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 LENGTHS OF RECTIFIABLE CURVES IN 2-SPACE

 Let MC denote the family of nondecreasing continuous functions on [0,1],

 and let BC denote the family of continuous functions of bounded variation

 on [0,1]'. Throughout this paper (g(t), f(t)) (0 * t * 1) denotes a

 continuous rectifiable curve in Ra, i.e., f,g e BC. We propose to determine

 the length L of this curve in terms of the functions f and g. A

 well-known result [5, p. 123] is

 *
 Proposition 1. We have L * J ((f')a + (g')2) , and equality holds if

 0

 and only if f and g are absolutely continuous on [0,1].

 We want to express L in terms of f and g in a more general setting.

 To this end, we introduce a notation from [3]. If A is any subset of

 [0,1], measurable or not, let

 2»
 M(F,A) = lim Z XF(J. n A)

 . . i im m-*» . i=l . i

 where X is Lebesgue outer measure and J. = [ (i-l)2-m, i2-®] . Note that
 im

 the expression after the limit increases with m. Moreover, M(F,A) * V(F),

 the total variation of F on [0,1]. If F is monotonie, clearly

 M(F,A) = XF(A). Also M(F, A) =0 if and only if XF(A) = 0.

 Let Ej, = {x : F'(x) = *•}. We need the

 Definition: We say that f is compatible with g if there exist sets

 Sf and Sg such that Sf u Sg = Ef n Eg and Xf(Sf) = Xg(Sg) = 0.

 We offer
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 Theorea 1. Let f,g « BC and let L be the length of the curve

 (*(t),f(t)) (Oí t<l). Then

 f1 ' *
 (#) L * J ((f')a + (g')a) * + M(f,Ef) + M(g,Eg),

 and equality holds in (*) if and only if f is compatible with g.

 Moreover, equality holds in (*) if the set Ef n Eg is at most countable.
 When f is not compatible with g, we offer no further equations for L.

 Note that if he MC and h(0) = 0, h(l) = 1, then no matter how

 complicated the function h is, the curve (h(t),h(t)) (0 * t * 1), is the

 line segment joining (0,0) to (1,1).

 It is obvious that L * V(f) + V(g). We identify the extreme situation in

 which equality holds here.

 Theorem 2. We have

 (**) L * V(f) + V(g).

 Moreover, equality holds in (**) if and only if f 'g' = 0 almost everywhere

 on [0,1] and f is compatible with g.

 We also identify another extreme situation.

 Theorem 3. We have

 r1 % (***) L*l ((f')a + (g')a) % + M(g.Eg),
 0

 and .equality holds in (**#) if and only if f is absolutely continuous on

 [0,1].

 Before we tackle the proofs of Theorems 1, 2 and 3, we show the

 connection between absolute continuity and compatibility.

 Proposition 2. Let f e BC. Then the following are equivalent
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 (a) f is absolutely continuous on [0,1].

 (b) f is compatible with f.

 (c) f is compatible with every function in BC.

 Proof, (c) => (b). Clear.

 Proof, (b) => (a). From (b) it follows that Xf(Ef) = 0. Then for any set
 B c [0,1] satisfying X(B) = 0, we have Xf(B) = Xf(B'Ef), and by [5,

 p. 271], Xf(B'Ef) = 0. Thus f maps sets B of measure 0 to sets of
 measure 0, so f is absolutely continuous.

 Proof, (a) => (c). For any g « BC, let Sf = Ef n Eg. Since MSf) = 0
 and f is absolutely continuous, we have xf(Sf) = 0. Then f is compatible

 with g. a

 Thus equality holds in Proposition 1 if f and g are compatible with all

 functions in BC, but equality holds in Theorem 1 if f and g are

 compatible with each other.

 We first prove Theorem 1 in a very special case.

 Lemma 1. Let f,g e MC such that t' = g' = 0 almost everywhere on

 [0,1]. Then L * f ( 1) - g(0) + f(l) - f(0), and equality holds if and only if

 f is compatible with g.

