Real Analysis Exchange Vol. 12 (1986-87)

F.S. Cater, Portland State University, Portland, OR 97207.

LENGTHS OF RECTIFIABLE CURVES IN 2-SPACE

Let MC denote the family of nondecreasing continuous functions on [0,1], and let BC denote the family of continuous functions of bounded variation on [0,1]. Throughout this paper (g(t), f(t)) $(0 \le t \le 1)$ denotes a continuous rectifiable curve in \mathbb{R}^2 , i.e., $f,g \in BC$. We propose to determine the length L of this curve in terms of the functions f and g. A well-known result [5, p. 123] is

Proposition 1. We have $L \ge \int_{0}^{1} ((f')^2 + (g')^2)^{\frac{1}{2}}$, and equality holds if

and only if f and g are absolutely continuous on [0,1].

We want to express L in terms of f and g in a more general setting. To this end, we introduce a notation from [3]. If A is any subset of [0,1], measurable or not, let

$$M(F,A) = \lim_{m \to \infty} \sum_{i=1}^{2^m} \lambda F(J_i \cap A)$$

where λ is Lebesgue outer measure and $J_{im} = [(i-1)2^{-m}, i2^{-m}]$. Note that the expression after the limit increases with m. Moreover, $M(F,A) \neq V(F)$, the total variation of F on [0,1]. If F is monotonic, clearly $M(F,A) = \lambda F(A)$. Also M(F,A) = 0 if and only if $\lambda F(A) = 0$.

Let $E_{F} = \{x : F'(x) = \pm \infty\}$. We need the

Definition: We say that f is <u>compatible</u> with g if there exist sets Sf and Sg such that $S_f \cup S_g = E_f \cap E_g$ and $\lambda f(S_f) = \lambda g(S_g) = 0$.

We offer

Theorem 1. Let $f,g \in BC$ and let L be the length of the curve (g(t), f(t)) $(0 \le t \le 1)$. Then

(*)
$$L \leq \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + M(f, E_{f}) + M(g, E_{g}),$$

and equality holds in (*) if and only if f is compatible with g. Moreover, equality holds in (*) if the set $E_f \cap E_g$ is at most countable.

When f is not compatible with g, we offer no further equations for L. Note that if $h \in MC$ and h(0) = 0, h(1) = 1, then no matter how complicated the function h is, the curve (h(t),h(t)) ($0 \le t \le 1$), is the line segment joining (0,0) to (1,1).

It is obvious that $L \leq V(f) + V(g)$. We identify the extreme situation in which equality holds here.

Theorem 2. We have

(**)
$$L \leq V(f) + V(g)$$
.

Moreover, equality holds in (**) if and only if f'g' = 0 almost everywhere on [0,1] and f is compatible with g.

We also identify another extreme situation.

Theorem 3. We have

(***)
$$L \ge \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + M(g, E_{g}),$$

and equality holds in (***) if and only if f is absolutely continuous on [0,1].

Before we tackle the proofs of Theorems 1, 2 and 3, we show the connection between absolute continuity and compatibility.

Proposition 2. Let $f \in BC$. Then the following are equivalent

(a) f is absolutely continuous on [0,1].

(b) f is compatible with f.

(c) f is compatible with every function in BC.

Proof. (c) \Rightarrow (b). Clear.

Proof. (b) => (a). From (b) it follows that $\lambda f(E_f) = 0$. Then for any set B < [0,1] satisfying $\lambda(B) = 0$, we have $\lambda f(B) = \lambda f(B \setminus E_f)$, and by [5, p. 271], $\lambda f(B \setminus E_f) = 0$. Thus f maps sets B of measure 0 to sets of measure 0, so f is absolutely continuous.

Proof. (a) => (c). For any $g \in BC$, let $S_f = E_f \cap E_g$. Since $\lambda(S_f) = 0$ and f is absolutely continuous, we have $\lambda f(S_f) = 0$. Then f is compatible with g.

Thus equality holds in Proposition 1 if f and g are compatible with all functions in BC, but equality holds in Theorem 1 if f and g are compatible with each other.

We first prove Theorem 1 in a very special case.

Lemma 1. Let $f,g \in MC$ such that f' = g' = 0 almost everywhere on [0,1]. Then $L \leq f(1) - g(0) + f(1) - f(0)$, and equality holds if and only if f is compatible with g.

Proof. The inequality $L \leq g(1) - g(0) + f(1) - f(0)$ is evident from the triangle inequality and the definition of L.

