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 ON A RESULT OP S. KUREPA

 Introduci ion

 In an article published in 1956, S. Kurepa [2] proved the following

 theorem .

 Theorem. There exist Lebesgue measurable sets A,B c Rn such that

 the set A + B = {a + b: a «. A, b è B} is nonmeasurabl e .

 Here a + b is the ordinary coordinate wise sum of a and b,

 i.e. if a = v (a, , a«, . . . , a ) and b = b.,,b0,...,b ) then v l' , a«, 2 . . . , n 12' n

 a+b = (aj^+bj^.ag+bg, . . . ,an+bn) .
 The proof of this theorem can be found in M. Kuczma' s new book

 "An Introduction to the Theory of Functional Equations and

 Inequalities" ([1], pg. 256). Kuczma introduces Kurepa's theorem,

 saying it "shows a certain irregularity of the operation +". The

 purpose of this paper is to extend Kurepa's result by showing that

 a wide class of operations on Rn (i.e. functions on Rn x Rn into

 Řn) actually share the irregularity of the operation + noted above.

 Before presenting our results we mention that the sets A and B

 in Kurepa's paper (and in Kuczma's book) are constructed using a

 measurable Hamel basis and that this construction can not be

 extended to show a similar result for operations different from +'.

 Furthermore, Kurepa's sets A and B both turn out to be sets of

 Lebesgue measure zero.
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 In this paper, N(a,r) will denote the open ball in Rn with

 center a and radius r. Furthermore, a set A c Rn is called a

 universal null set, if ju(A) = 0 for each complete measure space

 (R n,ří^,fj) that satisfies: N(a,r) & M ^ for each a e. Rn and each
 r > 0 and lim u(N(a,r)) = 0 for each a €. Rn . A point c e. Rn will

 r-»0

 be called rational if all its coordinates are rational numbers.

 Results. The following lemma will be used in the proofs of

 both of our theorems.

 Lemma 1. Suppose f is a function on Rn x Rn into Rn and N, X

 and Y are open balls in Rn . If C = {xr|r < «c} <= X and
 D={y|r<w}cY I and N = ft Ļ I r < u> } , ' where u denotes the least ur I cJ Ļ r « c' ' , c

 ordinal having the cardinality of the continuum, satisfy the

 following conditions:

 (i) f(x ,y ) = t for T < w .
 r r t c

 (ii) x * x , y * y and t * t if 1 - < o < r < w . v/o tot , a r - c

 (iii) For each t e. N there is a unique one to one function

 h.: X -♦ Y such that f(x,h^(x)) = t for all x e. X .
 Then there exist sets A and B such that A c C and B c D and

 f(AxB) is nonmeasurab le in the sense of Lebesgue.

 Proof. The collection of all uncountable closed subsets of N

 has cardinality of the continuum, this collection can be written in

 the form (F 1 : a < w }. We will make repeated use of the fact that 1 a c

 each F , a < « , has cardinality of the continuum,
 a c

 Pick fļļ» f12> distinct elements from Fļ. By the .properties
 of the sets C and D there exists a o^, < wc, such that

 * fu' Set ai * 'S and bi 1 V
 By the hypothesis on f, the set {o: a < «c and either
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 f(a,,y ) = f,„ or f(x v ' ,b,) = f,0} contains at most two elements, lo 12 v o ' 1 12

 Therefore, again by the properties of the sets C and D, there

 exists a o„, o0 < w such that f(x ,y ) t F„ and
 2 2c a 2 o 2

 fļ2 « (f(xa »yc ): i > j > «• {1,2}}.
 i j

 Set a0 = x and b0 = y and denote f(a0,b0) by f„,.
 ¿ o 2 2 ¿ ¿ ¿ i

 Clearly, there exists an element, say f99, in F2 such that

 f22 « { f ( aļ , b j ) : i , j €. {1,2}}.
 We proceed by transfinite induction. Suppose a is an ordinal

 number, a < w , and that for each ß < a, we have selected points

 f/Jl' fp2 in R° satisfying:
 (o) a 6. C and b e, D for each ß,ß < a,

 H H

 (P) = f/îl and f/Jl * F/J' for each P'P < a'
 (q) f(a^,bö) * fp2 řor each i,5,ß; y,5,ß < a and

 f^2 * F ß> f°r each ß,ß < a.
 By the hypotheses on" f and the fact that the cardinal of a is

 less than that of the continuum it follows that the set

 U {ö:ö < «c and either f(ao«y0) = ^72 or f('Xö,bo^ = fy2^
 o, 7<a

 has cardinality less than that of the continuum.