 Proof. The inequality L * g(l) - g( 0) + f (1) - f (0) is evident from the

 triangle inequality and the definition of L.

 Now let L = g(l) - g(0) + f(l) - f(0). Without loss of generality we

 assume that g(l) > g(0) and f(l) > f (0). Choose any e, 0 < e < 1. Let 0

 = u0 < u i < u j < ••• < un = 1 be a partition of [0,1] so fine that, setting

 aj = f(uj) - f<uj_i), bj = g(uj) - giuj-i), cj = (bja + aj2)*, we have
 n n

 v(g) - Z bj < e, V(f) - I aj < «, and
 j=l j=l

 L - I Ci < Xea.
 j=I
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 But if

 (2) e aj * bj * aj/e,

 then (aj+bj)2 * ajbj(2 + 2/s) * 4ajbj/c so that

 2 ( a j+b j ) ( a j+b j-c j ) » (aj+bj+cj)(aj+bj-cj)

 = 2ajbj ^ e(aj+bj)a/2,

 aJ+bj"cj * «(aj+bj) /4.

 Now it follows from (1) that X« Z j( aj+bj) < where Z# means the sum

 over those j that satisfy (2). Hence Z^aj+bj) < 2s.
 Note that if j does not satisfy (2), then

 I a j~b j I ^ aj+bj - 2s max(aj,bj).

 Let ltt mean the sum over those j not satisfying (2); thus
 n

 Z = lt + Then
 j=l

 n

 r I aj-b j I > -2e - 2s max(aj.bj) + (aj+bj)
 j=l

 n

 > -4e - 2«(f (1) - f(0) + g(l) - g(0)) + Z (aj+bj)
 j=l

 = -«( 4 + 2(f (1) - f(0) + g(l) - g(0)'))

 + f(l) - f(0) + g(l) - g(0).

 It follows that V(f-g) * f(l) - f(0) + *(1) - *(0) = V(f) + V(-g). By [1], there

 exist sets Sf and Sg such that Ef n Eg c Sf u Sg, and Xf(Sf) - ^g(Sg)
 - 0. Hence f is compatible with g.
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 Now let f be compatible with g. Let Sf and • S g be the sets, for
 which Sf u Sg = Ef n Eg and Xf(Sf) = Xg(Sg) = 0. Let

 A = (x : f has no finite or infinite derivative at x},

 Ao = {x : f is differentiate at x and 0 < f'(x) < «•},

 B = {x : g has no finite or infinite derivative at x),

 B0 = (x : g is differentiate at x and 0 < g'(x) < »}.

 Then XA0 = XB0 = 0 because t' - g' =0 almost everywhere. By [5,

 pp. 125, 271] Xf (A) = Xf(A0) = Xg(B) = Xg(B0) = 0 and Xf(A u A0 " Sf) =

 Xg(B u Bi u Sg) - 0. But all the points where both f and g have positive
 derived numbers are in the set (A u A0 *■» Sf) u (B B0 u Sg). By [1],
 V(f-g) - V(f) + V(-g). By the triangle inequality and the definition of L, we
 have

 V(f-g) é L * V(f) + V(-g) = f(l) - f(0) + g(l) - g(0),

 and equality must hold throughout. □

 Our next lemma will eventually allow us to generalize Lemma 1 to all

 functions in MC.

 Lemma 2. Let ft and gt be absolutely continuous functions on [0,1]

 in MC, and let f3 and ga be functions in MC such that fa ' = ga ' =0

 almost everywhere on [0,1]. Let f = fx + f3, g - gì + g 3. Let Lj = length
 of the curve (gj(t),fj(t)) (0 < t *1), (j = 1,2), L = length of thè curve
 (g(t),f(t)) (0 * t * 1). Then

 (i) L = Li + La.

 (il) If A c [0,1], then Xf(A) = Xf^A) + Xf3(A), Xg(A) = Xg,(A) + Xga(A).