Now let L = g(1) - g(0) + f(1) - f(0). Without loss of generality we assume that g(1) > g(0) and f(1) > f(0). Choose any ε , $0 < \varepsilon < 1$. Let $0 = u_0 < u_1 < u_2 < \cdots < u_n = 1$ be a partition of [0,1] so fine that, setting $a_j = f(u_j) - f(u_{j-1})$, $b_j = g(u_j) - g(u_{j-1})$, $c_j = (b_j^2 + a_j^2)^{\frac{1}{2}}$, we have

$$V(g) - \sum_{j=1}^{n} b_j < \varepsilon, \quad V(f) - \sum_{j=1}^{n} a_j < \varepsilon, \text{ and}$$
$$L - \sum_{j=1}^{n} c_j < \frac{1}{2}\varepsilon^2.$$

(1)

But if

(2)
$$\varepsilon a_j \leq b_j \leq a_j/\varepsilon$$
,

then
$$(a_j+b_j)^2 \notin a_jb_j(2 + 2/\varepsilon) \notin 4a_jb_j/\varepsilon$$
 so that
 $2(a_j+b_j)(a_j+b_j-c_j) \ge (a_j+b_j+c_j)(a_j+b_j-c_j)$
 $= 2a_jb_j \ge \varepsilon(a_j+b_j)^2/2,$
 $a_j+b_j-c_j \ge \varepsilon(a_j+b_j)/4.$

Now it follows from (1) that
$$\chi_{\varepsilon} \sum_{*} (a_j + b_j) < \chi_{\varepsilon^2}$$
, where \sum_{*} means the sum over those j that satisfy (2). Hence $\sum_{*} (a_j + b_j) < 2\varepsilon$.

Note that if j does not satisfy (2), then

$$|a_j-b_j| \ge a_j+b_j - 2\varepsilon \max(a_j,b_j).$$

Let
$$\sum_{xx}$$
 mean the sum over those j not satisfying (2); thus

$$\sum_{j=1}^{n} = \sum_{x} + \sum_{xx}.$$
 Then

$$\sum_{j=1}^{n} |a_{j}-b_{j}| > -2\varepsilon - 2\varepsilon \sum_{xx} \max(a_{j},b_{j}) + \sum_{xx} (a_{j}+b_{j})$$

$$> -4\varepsilon - 2\varepsilon(f(1) - f(0) + g(1) - g(0)) + \sum_{j=1}^{n} (a_{j}+b_{j})$$

$$= -\varepsilon(4 + 2(f(1) - f(0) + g(1) - g(0)))$$

$$+ f(1) - f(0) + g(1) - g(0).$$

It follows that $V(f-g) \ge f(1) - f(0) + g(1) - g(0) = V(f) + V(-g)$. By [1], there exist sets S_f and S_g such that $E_f \cap E_g \subset S_f \cup S_g$, and $\lambda f(S_f) = \lambda g(S_g) = 0$. Hence f is compatible with g.

Now let f be compatible with g. Let S_f and S_g be the sets for which $S_f \cup S_g = E_f \cap E_g$ and $\lambda f(S_f) = \lambda g(S_g) = 0$. Let

A = {x : f has no finite or infinite derivative at x}, A₀ = {x : f is differentiable at x and $0 < f'(x) < \infty$ }, B = {x : g has no finite or infinite derivative at x}, B₀ = {x : g is differentiable at x and $0 < g'(x) < \infty$ }.

Then $\lambda A_0 = \lambda B_0 = 0$ because f' = g' = 0 almost everywhere. By [5, pp. 125, 271] $\lambda f(A) = \lambda f(A_0) = \lambda g(B) = \lambda g(B_0) = 0$ and $\lambda f(A \cup A_0 \cup S_f) = \lambda g(B \cup B_0 \cup S_g) = 0$. But all the points where both f and g have positive derived numbers are in the set $(A \cup A_0 \cup S_f) \cup (B \cup B_0 \cup S_g)$. By [1], V(f-g) = V(f) + V(-g). By the triangle inequality and the definition of L, we have

$$V(f-g) \leq L \leq V(f) + V(-g) = f(1) - f(0) + g(1) - g(0),$$

and equality must hold throughout.

Our next lemma will eventually allow us to generalize Lemma 1 to all functions in MC.