 Therefore, by the properties of C and D, there exists a

 o ,o < u such that f(x ,y ') ¿ F and f(x ,b„) * f « and
 a a c a a a a ß ^ i2 « a a a ^

 f(a ,y ) * f 0 for every ß,t', ß,i < a. Set a = x and b = y
 paie. et a o to
 a aa

 and denote f(aa,ba) by faļ; i.e. ftfl = f(aa,ba>.
 Clearly, again as the cardinality of a is less than that of

 the continuum, there exists an element, say f 0, in F such that
 CIZ oc

 fa2 * (f'(a7»bö): y>6 < a) •
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 Therefore, by transfinite inrlnr * ' on , «•>« conclude that there

 exist four transfinite sequences {a } , , {b } , . a a < , w , a o < w
 c c

 {f 1 ,} J . and {f ^ a.2' „} < . satisfying: J ° 1 al J a < . w ^ a.2' a < . w J °
 c c

 (0) v ' a 6. C and b e D for each a, a < w , v ' a a c

 (P) f ( aa' ba) = faļ 6 Fa for each a, a < u>c,

 (Q) f ( aa , b^j) 9* f 7 2 for each a,ß,y; a, 0,7 <
 and f „ e F , for each y , y < w . y „ 2 y , , c

 Set A = fa : a < w } and B = {b : a < w } , Then, clearly,
 a c a c

 f(AxB) is nonmeasurab le ; in fact f(AxB) has outer Lebesgue measure

 equal to m(N) and inner Lebesgue measure equal to zero. This

 completes the proof of Lemma 1.

 Martin's Axiom, which is weaker than the continuum hypothesis,

 implies that the union of less than c, the cardinal of the

 continuum, first category sets is a first category set and that the

 union of less than c sets of measure zero is a set of measure zero

 (see the following: D.A. Martin and R.M. Solovay, Internal Cohen

 extensions, Ann. Math. Logic 2 (1970), 143-178). Moreover, the

 hypothesis "the union of less than c first category sets is first

 category and the union of less than c sets of measure zero is a set

 of measure zero" is even weaker than Martin's axiom. For the

 purpose of reference, let (F) denote the hypothesis "the union of

 less than c first category sets is first category and the union f

 less than c sets of measure zero is a set of measure zero".

 Our first theorem . shows , assuming (F), that for each function

 f in a certain wide class of functions on Rn x Rn into Rn,

 including "+", there exists a pair of universal null sets A and B

 such that f(AxB) = (f(a,b): (a,b) 6 AxB } is nonmeasurab 1 e in the
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 sense of Lebesgue.

 Theorem 1. Let f : Rn x Rn-»Rn . Suppose X,Y and N are open

 balls in Rn sat isfying the following conditions:

 ( i ) For each t e N there is a unique function h^: X -» Y such that

 f(x,h^(x)) = t for all x e X.

 (ii) For each t é N, h^ is a homeomorphism of X into Y.
 Then, assuming ( F ) , there exists a pair of universal null sets A

 and B such that f(AxB) is Lebesgue nonmeasurab le .

 Proof. Let D ^ and D g denote respectively the rational points
 in X and Y. Let R and S denote respectively, the collections of

 all open sets containing D ^ and which are subsets of X and Y
 respectively. It is an easy exercise to show that R and S have

 cardinality of the continuum. Let w denote the least ordinal
 c

 number having cardinality of the continuum. Then the collections R

 and S can be written as transfinite sequences: {R^ : r < and
 {S^: r < «c) • Also, the set N can be written in the form
 N = {t : r < w } . T CJ

 We will now choose, using transfinite induct ion , two

 transfinite sequences

 {x : t < u } and { y ' : r < w }. t c ' T c

 We take to be any two points such that x^ e R^, y^ e. and
 ^Xl,yl^ = tl- Such a pair exists, as X 'R^ and Y 'S^ are both
 nowhere dense and h. is a homeomorphism of X onto h. (X), which is

 Z1 tl
 a subset of Y.

