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ON A RESULT OF S. KUREPA

Introduction

In an article published in 1956, S. Kurepa [2] proved the following
theorem.
Theorem. There exist Lebesgue measurable sets A,B < R” such that
the set A + B = {a + b: a e A, b e B} is nonmeasurable.

Here a + b is the ordinary coordinate wise sum of a and b,

i.e. if a = (al’aZ"i"an) and b = bl’b ..,bn) then

91 -
a+b = (al+b1,a2+b2,...,an+bn).

The proof of this theorem can be found in M. Kuczma’s new book
"An Introduction to the Theory of Functional Equations and
Inequalities” ([1], pg. 256). Kuczma introduces Kurepa’s theoren,
sayiné it "shows a certain i%regularity of the operation +". The
purpose of this paper is to extend Kurepa’s result by showing that
a wide class of operations on rR® (i.e. functions on R® x R" into
Rn) actually share the irregularity of the operation + noted above.

Before presenting our results we mention that the s;ts A and B
in Kurepa’s paper (and in Kuczma’s book) are constructed using a
measurable Hamel basis and that this construction can not be
extended to show a similar result for operations different from +-
Furthermore, Kurepa’s sets A and B both turn out to be sets of

Lebesgue measure zero.
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Ih this paper, N(a,r) will denote the open ball in R” with
center a and radius r. Furthermore, a set A < R” is called a
universal nuli set, if u(A) = 0 for each complete measure space
(Rn,H ,4) that satisfies: N(a,r) e H“ for each a ¢ R™ and each

M

r > 0 and lim+p(N(a,r)) = 0 for each a ¢« R®. & point ¢ ¢ R" will
r-0 .

be called rational if all its coordinates are rational numbers.
Results. The following lemma will be used in the proofs of
both of our theorems.

Lemma 1. Suppose f is a function on R” x R™ into R" and N, X

"

and Y are open balls in R". If C {xr|r < wc} < X and

D = {yr|r < wc} € Y and N = {trlr < wc}, where w denotes the least
ordinal having the cardinality of the continuum, satisfy the
following conditions:

(i) f(xr,yr) = tr for 7 < w,

(ii) X 2 X _, y‘

# y_and t_# t_if 1 ¢ o < 7 < w
T o T o T c

(iii) For each t ¢ N there is a unique one to one function

ht: X » Y such that f(x,ht(x)) = t for all x e X.

Then there exist sets A and B such that A c C and B < D and
f(AxB) is nonmeasurable in the sense of Lebesgue.

Proof. The collection of all uncountable closed subsets of N
has cardinality of the continuum, this qollectibn can be written in
the form {Fa: a < wc}. We will make repeated use of the fact that

each Fa’ a < w has cardinality of the continuum.

Pick f f distinct elements from‘Fl. By fhe.properties

11’ "12°
of the sets C and D there exists a g9ys 9 < W such that
f(xa Vg )y = fll' Set a; = X, and b1 =y
1 1 1
By the hypothesis on f, the set {of o < w and either
253
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f(al,yo) = f1° or f(xo,bl) = f12} contains at most two elements.

Therefore, again by the properties of the sets C and D, there
exists a 02, 9, < w_ such that f(xoz,yoz) € Fz and
fi0 ® {f(xai,ycj): i,J, ¢ {1,2}}.

Set a, = xoz and b2 = y02 and denote f(az,bz) by f21.

Clearly, there exists an element, say f92, in Fz such that
f22 € {f(ai,bj): i,j ¢ {1,2}}.

We proceed by transfinite induction. Suppose a is an ordinal
number, a < w and that for each g8 < a, we have selected points

. n . .
ap’bp’fpl’pr in R™ satisfying:

(o) ap e C and bp e D for each BB < «,

(p) f(ap,bp) = fpl and fpl € Fp’ for each 8,8 < «a,

(q) f(a1,b6) # pr for each +,8,8; v,8,8 < a and
fpz e Fp’ for each p,p < a.

By the hypotheses on f and the fact that the cardinal of « is

less than that of the continuum it follows that the set

. ska {8:8 < W, and either f(aa,yo) = f",2 or f(xa,bo) = fqz}

has cardinality less than that of the continuum.
Therefore, by the properties of C and D, there exists a