Lemma 2. Let f_1 and g_1 be absolutely continuous functions on [0,1]in MC, and let f_2 and g_2 be functions in MC such that $f_2' = g_2' = 0$ almost everywhere on [0,1]. Let $f = f_1 + f_2$, $g = g_1 + g_2$. Let $L_j = \text{length}$ of the curve $(g_j(t),f_j(t))$ $(0 \le t \le 1)$, (j = 1,2), L = length of the curve (g(t),f(t)) $(0 \le t \le 1)$. Then

(i) $L = L_1 + L_2$.

(ii) If
$$A \in [0,1]$$
, then $\lambda f(A) = \lambda f_1(A) + \lambda f_2(A)$, $\lambda g(A) = \lambda g_1(A) + \lambda g_2(A)$.

(iii) $\lambda f(E_f \setminus A_f) = \lambda f_2(E_f \setminus A_f) = 0$ and $A_f \subseteq E_f$, $\lambda g(E_g \setminus A_g) = \lambda g_2(E_g \setminus A_g) = 0$ and $A_g \subseteq E_g$, where $A_f = \{x : f_2'(x) = \infty\}$, $A_g = \{x : g_2'(x) = \infty\}$.

Proof (i). From the triangle inequality and the definition of length we obtain $L \neq L_1 + L_2$ and $L \neq |L_1 - L_2|$. Take any $\varepsilon > 0$. There is a $\delta > 0$ such that if $\lambda(S) < \delta$, then $\int_{S} ((f_1')^2 + (g_1')^2)^{\frac{1}{2}} < \varepsilon$. Since $f_2' = g_2' = 0$ almost everywhere, we can (and do) use the Vitali covering theorem

to construct mutually disjoint subintervals $[u_j,v_j]$ (j = 1,...,n) of [0,1] such that

$$\sum_{j=1}^{n} (f_2(v_j) - f_2(u_j)) < \varepsilon, \sum_{j=1}^{n} (g_2(v_j) - g_2(u_j)) < \varepsilon, 1 - \sum_{j=1}^{n} (v_j - u_j) < \delta.$$

Let (x_j, y_j) (j = 1, ..., m) denote the complementary intervals of the [u_j, v_j]. Then $\sum_{j=1}^{m} (y_j - x_j) < \delta.$

Let Z_j denote the length of the curve (g(t), f(t)) for $u_j \le t \le v_j$, let Z_{1j} denote the length of the curve $(g_1(t), f_1(t))$ for $u_j \le t \le v_j$, and let Z_{2j} denote the length of the curve $(g_2(t), f_2(t))$ for $u_j \le t \le v_j$. Let Z_j^* , Z_{1j}^* and Z_{2j}^* denote the corresponding lengths for $x_j \le t \le y_j$. Then

$$\sum_j Z_{2j} \leq \sum_j (f_2(v_j) - f_2(u_j)) + \sum_j (g_2(v_j) - g_2(u_j)) < 2\varepsilon,$$

$$\sum_{j} Z_{1j}^{*} \neq \sum_{j} \int_{x_{j}}^{y_{j}} ((f_{1}')^{2} + (g_{1}')^{2})^{\frac{y_{j}}{2}} = \int_{u_{j}[x_{j}, \dot{y}_{j}]} ((f_{1}')^{2} + (g_{1}')^{2})^{\frac{y_{j}}{2}} < \varepsilon$$

because $\lambda(v_j[x_j,y_j]) < \delta$. So

$$L = \sum_{j} Z_{j} + \sum_{j} Z_{j}^{*} \cong \sum_{j} (Z_{1j} - Z_{2j}) + \sum_{j} (Z_{2j}^{*} - Z_{1j}^{*})$$
$$\cong \sum_{j} (Z_{1j} + Z_{2j}) - 4\varepsilon + \sum_{j} (Z_{2j}^{*} + Z_{1j}^{*}) - 4\varepsilon$$
$$= L_{1} + L_{2} - 8\varepsilon.$$

Since ε was arbitrary, $L \ge L_1 + L_2$. The reverse inequality yields (i).

Proof (ii). This is just [2, Lemma 3].