 (in) Xf(Ef'Af) = Xfa(Ef'Af) = 0 and Af = Ef,

 Xg(Eg'Ag) = Xg3(Eg'Ag) = 0 and Ag c Eg,
 where Af = {x : fa'(x) - •}, Ag = {x : ga'(x) = •}.

 Proof (i). From the triangle inequality and the definition of length we

 obtain L * Lx + La and L * |Lt - La|. Take any e > 0. There is a

 S > 0 such that if X(S) < <S, then + ^i')2)* < *• Since fa ' =
 g 2 ' - 0 almost everywhere, we can (and do) use the Vitali covering theorem
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 to construct mutually disjoint subintervals [uj,vj] (j = l,...,n) of [0,1]
 such that

 an n

 Z (fa(vj) - fa<Uj)) < e, I (g2(vj) - ¿2 (uj) ) < e, 1 - £ (vj-Uj) < <5.
 j=l j=l j=l

 Let (xj.yj) (j = 1", . . . ,m) denote the complementary intervals of the
 m

 [uj,vj]. Then £ (yj"Xj) <
 j=l

 Let Zj denote the length of the curve (g(t).f(t)) for uj * t * vj,
 let Z!j denote the length of the curve (gi(t),fx(t)) for uj * t * vj,
 and let Zaj denote the length of the curve (ga(t),fa(t)) for Uj * t * Vj.
 Let Zj*, Zi j* and Z2j* denote the corresponding lengths for xj * t * yj.
 Then

 Zj Zaj * Zj(fa(vj) - fa(uj)) + Zj(ga(vj) - ga(uj)) < 2e,

 h z»j* 4 h fJ + («i')2)54 = J + («i')a)x < e
 xj uj[xj.yj]

 because Muj[xj»yj]) < i. So

 Ł = Zj Zj + Zj Zj* * Zj (Zij-Zaj) + Zj (Z2j* ~ Zij*)

 * Zj (Zij+Zjj) - 4« + Zj (Zaj*+Z1j*) - 4*

 - Li + La ~ 8«.

 Since e was arbitrary, L * Lj + La. The reverse inequality yields (i).

 Proof (ii). This is just [2, Lemma 3].

 Proof (iii). Since fx and gx are nondecreasing, f2 ' (x) = ® implies
 f'(x) = », and ga'(x) = ® implies g'(x) = ®. Thus Af c Ef and

 Ag e Eg. • Now X(Ef) = 0, so X(Ef'Af) = 0. It follows from [5, p. 271] that
 Xfa(Ef'Af) =0. But

 Xf(Ef'Af) = Xf 1 (Ef'Af) + Xfa(Ef'Af) = Xfa(Ef'Af) = 0
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 because ft is absolutely continuous. Likewise Xg(Eg'Ag) = Xg2(Eg'Ag) = 0.
 □

 We are now able to prove Theorem 1 for functions in MC.

 Lesa 3. Let f and g be functions in MC. Then

 r1 %
 (*) L * Jo ((f')a + (g')3r % + Xf(Ef) + Xg(Eg),

 and equality holds if and only if f is compatible with g.

 Proof. Let f = fx + fa, g = gì + ga> where fj € MC, gj e MC, f,
 and gx are absolutely continuous on [0,1], and fa' = g2' =0 almost

 everywhere on [0,1]. By Lemma 2, Xf(Ef'Af) = 0 and Xf(Ef) = xf(Af) =

 Xfa(Af) s fj(l) - fa(0). Likewise Xg(Eg) = ga(l) ~ ga(0). Also f' = f/
 and g' = gi' almost everywhere on [0,1]. Using Lemmas 1 and 2 we obtain

 (*) and we see that equality holds there if and only if fa is compatible

 with ga .

 Now suppose equality holds in (*) . Then fa is compatible with ga. Let

 Sf and Sg be sets such that Af n Ag c Sf u Sg, X(Sf u Sg) = 0, and
 Xfa(Sf) = Xg3(Sg) s 0. But by Lemma 2, Xf(Sf) = Xf2(Sf) = 0 and
 Xf(Ef'Af) = 0, and hence Xf((Ef'Af) u Sf) •= 0. Likewise

 Xg((Eg'Ag) u Sg) = 0. Thus f is compatible with g because
 Ef n Eg c ( (Ef'Af) u Sf) u ((Eg'Ag) u Sg) .

