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 THE SINGULARITY OF EXTREMAL MEASURES

 0. Introduction.

 Let ' be Lebesgue measure on R. A Borei measure u on I * I

 is doubly-stochastic if y(A xl)» y(I x A) - X ( A) for each Borei

 set A c i. The collection of all doubly-stochastic measures forms a

 convex, weakly compact set whose extreme points have been much studied:

 [2], [3], [4], [5], C6]. It was shown by Lindenstrauas [5] that every

 extreme doubly-atochaatic measure is singular with respect to planar

 Lebesgue measure X2. It is our purpose to strengthen this result in

 a general context.

 For example, suppose that are lines through the origin in

 R2 and that v is a probability measure on R2. Then one can conaider

 the convex aet of probabilities on R2 whose projectiona onto Lļ,...,!^

 agree with thoae of v. Theorem 2.1 infra will aay that the extreme

 pointa of thia aet are aingular with reapect to Lebeague product meaaure,

 no matter what the choice of v! In the doubly-stochastic case,

 a ^ 2, Lļ and L* are the co-ordinatç axes, and v aay ûe taken

 '2 restricted to I x I.

 1 . Preliminary resulta

 A a-algebra A of aubaeta of X is countably generated (e.g.;
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 if there is a sequence Ax Aa ... of subsets of X such that A is

 the smallest o-algebra containing the sets in the sequence. An A -atom

 is a set A in A such that for any set A0 c A in A either A0 - A

 or A0 - 4>. The a-algebra A is atomic if X is a union of Anatoms.

 If A is e.g., then A is atomic. The notation 8(Rn) indicates the

 (e.g.) Borei a-algebra on Rn.

 1.1 Lemma: Let A and A9 be e.g. sub-o-algebras of 8(Rnj with

 the same atoms. Then A - A0.

 Indication: This is the so-called "strong Blackwell property" for

 Rn. See, for example, Proposition 6 on p. 21 of [1].

 Suppose that ^.....Aß are .sub-o-algebras of 8(Rn) and that u

 is a Borei probability measure on Rn. Define E(A l , . . . ,Am; y) to be

 the set of all Borei probabilities v on Rn such that v(A) - y(A)

 for each A in A, U...U Am. We assume that no Aļ is one of the

 trivial o-algebras {<fr,Rn} or 8(Rn). So E - E(A lt . . . ,Am;U) is a

 convex set of measures containing y.

 Given A Am we let F be the linear space of all functions

 of the form f x+* • •■¡•fm, where fl9»..,fn are bounded real functions

 on R° which are respectively A t , . . . ,Am-measurable. Then a Borei

 probability v belongs to E if and only if

 jf dv - f dy for all f € F.
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 The extreme points of E are characterized in

 1.2 Theorem (Douglas-Llndenstrauss) : A Borei probability v is an

 extreme point of E( A1 , . . . , v) if and only if F is dense in Ll(v).

 Indication: See Douglas C3 : P - 243]. A special case is given in

 Lindenstrauss [5: p. 379].

 We will prove that in the cases that occur naturally and geometrically,

 the extreme points of E( A1 , . . . , Aņ,; y) are singular with respect to n-

 dimensional Lebesgue measure An.

 A <r-algebra A of subsets of Rn is afflne-i nvar i ant if A 6 A

 implies aA + v € A f0p each non-zero scalar a € R and vector v € Rn.

 Let f : Rn - ► R® be Borei measurable. We say that f generates the

 sub-a-algebra Ac 8(Rn), where A - {f"l(B) : B € B(Rm)}.

 1 .3 Lemma: Let A te a e.g. sub-a-algebra of 8(Rn). The following

 are equivalent:

 1) A is generated by an orthogonal projection T : Rn- »Rn.

 2) A is generated by a linear transformation T : Rn- »R11.

 3) A is affine- invariant.

 Proof: 1 =^2: Immediate.

 2=^3: If T : Rn - ♦ Rn is linear, then for each scalar o ¿ 0

 and v € Rn, we have aT"l(B) ♦ v - T"l(aB + Tv). So T generates
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 an aff ine-invariant a-algebra.

 3=^1 : Let K Ç Rn be the A-atom containing the vector 0. For

 each a ¿ 0, the 3et aK is an A-atom containing 0, 30 that aK - K.