Proof (iii). Since f_1 and g_1 are nondecreasing, $f_2'(x) = \infty$ implies $f'(x) = \infty$, and $g_2'(x) = \infty$ implies $g'(x) = \infty$. Thus $A_f \in E_f$ and $A_g \in E_g$. Now $\lambda(E_f) = 0$, so $\lambda(E_f \setminus A_f) = 0$. It follows from [5, p. 271] that $\lambda f_2(E_f \setminus A_f) = 0$. But

$$\lambda f(E_f \setminus A_f) = \lambda f_1(E_f \setminus A_f) + \lambda f_2(E_f \setminus A_f) = \lambda f_2(E_f \setminus A_f) = 0$$
287

because f_1 is absolutely continuous. Likewise $\lambda g(E_g \setminus A_g) = \lambda g_2(E_g \setminus A_g) = 0$.

We are now able to prove Theorem 1 for functions in MC.

Lemma 3. Let f and g be functions in MC. Then

(*)
$$L \leq \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + \lambda f(E_{f}) + \lambda g(E_{g}),$$

and equality holds if and only if f is compatible with g.

Proof. Let $f = f_1 + f_2$, $g = g_1 + g_2$, where $f_j \in MC$, $g_j \in MC$, f_1 and g_1 are absolutely continuous on [0,1], and $f_2' = g_2' = 0$ almost everywhere on [0,1]. By Lemma 2, $\lambda f(E_f \setminus A_f) = 0$ and $\lambda f(E_f) = \lambda f(A_f) =$ $\lambda f_2(A_f) = f_2(1) - f_2(0)$. Likewise $\lambda g(E_g) = g_2(1) - g_2(0)$. Also $f' = f_1'$ and $g' = g_1'$ almost everywhere on [0,1]. Using Lemmas 1 and 2 we obtain (*) and we see that equality holds there if and only if f_2 is compatible with g_2 .

Now suppose equality holds in (*). Then f_2 is compatible with g_2 . Let S_f and S_g be sets such that $A_f \cap A_g \subset S_f \cup S_g$, $\lambda(S_f \cup S_g) = 0$, and $\lambda f_2(S_f) = \lambda g_2(S_g) = 0$. But by Lemma 2, $\lambda f(S_f) = \lambda f_2(S_f) = 0$ and $\lambda f(E_f \setminus A_f) = 0$, and hence $\lambda f((E_f \setminus A_f) \cup S_f) = 0$. Likewise $\lambda g((E_g \setminus A_g) \cup S_g) = 0$. Thus f is compatible with g because $E_f \cap E_g \subset ((E_f \setminus A_f) \cup S_f) \cup ((E_g \setminus A_g) \cup S_g)$.

Suppose f is compatible with g. Let S_3 and S_4 be sets with $S_3 \cup S_4 = E_f \cap E_g$ and $\lambda f(S_3) = \lambda g(S_4) = 0$. But $\lambda f(S_3) = \lambda f_1(S_3) + \lambda f_2(S_3)$ so $\lambda f_2(S_3) = 0$. Likewise $\lambda g_2(S_4) = 0$. Finally, $A_f \cap A_g \subset E_f \cap E_g =$ $S_3 \cup S_4$, and it follows that f_2 is compatible with g_2 . Hence equality holds in (*).

Our next lemma will help us to prove Theorem 1 for functions in BC as well as functions in MC.

Lemma 4. Let $f,g \in BC$ and let $f_*(x)$ and $g_*(x)$ denote, respectively, the total variations of f and g on the interval [0,x] $(0 \le x \le 1)$. Let

L denote the length of the curve (g(t), f(t)) and let L_* denote the length of the curve $(g_*(t), f_*(t))$ $(0 \le t \le 1)$. Then $L = L_*$.

Proof. Take any $\epsilon > 0$. Let $0 = u_0 < u_1 < \cdots < u_n = 1$ be a partition of [0,1] so fine that, setting

$$\mathbf{a}_{j} = |\mathbf{f}(\mathbf{u}_{j}) - \mathbf{f}(\mathbf{u}_{j-1})|, \quad \mathbf{b}_{j} = |\mathbf{g}(\mathbf{u}_{j}) - \mathbf{g}(\mathbf{u}_{j-1})|,$$

$$\mathbf{a}_{*j} = \mathbf{f}_{*}(\mathbf{u}_{j}) - \mathbf{f}_{*}(\mathbf{u}_{j-1}), \quad \mathbf{b}_{*j} = \mathbf{g}_{*}(\mathbf{u}_{j}) - \mathbf{g}_{*}(\mathbf{u}_{j-1}),$$

$$\mathbf{c}_{j} = (\mathbf{a}_{j}^{2} + \mathbf{b}_{j}^{2})^{\frac{1}{2}}, \quad \mathbf{c}_{*j} = (\mathbf{a}_{*j}^{2} + \mathbf{b}_{*j}^{2})^{\frac{1}{2}},$$