 Now, suppose that r is any ordinal number less than w and
 c

 that x^ and y have been chosen for all ordinals o less than r, in
 such a way that:
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 (1) e, n R and yens for all o, a < r.
 O Ot <7 .Ot
 aia aļa

 (2) f(x ,y ) = t for all o, o < r.
 GO O

 (3) X * X and y * y if 1 < a < a < t.
 a a a o -

 We now proceed to select an appropriate pair , y^. To do
 this consider the sets

 E = U (X 'R_) U U {x } and
 oļr o<T

 F = U (Y 'S ) U U {y }.
 r air ° o< r °

 E and F are unions of less than c nowhere dense sets. Therefore, ' T T '

 assuming (F), both are sets of the first category.

 Therefore, as argued in the r = 1 case, since h^ is a
 r

 homeomorphism of X onto h^ (X), there exists
 T

 x 4 X 'E , such that h, (x ) = y e Y 'F . r r , t r r r
 T

 Therefore, by transfinite induction, we obtain two complete

 transfinite sequences

 {x^: r < »c) and { y^ : r < wc) satisfying:
 (I) x 4 D H and y 4 n S for all r,r < w .

 t . T T . r c
 air . aļr .

 (II) f(xr,yr) = tr for all r,r < wc-
 (III) x * x and y * y if 1 < a < o < w .

 CŁ O CX O - C

 Set C = fx : r < w } and D = (y ģ. r < w }. Then
 • r c r c

 f(CxD) => {f(xr,yr): r < «c> = { t r : r < uc> = N.
 Suppose (H n , tî ,/i) is any complete measure space that

 A'

 satisfies: N(iT,r) e ft for each a e Rn and each r > 0 and
 M

 lim /j(N(¥, r) ) = 0 for each ¥ 4 Rn . The set can be written in
 F-»0 +
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 the form = {un¡ n = 1,2,...}. Let e > 0 be given. For each n,
 there exists an open r ball B , B c X , such that u ł B and open r n , n , n n

 00

 p(B ) < e/2n. Let G = U B . Then G e. R and ju(G) < 6. Therefore
 n -in

 n = 1

 G = R for some r,r < « . By (I), this implies that x & G for
 T C OC

 each a,r a < wc> which in turn implies that

 C ' G c- (xa : a < r } ,
 which, by (F), is a set of measure zero.

 Therefore /j(C ) <//i(G) + +¡j(C ' G) < è + 0. Hence C is a

 universal null set. A similar argument shows that D is a universal

 null set.

 By the definitions of C and D and the hypotheses on f it

 immediately follows, using Lemma 1, that there exist sets A and B

 such that A c C, B c D and f(AxB) is nonmeasurab 1 e . A and B are

 universal null sets since they are subsets of C and D respectively.

 Remark 1. Clearly the operation +, i.e. the function f

 defined by the formula f(x,y) = x+y for every x, y*Rn, satisfies

 the conditions of Theorem 1 and therefore, assuming (F), there

 exists a pair of universal null sets A and B in Rn such that. A+B is

 nonmeasurab le . Clearly coordinate-wise. multiplication also works.

 The purpose of our second theorem ìjs to extend Kurepa's

 theorem without using (F). The following lemma, which extends a

 result of Utz [6], will be used in the proof of Theorem 2.

 Lemma 2. Suppose s is a real number and s * 0 . Suppose

 further that {f^ļteM} is a collection of functions on R into R
 satisfying:

 (*) There exists a v, v > 0 "and x, yeR such that ft(x) e N(y, v/2)
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 I

 for every té. M and f t ( x) «. (s-ļsļ/10, s+ļsļ/10) for every ttM and
 every x. & (x-v, >< + v].