941% < w such that f(xca,yog) € Fa and f(xoa,bp) # f72 and

f(ap,yoa) # f72 for every pg,v; B,v < a. Set a = xoq and ba =y )

and denote f(aa’ba) by f f(aa’ba)'

al’ i.e. f

Clearly, again as the cardinality of a is less than that of

al

the continuum, there exists an element, say faZ’ in Fa such that

faz & {f(av,ba): v,8 ¢ a}.
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Therefore, by transtfinite indn~*inn, we conclude that there

exist four transfinite sequences {aa}a ¢ , {b_}

w a’a ¢ w '’
c c
{fal}a ¢ o, and {faz}a ¢ satisfying:
(0) a € C and b e D for each a, a < w _,
a a c
(P) f(aa’ba) = fal 3 Fa for each a, a < w
(Q) f(aa’bp) # va for each «,4,7; a,8,7 < w_
and f e F, for each v, v < w
v2 ¥ c
Set A = {aa: a < wc} and B = {ba: a < uc}, Then, clearly,

f(AxB) is nonmeasurable; in fact f(AxB) has outer Lebe§gue measure
equal to m(N) and inner Lebesgue measure equal to zero. This
completes the proof of Lemma 1.

Martin’s Axiom, which is weaker than the continuum hypothesis,
implies that the union of less than c, the cardinal of the
continuum, first category sets is a first category set and that the
union of less than ¢ sets of measure zero is a set of measure zero
(see the following: D.A. Martin and R.M. Solovay, Internal Cohen
extensions, Ann. Math. Logic 2 (1970), 143-178). Moreover, the
hypothesis "the union of less than ¢ first category sets is first
category and the union of less than c sets of measure zero is a sgt
of measure zero" is even weaker than Ma?tin’s axiom. For the
purpose of reference, let (F) denote tﬁe hypoihesis "the union of
less than ¢ first category sets is first category and the union f
less than c sets of measure zero is a set of measure zero".

Our first theorem . shows, assuming (F), that for each function
f in a certain wide .class of functions on R” x R"” into Rn,
including "+", there exists a pair of universal null sets A and B

such that f(AxB) = {f(a,b): (a,b) ¢ AxB} is nonmeasurable in the
' 255



sense of Lebesgue.

Theorem 1. Let f:R" x RT4R". Suppose X,Y and N are open
balls in R" satisfying the following conditions:

(i) For each t ¢ N there is a unique function ht: X - Y such that
f(x,ht(x)) = t for all x ¢ X.

(ii) For each t ¢ N, ht is a homeomorphism of X into Y.

Then, assuming (F), there exists a pair of universal null sets A

and B such that f(AxB) is Lebesgue nonmeasurable.

Proof. Let D1 and D2 denote respectively the rational points
in X and Y; Let R and S denote respectively, the collections of
all open sets containing D1 and D2’ which are subsets of X agd Y
respectively. It is an easy exercise to show that R and S have
cardinality of the continuum. Let W, denote the least ordinal
number having cardinality of the continuum. Then the collections R
and S can be written as transfinite sequences: {Hr: T < uc} and

{s T < wc}. Also, the set N can be written in the form

;
N = {tr: T < uc}. _
We will now choose, using transfinite induction, two
transfinite sequences
{xr: r < wc} and {yr: r < wc}.
- We take xl,yl to be any two points such that x1 € Rl, y1 e S1 and
f(xl,yl) = tl' Such a pair exists, as X \R1 and Y \S1 are both

nowhere dense and ht is a homeomorphism of X onto ht (X), which is
1 1

a subset of Y.
Now, suppose that 7 is any ordinal number less than W, and

that xa-and g have been chosen for all ordinals o less than 7, in

such a way that:
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(1) X_ e N Ra and Yo € n Sa for all o,a < 7.

o alo ago
2 =
(2) f(xc,yo) to for all o,0 < r.
(3) Xy # Xg and Yo # Yo if 1 fa<cao <.
We now proceed to select an appropriate pair XY, To do
this consider the sets
Er = U (X \Ro) Uu u {xo} and
oglr olr
F = U (Y\NS)u U {y_}.
4 osT - o clr o
ET and Fr are unions of less than c nowhere dense sets. Therefore,

assuming (F), both are sets of the first category.

Therefore, as argued in the 7 = 1 case, since ht is a
T

homeomorphism of X onto ht (X), there exists
T

X, e X \Er’ such that htr(xT) =y, e Y \Fr’
Therefore, by transfinite induction, we obtain two complete

transfinite sequences

{xr: r < wc} and {yr: r < wc} sat1§fy1ng:
(1) x, e n Rr and y, n Sr for all r,7 < W
ogr 5%
(II) f(xr,yr) = tr for all r,7 < W,
(ITI) Xy # X and Y # Yo if 1 ¢ a<oX« w -

Set C = {gr: r < wc} and D = {yr:r < wc}. Then
f(CxD) > {f(xr,yr): r < wc} = {tr; r < uc} = N.