we have

(1)
$$L_* - \sum_{j=1}^n c_{*j} < \varepsilon,$$

(2)
$$f_*(1) - f_*(0) - \sum_{j=1}^n a_j < \varepsilon,$$

(3)
$$g_{*}(1) - g_{*}(0) - \sum_{j=1}^{n} b_{j} < \varepsilon.$$

It follows from (2) and (3) that

(4)
$$\sum_{j=1}^{n} (a_{*j} - a_{j}) < \varepsilon,$$

(5)
$$\sum_{j=1}^{n} (b_{*j} - b_j) < \varepsilon$$

From the triangle inequality and (4), (5) we obtain

(6)
$$L \ge \sum_{j=1}^{n} c_j \ge \sum_{j=1}^{n} (c_{*j} - (b_{*j} - b_j) - (a_{*j} - a_j)) \ge \sum_{j=1}^{n} c_{*j} - 2\varepsilon.$$

By (1) and (6) we have $L \ge L_* - 3\epsilon$. Since ϵ is arbitrary, $L \ge L_*$. The reverse inequality follows from $a_{*j} \ge a_j$ and $b_{*j} \ge b_j$. We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. Define f_* and g_* as in Lemma 4. Then by Lemmas 3 and 4,

(*)
$$L \in \int_{0}^{1} ((f_{*}')^{2} + (g_{*}')^{2})^{\frac{1}{2}} + \lambda f_{*}(E_{f_{*}}) + \lambda g_{*}(E_{g_{*}}),$$

and equality holds in (*) if and only if f_* is compatible with g_* . Also $E_f \in E_{f_*}$ and $E_g \in E_{g_*}$ are clear, and by [5, p. 127], we have

$$\lambda(\mathbf{E_{f_{\star}}} \setminus \mathbf{E_{f}}) = \lambda \mathbf{f_{\star}}(\mathbf{E_{f_{\star}}} \setminus \mathbf{E_{f}}) = 0, \quad \lambda(\mathbf{E_{g_{\star}}} \setminus \mathbf{E_{g}}) = \lambda \mathbf{g_{\star}}(\mathbf{E_{g_{\star}}} \setminus \mathbf{E_{g}}) = 0,$$
$$\lambda \mathbf{f_{\star}}(\mathbf{E_{f}}) = \lambda \mathbf{f_{\star}}(\mathbf{E_{f_{\star}}}), \quad \lambda \mathbf{g_{\star}}(\mathbf{E_{g}}) = \lambda \mathbf{g_{\star}}(\mathbf{E_{g_{\star}}}).$$

Moreover $\lambda f(S) = 0$ for any set S with $\lambda f_*(S) = 0$ by [3, Lemma 2]. Likewise, $\lambda g(S) = 0$ for any set S with $\lambda g_*(S) = 0$. It follows that if f_* is compatible with g_* , so must f be compatible with g.

Now suppose f is compatible with g. Say $S_f \cup S_g = E_f \cap E_g$ and $\lambda f(S_f) = \lambda g(S_g) = 0$. Then $E_{f_*} \cap E_{g_*} \subset ((E_{f_*} \setminus E_f) \cup S_f) \cup ((E_{g_*} \setminus E_g) \cup S_g)$ and by [3, Lemma 2],

$$\lambda f_*((E_{f_*} \setminus E_f) \cup S_f) = \lambda g_*((E_{g_*} \setminus E_g) \cup S_g) = 0.$$

Thus f_{\star} is compatible with g_{\star} .

But $\lambda f_*(E_f) = M(f, E_f)$ and $\lambda g_*(E) = M(g, E_g)$ by [3, Lemma 2]. From this, (*) and from the fact that $f_*' = |f'|$, $g_*' = |g'|$ almost everywhere, it follows that

$$L \leq \int_{-1}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + M(f, E_{f}) + M(g, E_{g}),$$

and equality holds if and only if f is compatible with g.

The last statement in Theorem 1 is now clear.

Note that when g is constant, then the total variation, V(f), of f on [0,1] equals L. But then f is compatible with g and

$$L = \int_{0}^{1} |f'| + M(f, E_{f}) = V(f).$$

Proof of Theorem 2. The inequality (**) follows from the definition of L and the triangle inequality.