 Then there exists a compact set C, C c [x-v, x + v], of measure zero

 and a compact set D, D c [y-v, y+v], of measure zero such that the

 cardinality of (CxD) n (the graph of f ) is c for each te,M.

 Proof. If nQ> nQ >2, is a sufficiently large natural number,

 then the cardinality of (CxD) n (the graph of f t ) is c for each
 téM, where C is the "Cantor- 1 ike" subset of [x-v, x + v] formed by

 taking out the middle n^ open intervals at each step of the
 "Cantor-like" construction and D is the "Cantor-like" subset of

 [y-v, y+v] formed by taking out the middle n^ open intervals at
 each stage. We remark that C and D are compact sets of Lebesgue

 measure zero. This fact is proved, using the "nested square

 theorem", by showing that if nQ is sufficiently large and te.M is

 given, then there exists a stage n^ in the construction of CxD such

 that the graph of f^. intersects the interiors of at least two, call
 nl

 them Cļļ, ^12' ° * ^ squares in this stage of the

 construction. There exists a stage ng» ng > such that f^
 intersects the interiors of at least two, call them ° ^

 the subsquares of C^ in this stage of the construction of CxD.

 Similarly, there is a stage n¿ > nļ such that ft intersects the

 interior of at least two, call them Cļ2l' ^122' ^he subsquares
 of C,0 in this stage of the construction. Continuing in this way, 1 £à

 for each sequence where m^ & {1,2}, we get a nested
 sequence of squares, namely C , C , C , whose

 m ļ m ļ^in ^ m ^ ni 2 ^ 1 * * *

 intersection yields a point in the set (CxD) n (the graph of f ^ ) .
 Since there are c such that sequences and eac^ yields a
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 different point, we obtain our result, i.e. the cardinality of

 (CxD) n (the graph of f^.) is c for each téM.

 Theorem 2. Suppose f = ( f ^ , f g , . • . , f ) : Rn x Rn -» Rn satisfies
 the following conditions.

 2
 (a) The 2n partial der ivat ives (n functions and 2n var iables)

 exist and are continuous in some neighbourhood of (Xq,}^) e. RnxRn.

 (fi) Djfj .... 0nfl Dn+lfl .... D2nfl
 : : (xo'yo,'° aad : : (xo'yo)t0-
 D , f .... D f D , f .... D« f , In .... n n n+1 , n .... 2n n

 Then there exist measurable sets A,B c Rn such that

 m(A) = m(B) = 0 and f(AxB) is nonmeasurable .

 Proof. f can be viewed as an nxl column matrix. The nxn

 af _ af df af 1 and af Taf af af ļ . . matrices ^ _ ^ « . . and - - - - - . , arp . both .
 ax ^ ax ^ ^ axg . . axn ay ay^ ayg . , ayn

 invertible at (xQ,yo) by the hypotheses of this theorem. By the
 implicit function theorem, there is a continuously differentiable

 function g(x,t), defined for x near x and t near f(x ,y w ) such o o w o

 that f(x,g(x,t)) = t. By implicit differentiation, we have

 ag rafl~1rafl a¿ . .
 dx" " ~ I āy J āx * Therefore 3^- ls . mvertible . at the point (x ,t ),

 where t() = f<Vyo). Since §1 = Uí I ^. ¿ • .^ì n end I ¿ n

 Ã = (g^ » ¡2 ' ' ' • » Sjj) follows that there exist i,j e {l,2,...,n}
 dg

 such that -_á.(x t ) = s and s*0.
 ox. o o

 1

 By the implicit function theorem there exist X, Y and N, open

 balls in R , containing x ,y and t respectively, such that:
 00 o

 For each te.N and xe.X, g(x,t) is the unique element in Y

 satisfying f(x,g(x,t)) = t.