Suppose (Rn,up,y) is any complete measure space that
satisfies: N(a,r) e M“ for each 2 ¢ R" and each ¥ > 0 and

lim u(N(3,T)) = 0 for each a ¢ R". The set D, can be written in

-0+

257



the form D1 = {un: n =1,2,...}). Let e > 0 be given. For each n,

there exists an open ball Bn’ Bn < X, such that.un 3 Bn and

o

y(Bn) < e/Zn. Let G = U Bn. Then G ¢ R and u(G) < e¢. Therefore
n=1

G = Hr for some r,r < w_ - By (I), this implies that X, © G for

each a,7 ¢ a < w which in turn implies that
C\G C'{xa: a < 1},
which, by (F), is a set of measure zero.

¢ M(G) + +u(C \ G) < ¢ + 0. Hence C is a

Therefore y(C)
uﬁiversal nuil set. A similar argument shows that D is a universal
null set.

By fhe definitions of C and D and the hypotheses on f it
~immediately follows, using Lemma 1, that there exist sets A and B
such that A ¢ C, B « D and f(AxB) is nonmeasurable. A and B are
universal null sets since they are'subsets of C and D respectively.

Remark 1. Clearly the operation +, i.e. the function f
defined by the formula f(x,y) = x+y for every x, yeRn, satisfies
the conditions of Theorem 1 and therefore, assuming (F), there
exists a pair of universal null sets A and B in R® such that. A+B is
nonmeasurable. Clearly coordinate-wise,mulfiplication also works.

The purpose of our second theorem is to extend Kurepa’s
theorem without using (F). The following lemma, which extends a
result of Utz [6], will be used in the proof of Theorem 2.

Lemmﬁ 2. Suppose s is a real number and s # 0. Suppose
further that {ftlteM} is a collectidn of functions on R into R
satisfying:

(*) There exists a v, v > 0 and X, yeR such that ft(f) e N(y,v/2)
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for every teM and f;(x) ¢ (s-|s|/10, s+|s|/10) for every teM and
every x. e [X-v, X+v].

Then there exists a compact set C, C ¢ [X-v, xX+v], of measure zero
and a compact set D, D ¢ [y-v, y+v], of measure zero such that the
cardinality of (CxD) N (the graph of ft) is ¢ for each teM.

Proof. If n_, ng > 2, is a sufficiently large natural number,
then the cardinality of (CxD) Nn (the graph of ft) is ¢ for each
teM, where C is the "Cantor-like" subset of [x-v, X+v] formed by
taking out the middle nzh.open interyals at each étep of the
"Cantor-like" construction and D i$ the "Cantor-like" subset of
(y-v, y+v] formed by taking out the middle nzh open intervals at
each stage. We remark that C and D are compact sets of Lebesgue
measure zero. This fact is proved, using the "nested square
theorem"”, by showing that if n is sufficiently large and teM is
given, then there exists a Ftage n, in the construction of CxD such

that the graph of ft intersects the interiors of at least two, call

n

them C of the 4 1 squares in this stage of the

11° 12

construction. There exists a stage Dy Dy > ny such that ft

intersects the interiors of at least two, call them clll’ 0112’ of

the subsquares of C11 in this stage of the construction of CxD.
Similarly, there is a stage né > n, such that ft intersects the
interior of at least two, call them 0121, 0122, of the subsquares

of C in this stage of the construction. Continuing'in this way,

12
for each sequence {mi}?:l, where m, e {1,2}, we get a nested

sequence of squares, namely C , C , C , whose
my m,my m192m3,.

intersection yields a point in the set (CxD) n (the graph of ft)'
Since there are c such that sequences {mi}:zl, and each yields a
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different point, we obtain our result, i.e. the cardinality of

(CxD) N (the graph of ft) is ¢ for each teM.
Theorem 2. Suppose f = (fl,fz,...,fn): R® x R™ 4 R” satisfies

the following conditions.

(a) The 2n2 partial derivatives (n functions and 2n variables)

exist and are continuous in some neighbourhood of (xo,yo) e Rann.

(B) D1 ERER anl Dn+1f1 e Danl

(xo,yo)#o and : : {xo,yo)#o.

le ... D_f D f ... Dan

n nn 1“n+l"n n

Then there exist measurable sets A,B < Rn such that

m(A) = m(B) = 0 and f(AxB) is nonmeasurable.
Proof. f can be viewed as an nxl column matrix. The nxn
. af af af af af af af af
matrices — = |e—— ——— ., — and — = |e— —_— ., — are both
X [axl axz axn] 3y [BYI ayz Yh

invertible at (xo,yo) by the hypotheses of this theorem. By the
implicit function theorem, there is a continuously differentiable

function g(x,t), defined for x near X and t near f(xo,yo) such

that f(x,g(x,t)) t. By implicit differentiation, we have

-1
ag _ _[af af ag . . .
i [3?] [3;]. Therefore 3% 1S invertible at the point (xo,to),