 Suppose f is compatible with g. Let S3 • and S4 be sets with

 S3 U S, : Ef n Eg and Xf(S3) = Xg(S4) = 0. But Xf(S3) = Xfj(S3) + Xf2(S3)
 so Xfa(S3) = 0. Likewise Xga(S4) = 0. Finally, Af n Ag c Ef n Eg =
 S3 u S4, and it follows that fa is compatible with ga. Hence equality

 holds in (*). □

 Our next lemma will help us to prove Theorem 1 for functions in BC

 as well as functions in MC.

 Lesa» 4. Let f,g e BC and let f#(*) and denote, respectively,
 the total variations òf f and g" on the interval [0,x] (0 < x < 1). Let
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 L denote the length of the curve (g(t), f(t)) and let denote the

 length of the curve (£#(t) >f^(t) ) (0 * t * 1). Then L = L#.

 Proof. Take any e > 0. Let 0 = u0 < ut < • • • < un = 1 be a partition

 of [0,1] so fine that, setting

 aj = |f(uj) - f ( u j- i ) I , bj = |g(uj) - g(uj- i ) I ,

 a#j = VV - Vuj-»)> b*j = Vu j) -

 Cj » (»j' » bj>>*, ctj = (a, j' ♦ b,j')s,

 we have

 (1) L - Î c,j < ..
 J=1

 n

 (2) f (1) - f (0) - Z aj < *,
 j=l

 (3) g (1) - g#(0) - I bj < e.
 j=l

 It follows from (2) and (3) that

 n

 (4) Z (a#j - aj) < e,
 j=l

 (5) Z (b#j - bj) < *.
 j=l

 From the triangle inequality and (4) , (5) we obtain

 (6) L * Z Cj ^ Z (c^j - (b^j - bj) - (a,j - aj)) * Z c#j - It.
 j=l j=l j=l

 By (1) and (6) we have L * L# - 3«. Since « is arbitrary, L * L#.
 The reverse inequality follows from a^j * aj and b^j * bj. □
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 We are now ready to prove Theorems 1 and 2.

 Proof of Theorea 1. Define and as in Lemma 4. Then by

 Lemmas 3 and 4,

 r1 X
 (*) L < J ^ ((f#')a + (gt')3r X + xVEf#) +

 and equality holds in (*) if and only if f^ is compatible with
 Also Ef c Ef# and Eg.c Eg# are clear, and by [5, p. 127], we have

 MEf^Ef) = xVEf#'Ef) = x(Eg#'Eg) = xÄ*(Eg#'Eg) = 0,

 Xf,(Ef) = ^(Ef,), x«*(Eg) = x«#(Eg#).

 Moreover Xf(S) = 0 for any set S with ^f^S) = 0 by [3, Lemma 2].
 Likewise, Xg(S) = 0 for any set S with Xg^(S) = 0. It follows that if
 fg is compatible with g^, so must f be compatible with g.
 Now suppose f is compatible with g. Say Sf u Sg = Ef n Eg and

 Xf(Sf) = Xg(Sg) = 0. Then Ef< n Eg^ c ((Ef#'Ef) u Sf) u ((Eg#'Eg) u Sg)
 and by [3, Lemma 2],

 ^((EfjXEf) u Sf) = *«*((Eg#'Eg) « Sg) = 0.

 Thus f# is compatible with g#.
 But Xf^(Ef) = M(f,Bf) and ^^(E) = M(g,Eg) by [3, Lemma 2]. From

 this, (*) and from the fact that f#' = |f |, g^' = |g'| almost everywhere,
 it follows that

 L * jļ ((f')a + (g')3)* + M(f,Ef) + M(g,Eg) ,

 and equality holds if and only if f is compatible with g.

