering relation on E# so that

 k*(E,) < Var(k, 8, n 0) < N"1 Var(h, 8) .

 This gives k*(E,) ^N"1 h*(E,) from which k*(E,) » 0 evidently follows.

 13. Dampable functions. We pass now to a study of the properties of
 additive interval functions Af with regards to this notion of differen-
 tial equivalence. The first two results are known and may be found in ,
 [12, pp. 194-195], and [13, p. 97]. The first is an application of the
 Vitali covering theorem and the second of the differentiation theorem
 (2.10).

 (3.1) Let f be continuous and VBG* on the interval [a, b]. Then
 •Hp

 the full and fine variational outer measures Af* and Af are

 identical.

 (3.2) Let f and g be continuous, VBG* functions on the interval
 [a, b]. Then the derivative
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 A f (I)
 lim T „

 T 1 „ X 4g(X)

 exists finitely or infinitely Af - and a g -almost everywhere in
 [a, b].

 Let us now give the definitions of Leader [7]. They here assume a
 slightly different form and we adopt a modified terminology.

 (3.3) Let h be an interval -point function. We say that h is
 (VB)-dampable if there is a positive point function k and a function of
 bounded variation g so that k h = Ag. We say that h is (AC)-datnpable
 if there is a positive point function k and an absolutely continuous
 function g so that k h = Ag.

 The main theorems of this section provide characterizations of these
 notions .

 (3.4) Let f be a continuous point function on the interval [a, b].
 Then the following are equivalent.
 (i) Af is (VB)-dampable.

 •Jf

 (ii) Af is a -finite on [a,.b].
 (iii) f is VBG* on [a, b].

 (3.5) Let f be a continuous point function on the interval [a, b].
 Then the following are equivalent.
 (i) Af is (AC)-dampable.
 * 'k

 (ii) Af is o -finite on [a, b] and Af (N) ■ 0 for every set N of
 Lebesgue measure zero.
 (iii) f is ACG* on [a, b],

 PROOF. Let us prove (3.4). The equivalence of (ii) and (iii) is well
 known (see [12, p. 186] and [13, p. 94]), and it is easy to show that, (i)
 implies (ii). Thus the real content of the proof rests in taking a
 continuous, VBG* function f and constructing a suitable positive
 point function k and a bounded variation function g so that kAf 5 Ag.
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 By a theorem of Ward (see Saks [10, pp. 236-237]) there must exist a
 continuous, strictly increasing function gt so that the extreme
 d eriva tes

 lim sup i + x I Af(I)/ Ag t(l) ļ < +-
 at each point x. By using in addition (3.2) we see that in fact the
 limit

 Af(I)
 lim T ^

 4g.(I)

 exists finitely at each x except in a set Nt for which

 Ag *(Nj) » Af*(N,) - 0. By (2.9), this gives the relation

 V*(ktAgl - Af, [a, b] ' N,) - 0 .
 Let now Na denote the set of points x at which kt(x) exists and is

 ic

 zero. Certainly Af (Nj) - 0. Define the point function k by defining
 k(x) as 1 if x is in Nl or N2, as 1/kŁ(x) if this is positive and as
 -l/kt(x) if this is positive with x e [a, b] '(Nt u N,). Write for
 the set of points x not in Nļ at which kt(x) is positive and M2 for
 the set of points x not in Nt at which kt(x) is negative. Let x^

 and denote the indicator functions for and M2. This gives

 V*(kAf - xMļ Agj + xMj Agt, [a, b])

 < V*(k( Af - kļAgl), Mt) + V*(k(Af - kjAgj) , M,) + V*(kAf, N,) + V*(kAf, N j
 - 0.

 So we have that kAf = xMļ Agt - xj^^ Agl# and it remains only to show
 that there is a function g of bounded variation so that Ag is in turn
 equivalent to these.

 The function g is taken by using the Lebesgue-Stieltjes integrals

 'X X

 g(x) - XMjCc) d8i(c) - xm/c) dSi(t)
 < a Ja

 as in (1.28). Note that this requires proving that and M2 are

 Ag ^-measurable, but it is a straightforward matter to check that both
 are in fact Borei sets.
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 The proof of (3.5) is similarly obtained. One needs as well the

 fact that ax* is Lebesgue outer measure on [a, b] and that Wards
 theorem for ACG* functions permits gj to be taken as absolutely
 continuous .

 As a corollary to these two theorems we have the following which
 provides an answer to a question posed by Leader [6, p. 353].

 (3.6) Let f be a continuous function on the interval [a, b]. Then Af
 is (VB)-dampable [(AC)-dampable] if and only if |af| is.

 PROOF. Suppose that Af is (VB)-dampable. Then there are k and g
 as in (3.3) so that k¿f = Ag. Let v be the total variation function
 for g. Then |Ag| = av by (1.24) and ļ Ica f | = |Ag| by the
 triangle inequality, so that k ļ a f | s a v and we have, as required, that
 I A f I is (VB)-dampable.

 Conversely if | a f | is (VB)-dampable then k | a f | = a g for a
 positive point function k and a function g of bounded variation. By
 (2.2) and (27) this gives Af* * (k-IAg)*; the outer measure Af* must
 accordingly be finite on each set

 ' - ( X « [a, b] : k(x) > 1/n } ,

 which exhibits Af as a -finite on [a, b] . By theorem (3.4) we have
 that Af is (VB)-dampable.

 For the (AC)-dámpable case the arguments are similar.

 Finally let us conclude with a query. These same concerns arise in
 altered settings. For example, just on the real line, one can replace the
 notions of full and fine covering relations with the analogous ones which
 handle the approximate derivative or the symmetric derivative. What are
 the characterizations of (VB)-dampable in these settings? More
 importantly, perhaps, these questions are of some importance in higher
 dimensions where there are a host of important covering relations that
 should be studied. For any of these what is the characterization of the
 dampable functions?
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