 Since g is continuously differentiable, there exists a
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 positive real number v and a neighborhood M of t , M c N such that:

 àg . (x, t)
 g.(x ,t) «. N(y,v/2) 'for every ttM and - (s-lsl/10,
 JO o X . ' '

 1
 A

 s+ļsļ/10) for each te.M and each xe,PL(x ,v), where y(«.R) denotes the

 t ^ ^ Ä :

 J component of yQ, s = - -(x0»t0) and N.(xo,v) = {x e. N(xq,v)|
 i

 "th th
 the k component of x is equal to the k component of xq for each

 k different from i}, where W(xq,v) is the closed ball with center
 x and radius v.
 o

 Therefore, by Lemma 2 there exist s.ets C and D such that:
 A

 C c Ñ'(xq,v), D c íT(y,v) and C and D are compact sets, both having
 one dimensional Lebesgue measure zero, and

 (the graph of gf.) n (CxD) has cardinality c for each t&M,
 ** J

 where g. .(x) = g.(x,t) for eachx.
 t j J

 Furthermore, g^ is a 1 to 1 function for each tfeM.
 M . ( x , v)
 i o

 Therefore, if t&M, there exist two transfinite sequences

 {cť} 1 J . and {d*} trJr<» , such that: c'" & C and 1 r J r < . u trJr<» , r
 c c

 d^éRxRx ... xRxDxRx ...R (where we have n factors and D
 appears in the jth place) for each r < «c; c* * c£ , , d* * d* , , for

 t t

 each r,T' < wc> r * t' and f(c^,d^) = t for each r < u>c-
 It now follows, by a simple argument involving transfinite

 induction, that there exist two transfinite sequences (-er}r < w
 c

 and ff 1 } J . such that: e_ * e t' and f * f t' for each 1 r J r < . » e_ r t' t t'
 c

 t < t' < w , {e: r < w } <= C ,
 c T c

 {f^: t < wc) cRxRx ... xRxDxRx ... R and fCe^f^.) = t^
 for each r < w , where M = {t : t < » }.

 C / c

 261



 By Lemma 1 it follows that there exist sets A and B, with

 A c T < Wç} and B = i^T: T < wc) > such that f(AxB) is
 nonmeasurab le Furthermore A and B are both measurable since they

 are subsets of sets of measure zero.

 Remark 2. One of the referees provided the following

 interesting application of Theorem 2. Let be the set of all kxk

 matrices with real entries and n=k . If f(x,y) = xy, for x.y.xy^M^
 (i.e. xy is the matrix multiplication of x and y) , then there are

 Lebesgue measurable sets A and B of measure zero for which f(AxB)

 is nonmeasurab le in the sense of Lebesgue.

 Remark 3. The method of constructing sets C and D, in the

 proof of Theorem 1 is modelled after a construction in [4], on page

 74.

 Remark 4. Notice that the sets A and B constructed in the

 proof of Theorem 2 are both nowhere dense in Rn , and hence both

 have the Baire property and that f(AxB) does not have the Baire

 property ([3], page 24). This shows that Theorem 2 on page 257 in

 [1], i.e. the Baire- set analogue of the Theorem of S. Kurepa, can

 be extended to functions f: Rn x Rn-» Rn satisfying the hypotheses

 of Theorem 2 in this paper.

 Remark 5. The -remarks about the continuum hypothesis,

 Martin's Axiom and (F) were brought to the authors attention by F.

 Galvin.

 Remark 6. A. Abian and F. Galvin have pointed out that the

 n=l case of Kurepa's Theorem goes back to Sierpiński (see [5]).

 Galvin has shown that the n=l case of Kurepa's result implies the

 general case of Kurepa's result.
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 Remark 7. The author wishes to thank the referees for several

 remarks that helped improve the exposition in this paper.

 Remark 8. We conclude by noting that in the proof of Theorem

 2 it is not necessary to show that there exist "Cantor-like" sets C

 and D. Namely, since Ñ'(xq,v) has n-dimensional Lebesque measure
 zero, it is sufficient to observe that

 (the graph of gfi) n (ÏÏ. LO (x ,v)xD) clearly has cardinality c for w J LO
 /'

 each tfeM if D is a "Cantor-like" subset of N(y,v) formed by taking
 t h

 out the middle nQ open intervals at each stage of its

 construction, where nQ is sufficiently large. The remainder of the
 proof of Theorem 2 goes through unchanged.
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