Now suppose L = V(f) + V(g). Then by the remark preceding this proof, we have

$$L = V(f) + V(g) = \int_{0}^{1} |f'| + M(f, E_{f}) + \int_{0}^{1} |g'| + M(g, E_{g})$$

$$= \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + M(f, E_{f}) + M(g, E_{g}).$$

Clearly equality must hold throughout, and by Theorem 1, f is compatible with g. From $\int_{0}^{1} (|f'| + |g'|) = \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}}$ we obtain f'g' = 0almost everywhere on [0,1].

Suppose f is compatible with g and f'g' = 0 almost everywhere on [0,1]. Then by Theorem 1

$$L = \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + M(f, E_{f}) + M(g, E_{g})$$

= $\int_{0}^{1} (|f'| + |g'|) + M(f, E_{f}) + M(g, E_{g}) = V(f) + V(g).$

Before we consider Theorem 3 we note some corollaries of Theorem 2.

Corollary 1. In Theorem 2, let g' = 0 almost everywhere on [0,1]. Then L = V(f) + V(g) if and only if f is compatible with g.

Proof. f'g' = 0 almost everywhere on [0,1] in any case.

Corollary 2. In Theorem 2, let g be absolutely continuous on [0,1]. Then L = V(f) + V(g) if and only if f'g' = 0 almost everywhere on [0,1]. **Proof.** Since g is absolutely continuous, $\lambda g(E_f \cap E_g) = 0$ and f is compatible with g in any case.

Corollary 3. In Theorem 2, let g have a finite nonzero derivative everywhere on [0,1] except possibly at countably many points. Then L = V(f) + V(g) if and only if f' = 0 almost everywhere on [0,1].

Proof. Here E_g is countable, so f is compatible with g. The rest is clear.

From Corollary 3, we see that the curve y = f(x), $0 \le x \le 1$, has length = 1 + V(f) if and only if f' = 0 almost everywhere on [0,1]. This equation holds, for example, when f is Lebesgue's singular function [4, p. 113].

Proof of Theorem 3. The development of Theorem 3 is much like the development of Theorem 1, so we only sketch the procedure. First suppose f and g satisfy the hypothesis of Lemma 1. Then (***) reduces to $L \ge g(1) - g(0)$, and equality holds if and only if f is constant. This is obvious.

Now suppose f and g are as in Lemma 3. Then (***) reduces to

$$L \ge \int_{0}^{1} ((f')^{2} + (g')^{2})^{\frac{1}{2}} + \lambda g(E_{g}),$$

and equality holds if and only if f_2 is constant, or equivalently, f is absolutely continuous on [0,1]. This follows from Lemmas 1 and 2, just as Lemma 3 did.

The proof of Theorem 3 is now analogous to the proof of Theorem 1, only it is easier. In the notation used in the proof of Theorem 1, we have

$$L \ge \int_{0}^{1} ((f_{*}')^{2} + (g_{*}')^{2})^{\frac{1}{2}} + \lambda g_{*}(E_{g_{*}}),$$

and equality holds if and only if f_* is absolutely continuous, or equivalently, f is absolutely continuous on [0,1]. But as before, $((f_*')^2 + (g_*')^2)^{\frac{1}{2}} = ((f')^2 + (g')^2)^{\frac{1}{2}}$ almost everywhere on [0,1], and $\lambda g_{\star}(E_{g_{\star}}) = \lambda g_{\star}(E_{g}) = M(g, E_{g})$. The conclusion follows.

Much of this work can be generalized to continuous rectifiable curves $(f_1(t), \ldots, f_n(t))$ (0 $\leq t \leq 1$) in \mathbb{R}^n . For example,

$$L \leq \int_{0}^{1} (\sum_{j=1}^{n} (f_{j}')^{2})^{\frac{1}{2}} + \sum_{j=1}^{n} M(f_{j}, E_{f_{j}}),$$

and equality holds if and only if f_i is compatible with f_j for $i \neq j$. but the proof is a tedious induction argument that would add little original to the arguments here. So we omit it.

References

- F.S. Cater, When total variation is additive, Proceedings of the Amer. Math. Society 84, #4(1982), 504-508.
- [2] F.S. Cater, Most monotone functions are not singular, Amer. Math. Monthly 89, #7(1982), 466-469.
- [3] F.S. Cater, Mappings into sets of measure zero, Rocky Mountain J. of Math. 16, #1(1986), 163-171.
- [4] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
- [5] S. Saks, Theory of the Integral, second revised edition, Dover, 1964.

Received May 27, 1986