= ; og _ dg 9dg g
where to f(xo,yo). Since 3x - 3% 3% 3w and

1 2 n
g = (gl,gz,...,gn) it follows that there exist i,j ¢ {(1,2,...,n}
. ag .
such that ——i(x st ) = s and s=#0.
IX. o’ o

i
By the implicit function theorem there exist X, Y and N, open

balls in Rn, containing XY, and to respectively, such that:
For each teN and xeX, g(x,t) is the unique element in Y
satisfying f(x,g(x,t)) = t.
Since g is continuously differentiable, there exists a
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positive real number v and a neighborhood M of to’ M € N such that:
ag . (x,t)

axi e (s-|s|/10,

gj(xo,t) e N(y,v/2) for every teM and

s+|s|/10) for each teM and each xeﬁi(xo,v), where y(eR) denotes the

g

Jj - _ -
ggz(xo,to) and Ni(xo,v) = {x e N(xo,v)l

jth component of Yo S

the kth component of x is equal to the kth component of X, for each

k different from i}, where W(xo,v) is the closed ball with center
X and radius v.

Therefore, by Lemma 2 there exist sets C and D such that:
C < ﬁi(xo,v), D < ﬁ(;,v) and C and D are compact sets,‘both having
one dimensional Lebesgue measure zero, and

(the graph of gtj) N (CxD) has cardinality ¢ for each teM,

where gtj(x) = gj(x,t) for each -x.

Furthermore, gtj is a 1 to 1 function for each teM.
Ni(xonv')
Therefore, if teM, there exist two transfinite sequences
t t , t
{cr}r < and {dr}r < such that: c e C and
c c
d: e RxRx ... x RxDxRx ...R (where we have n factors and D
appears in the jth place) for each 7 < w _; ct # ct,, dt # dt,, for
c T T T T
each r,7* < w_, 7 # 7' and f(ct,dt) = t for each 7 < w
c r’°r c

It now follows, by a simple argument involving transfinite

induction, that there exist two transfinite sequences {er}

7 { W
c
and {fr}r x> such that: e # e, and f_ # £, for each
r < ' < w {eT: r < wc} < C,
{fT: r < wc} c R xR g ... X R x DxR=x ... R and f(er“fr) = tt

for each 7 < W, where M = {tr: T <~wc}.
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By Lemma 1 it follows that there exist sets A and B, with
A < {er: r < wc} and B = {fr:'r < uc},’such that f(AxB) is
nonmeasurable. Furthermore A and B are both measurable since they
are subsets of sets of measure zero.

Remark 2. One of the referees provided the following
interesting application of Theorem 2. Let Mk be the set of all kxk
matrices with real entries and n=k2. If f(x,y) = xy, for x,y,xysMk
(i.e. Xy is the matrix multiplication of x and y), then there are
Lebesgue measurable sets A and B of measure zero for which f(AxB)
is nonmeasurable in the sense of Lebesgue.

Remark 3. The method of constructing sets C and D, in the
proof of Theorem 1 is modelled after a construction in [4], on page
74.

"Remark 4. Notice that the sets A and B constructed in the
proof of Theorem 2 are both nowhere dense in‘Rn, and hence both
have the Baire property and that f(AxB).does not have the Baire
property ((3], page 24). This shows that Theorem 2 on page‘257 in
(1], i.e. the Baire. set analogue of the Theorem of S. Kurepa,bcan
be exéended to functions f: R" x R"a R" satisfying the hypotheses
of Theorem 2 in this paper.

Remark 5. The remarks about the continuum hypothesis, -
Martin’s Axiom and (F) were brought to the authors attention by F.
Galvin.

Hemark 6. A. Abian and F. Galvin have pointed out that the
h=1 case of Kurepa’s Theorem goes back to Sierpiﬁski (see [5]).
Galvin has shown that the n=1 case of Kurepa’s result implies the

general case of Kurepa’s result.
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Remark 7. The author wishes to thank the referees for several
remarks that helped improve the exposition in this paper.

Remark 8. We conclude by noting that in the proof of Theorem
2 it is not necessary to show that there exist "Cantor-like" sets C
and D. Namely, since ﬁi(ko,v) has n-dimensional Lebesque measure
zero, it is sufficient to observe that
(the graph of gtj) N (Ni(xo,v)xD) clearly has cardinality c¢ for
each teM if D is a "Cantor-like" subset of ﬁ(;,v) formed by taking
out the middle nzh open intervals at each stage of its
construction, where g is sufficiently large. The remainder of the

proof of Theorem 2 goes through unchanged.
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