 Likewise, if x € K, then x + K is an A-atom containing x, so that

 x + K - K. So K is a linear subspace of Rn.

 Let T : Rn-*Rn be orthogonal projection onto the orthocompleraent

 L ■ K and let T generate the o-algebra A0 c B(Rn). Then A and A0

 are e.g. sub-o-algebras of 8(Rn) with the same atoms. By lemma 1.1,

 A, ■ A.

 Q.E.D.

 The following geometric construction will facilitate the use of

 the Lebesgue density lemma in Theorem 2.1.

 Let I A I be the cardinality of the set A.

 1 .M Lemma: Let L^...,!^ be non-trivial vector subspaces of Rn

 and let irļ : Rn - * Rn be orthogonal projection onto Lļ, i - 1,...,m.

 Then there is a subset S of Rn such that

 I in(s)| < |S|.
 i-1

 Proof: Let be unit vectors taken from the respective
 X ±

 orthocomplements Lt,...,Lm. Let S1 be a set of m + 1 points in

 Rn such that | ir x (S Ł ) ļ - 1. Let dx - diamiSj). Put
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 m

 Sa - U (Sx + 2kdjV2) .
 k-0

 Then S2 contains (m + 1)* pointa, ļ ir Ł (Sa ) | - (m + 1)|irx(Sl)| - (m + 1),

 and |ir2(S2) | - |ira(Sx ) | * 'S,' « m + 1.

 In general, we suppose that Sp (p < m) has been defined as a set
 p

 of (m+1 ) elements such that

 p-1
 J ir ^ ( Sp ) J £ ( ni+ 1) i * 1

 Let dp - diam(Sp) and put
 m

 Sp+i • U (Sp + 2kdpVp+x ) •
 k-0

 P+1
 Then Sp«n has (m+1 ) elements, and

 p-i
 |irļ(Sp+l)| á (m+1)(m+1) i - 1,...,p

 l*p+i(Sp+i>| ^ I Sp ļ - (m+1 )

 as desired. Finally, we take S - Sq and check

 5, 5 m-i m-i m
 I|irļ(S)| ¿ I (m ♦ 1 ) - m(m +1) < (m + 1) - ļs|.
 i-1 1-1

 Q.2.D.

 2. The main thoerem.

 Let Vn(r) be the volume of a ball of radius r in Rn. Then

 irn/2 rn

 Vn(r) r(1+n/2)
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 is homogeneous of order n in the variable r.

 2.1 Theorem: Let Ax,...fAffl non-trivial e.g. affine-invariant

 sub-a-algebras of B(Rn) and let y be a Borei probability measure on

 Rn. If v is an extreme point of E(AX

 singular (with respect to Lebesgue measure Xn).

 Proof : By lemma 1.3» the o-algebras A1(...,Am are generated by ortho-

 gonal projections *lt...,irm of Rn onto subspaces Lx,...,Lm. Let S be

 a finite subset of Rn as in lemma 1.4. For each s e S, let B(s)

 be a ball of radius r centered at s. We choose r small enough so

 that for each i - 1,...,m and any pair s,t in S, the projections

 irļ(B(s)) and ir¿(B( t) ) are either identical or disjoint. Select a

 large ball B of radius R containing all the sets B(s). Set k - |S|

 and put e - Vn(r)/[Vn(R)(k+1)].

 Using the Lebesgue decomposition of v into singular and absolutely

 continuous parts, we write dv^- dv + FdXn for some F i 0 in Ll(An).
 Suppose, for the sake of argument, that v is not singular. This means

 that for some positive <S, the set P - {x e Rn : F(x) > 6} has positive

 Xn-measure. We now appeal to the Lebesgue density theorem and choose a

 ball B0 such that An(P H B0) > (1 - e)Xn(B0).