 The last statement in Theorem 1 is now clear. □

 Note that when g . is constant, then the total variation, V(f), of f

 on [0,1] equals L. But then f is compatible with g and
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 L = f1 |f' I + M(f ,Ef) = V(f).
 0

 Proof of Theorea 2. The inequality (#*) follows from the definition of

 Ł and the triangle inequality.

 Now suppose L = V(f) + V(g). Then by the remark preceding this proof,

 we have

 L = V(f) + V(g) = f1 |f I + M(f,Ef) + f1 |g'| + M(g,Eg)
 0 0

 f1 %
 » I ((f')a + (g')a) % + M(f,Ef) + M(g,Eg) .

 0

 Clearly equality must hold throughout, and by Theorem 1, f is compatible

 fi %
 with g. From (|f'| + |g'l) - J ((f')a + (g')a) we obtain f'g' =0

 0 0

 almost everywhere on [0,1].

 Suppose f is compatible with g and f'g' = 0 almost everywhere on

 [0,1]. Then by Theorem 1

 r1 %
 L = J ((f')a + (g')a) % + M(f,Ef) + M(g,Eg)

 0

 ,1
 = I (If' I + Ig'l) + M(f ,Ef ) + M(g,Eg) = V(f) + V(g).

 0

 □

 Before we consider Theorem 3 we note some corollaries of Theorem 2.

 Corollary 1. In Theorem 2, let g' = 0 almost everywhere on [0,1].
 Then L = V(f) + V(g) if and only if f is compatible with g.

 Proof, f'g' - 0 almost everywhere on [0,1] in any case. □

 Corollary 2. In Theorem 2, let g be absolutely continuous on [0,1].
 Then L = V(f) + V(g) if and only if f'g' =0 almost everyhwere on [0,1].
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 Proof. Since g is absolutely continuous, ^g(Ef n Eg) = 0 and f is '
 compatible with g in any case. □

 Corollary 3. In Theorem 2, let g have a finite nonzero derivative

 everywhere on [0,1] except possibly at countably many points. Then

 L = V(f) + V(g) if and only if f' = 0 almost everywhere on [0,1].

 Proof. Here Eg is countable, so f is compatible with g. The
 rest is clear. □

 From Corollary 3, we see that the curve y = f(x)., 0 * x * 1, has

 length = 1 + V(f) if and only if f' = 0 almost everywhere on [0,1].

 This equation holds, for example, when f is Lebesgue's singular function

 [4, p. 113].

 Proof of Theorem 3. The development of Theorem 3 is much like the

 development of Theorem 1, so we only sketch the procedure. First suppose

 f and g satisfy the hypothesis of Lemma 1. Then (***) reduces to

 Ł * g(l) - g(0), and equality holds if and only if f is constant. This

 is obvious.

 Now suppose f and g are as in Lemma 3. Then (***) reduces to

 r1 *
 L * J ((f')a + (g ')*) * + Xg(Bg),

 and equality holds if and only if fa is constant, or equivalently, f is

 absolutely continuous on [0,1]. This follows from Lemmas 1 and 2, just

 as Lemma 3 did.

 The proof of Theorem 3 is now analogous to the proof of Theorem 1, only

 it is easier. In the notation used in the proof of Theorem 1, we have

 L » fļ «V)' + <*,•>'>* * H,««,).

 and equality holds if and only if f^ is absolutely continuous, or
 equivalently, f is absolutely continuous on [0,1]. But as before,

 + = + (S')a)* almost everywhere on [0,1], and
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 Xg^Egj) = = M(g,Eg). The conclusion follows. □

 Much of this work can be generalized to continuous rectifiable curves

 (fļ(t) , . . . ,fn(t)) (0 < t < 1) in Rn. For example,

 L < f1 ( I (fj')a)* + ? M(fj,Ef J .), 0 j=l j=l J

 and equality holds if and only if fi is compatible with fj for i * j.
 but the proof is a tedious induction argument that would add little

 original to the arguments here. So we omit it.
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