 Let M : Rn Rn be a mapping which is central (the composition of

 a translation and a central homothety) and takes B onto B0. Let the

 imagé of S under M be S0 - {slt . . . ,3^} . If M(s) - Sļ, define

 Bo(s^) to be the Image of B(s) under M. Then we claim that for
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 i - 1 , . . . ,k,

 k

 Xn(P H B0 ( Sļ ) ) > Xn(B0 ( 3ļ ) )
 k+1

 Otherwise,

 Xn(P n B0 ) á XníBoXBoCSi)) + An(P n B ( 3ļ ) )

 S X*(B0) - Ân ( B o ( 3i ) ) + Xn(B0 (Sļ ) ) ^

 - An(B0 ) - An(B0(Sļ)) -
 k+1

 and

 Xn(P H B0 ) Xn(B0 (Sļ ) )

 Xn(B0 ) Xn( B o ) (k+1 )

 a contradiction.

 Mow one may write Bq(sļ) - 3ļ + C, where C is a ball in Rn

 centered at the origin, 1 - 1,...,k. Define P0 ç C by

 k

 P, - n C(P n B0 (sļ ) ) - Sļ].
 i-1

 We claim that Xn(P0) > 0. Otherwise, we have for j - 1,...,n

 Xn(B0 (sj ) ) - Xn( B 0 ( s j ) H P) + Xn(B0 ( Sj ) n Pc)

 k

 > Xn(B0(sj))- + Xn(B0(Sj ) nPc).
 so that

 Xn(B0(Sj ))
 Xn(B0(sj J ) n Pc) < J k+1
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 and

 Xn(B0 (Sj ) ) - Xn(C) - An(C'P0 )

 k

 - 'nl U C(P n BoCs^-s^onC]
 i-1

 k

 s I xnc (p n B,(s1))c.-n b0(s1)]
 i-1

 k

 - I xn(B0(ai) n Pc)
 i-1

 r 1
 < I r Xn(B0(ai))
 i-1 k+1

 k

 - Xn(B0 (Sj J ) ) J k+1 J

 a contradiction.

 For each i - 1,...,k, we define Aj - P0 + 3ļ and the linear

 functional lļ : Ll(v) H by

 ii(f) - fdAn.

 Ai

 Noting that Aļ P, we find
 i »

 |ti(f)| S- I f I FdAn á - ļfļdv ¿ - I f I dv,
 S S 6

 Ai Ai

 so that iļ is continuous. Define a linear transformation

 I : Ll(v) -+ Rk by setting I - (¿1 t . . . ,1^) .

 Let F be the subspace of Ll(v) comprising all functions of
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 the form fjoīrļ + ... + fmo1Tm» where are bounded Bor el-

 measurable real functions on Llt...,Lm. Note that if. irc(Sļ) « irc(sj),

 then

 » f

 iļ(foirc) ■ f <»ircdXn - f°ircdAn

 Ai P0+3i
 »

 f(irc(x) + irc(3ļ ) )dXn(x)

 Po

 f (irc(x) + irc(sj ))d-Xn(x) - £j(f<»irc).

 P«

 This fact allows a description of a set of spanning vectors for 1(F).

 For each c - 1,...,m and each p £ irc(S0), there is a k-vector

 v - v(c,p) whose co-ordinates are given by

 ^1 if irc(sļ) - p
 vi - j

 0 if irc(si) ¿ p.

 These vectors span £(F). By lemma 1.4, there are fewer than k such

 vectors, so that £(F) is a proper subspace of Rk.

 However, the range of £ is all of Rk, as may be seen by taking

 linear combinations of indicator functions for the sets A<. Mow,

 the Douglas-Lindenstrauss Theorem implies that F is dense in L'(v).

 But this means that Rk - £(F) ç £(F) • £(F), a contradiction.

 Q.E.D.
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 There seems to be no straightforward generalization of the

 theorem to the case m - «. For example, let L2 ... be an

 enumeration of all lines in R2 passing through the origin and

 having non-zero rational slope. Let wļ : R2 - * Lļ be the

 projection maps generating the a-algebras Aļ, i - 1, 2

 Then E - E(At, Aa,... ;y) is always a singleton set, even for

 absolutely continuous y. To see this, let r¿ be the slope

 of Lļ. Then whenever t2 - rļtx, we see that the Fourier-

 Stieltjes transform

 i Kx^j+xjtj)
 y(tlft2) - e du(xltxj)

 R2

 Kx^^xjritj
 e dy(Xļ ,x2)

 it^x^x^)
 e dy(xltxa)

 depends only on the projection of y on Lļ. Therefore, these

 projections determine y on a dense set. So E is a singleton set.
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