Real Analysis Exchange Vol. 12 (1986-87)

R. M. Shortt, Department of Mathematics, Wesleyan University, Middletown, CT 06457.

THE SINGULARITY OF EXTREMAL MEASURES

0. Introduction.

Let λ be Lebesgue measure on R. A Borel measure μ on I × I is <u>doubly-stochastic</u> if $\mu(A \times I) = \mu(I \times A) = \lambda(A)$ for each Borel set A \leq I. The collection of all doubly-stochastic measures forms a convex, weakly compact set whose extreme points have been much studied: [2], [3], [4], [5], [6]. It was shown by Lindenstrauss [5] that every extreme doubly-stochastic measure is singular with respect to planar Lebesgue measure λ^2 . It is our purpose to strengthen this result in a general context.

For example, suppose that L_1, \ldots, L_m are lines through the origin in \mathbb{R}^2 and that ν is a probability measure on \mathbb{R}^2 . Then one can consider the convex set of probabilities on \mathbb{R}^2 whose projections onto L_1, \ldots, L_m agree with those of ν . Theorem 2.1 <u>infra</u> will say that the extreme points of this set are singular with respect to Lebesgue product measure, no matter what the choice of ν ! In the doubly-stochastic case, $\mathbb{M} = 2$, L_1 and L_2 are the co-ordinate axes, and ν may be taken as λ^2 restricted to I \times I.

1. Preliminary results

A σ -algebra A of subsets of \underline{X} is countably generated (c.g.)

205

if there is a sequence $A_1 A_2 \ldots$ of subsets of X such that A is the smallest σ -algebra containing the sets in the sequence. An A-atom is a set A in A such that for any set $A_0 \subseteq A$ in A either $A_0 = A$ or $A_0 = \phi$. The σ -algebra A is <u>atomic</u> if X is a union of A-atoms. If A is c.g., then A is atomic. The notation $B(\mathbb{R}^n)$ indicates the (c.g.) Borel σ -algebra on \mathbb{R}^n .

<u>1.1 Lemma</u>: Let A and A_{σ} be c.g. sub- σ -algebras of $\mathcal{B}(\mathbb{R}^n)$ with the same atoms. Then $A = A_{\sigma}$.

<u>Indication</u>: This is the so-called "strong Blackwell property" for \mathbb{R}^n . See, for example, Proposition 6 on p. 21 of [1].

Suppose that A_1, \ldots, A_m are sub-g-algebras of $\mathcal{B}(\mathbb{R}^n)$ and that μ is a Borel probability measure on \mathbb{R}^n . Define $E(A_1, \ldots, A_m; \mu)$ to be the set of all Borel probabilities ν on \mathbb{R}^n such that $\nu(A) = \mu(A)$ for each A in $A_1 \cup \ldots \cup A_m$. We assume that no A_1 is one of the <u>trivial</u> g-algebras $\{\phi, \mathbb{R}^n\}$ or $\mathcal{B}(\mathbb{R}^n)$. So $E = E(A_1, \ldots, A_m; \mu)$ is a convex set of measures containing μ .

Given A_1, \ldots, A_m we let F be the linear space of all functions of the form $f_1 + \cdots + f_m$, where f_1, \ldots, f_m are bounded real functions on \mathbb{R}^m which are respectively A_1, \ldots, A_m -measurable. Then a Borel probability ν belongs to E if and only if

$$\int f \, dv = \int f \, d\mu \quad \text{for all} \quad f \in F.$$

The extreme points of E are characterized in

<u>1.2 Theorem (Douglas-Lindenstrauss)</u>: A Borel probability v is an extreme point of $E(A_1, \ldots, A_m; v)$ if and only if F is dense in $L^1(v)$.

Indication: See Douglas [3:p. 243]. A special case is given in Lindenstrauss [5:p. 379].

We will prove that in the cases that occur naturally and geometrically, the extreme points of $E(A_1, \ldots, A_m; \mu)$ are singular with respect to ndimensional Lebesgue measure λ^n .

A σ -algebra A of subsets of \mathbb{R}^n is <u>affine-invariant</u> if $A \in A$ implies $\alpha A + v \in A$ for each non-zero scalar $\alpha \in \mathbb{R}$ and vector $v \in \mathbb{R}^n$. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be Borel measurable. We say that f <u>generates</u> the sub- σ -algebra $A \subset \mathcal{B}(\mathbb{R}^n)$, where $A = \{f^{-1}(B) : B \in \mathcal{B}(\mathbb{R}^m)\}$.

<u>1.3 Lemma</u>: Let ^A be a c.g. sub- σ -algebra of $\mathcal{B}(\mathbb{R}^n)$. The following are equivalent:

1) A is generated by an orthogonal projection $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

2) A is generated by a linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

3) A is affine-invariant.

Proof: $1 \Longrightarrow 2$: Immediate.

<u>2⇒3</u>: If T : $\mathbb{R}^n \to \mathbb{R}^n$ is linear, then for each scalar $\alpha \neq 0$ and $v \in \mathbb{R}^n$, we have $\alpha T^{-1}(B) + v = T^{-1}(\alpha B + Tv)$. So T generates

207

an affine-invariant σ-algebra.

<u> $3 \Longrightarrow 1$ </u>: Let $K \subseteq \mathbb{R}^n$ be the A-atom containing the vector 0. For each $\alpha \neq 0$, the set αK is an A-atom containing 0, so that $\alpha K = K$. Likewise, if $x \in K$, then x + K is an A-atom containing x, so that x + K = K. So K is a linear subspace of \mathbb{R}^n .

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be orthogonal projection onto the orthocomplement $L = K^{\perp}$ and let T generate the σ -algebra $A_o \subseteq \mathcal{B}(\mathbb{R}^n)$. Then A and A_o are c.g. sub- σ -algebras of $\mathcal{B}(\mathbb{R}^n)$ with the same atoms. By lemma 1.1, $A_o = A_o$

Q.E.D.

The following geometric construction will facilitate the use of the Lebesgue density lemma in Theorem 2.1.

Let |A| be the cardinality of the set A.

<u>1.4 Lemma</u>: Let L_1, \ldots, L_m be non-trivial vector subspaces of \mathbb{R}^n and let $\pi_i : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be orthogonal projection onto L_i , $i = 1, \ldots, m$. Then there is a subset S of \mathbb{R}^n such that

$$\sum_{i=1}^{m} |\pi_{i}(S)| < |S|.$$

<u>Proof</u>: Let v_1, \ldots, v_m be unit vectors taken from the respective \bot \bot orthocomplements L_1, \ldots, L_m . Let S_1 be a set of m + 1 points in \mathbb{R}^n such that $|\pi_1(S_1)| = 1$. Let $d_1 = \operatorname{diam}(S_1)$. Put

$$S_2 = \bigcup_{k=0}^{m} (S_1 + 2kd_1v_2).$$

Then S_2 contains $(m + 1)^2$ points, $|\pi_1(S_2)| = (m + 1)|\pi_1(S_1)| = (m + 1)$, and $|\pi_2(S_2)| = |\pi_2(S_1)| \le |S_1| = m + 1$.

In general, we suppose that $S_p (p < m)$ has been defined as a set of $(m+1)^p$ elements such that

$$|\pi_{i}(S_{p})| \leq (m+1)^{p-1}$$
 $i = 1, ..., p.$

Let $d_p = diam(S_p)$ and put

$$S_{p+1} = \bigcup_{k=0}^{m} (S_p + 2kd_pv_{p+1}),$$

Then S_{p+1} has (m+1) elements, and

$$|\pi_{1}(S_{p+1})| \leq (m+1)(m+1)^{p-1}$$
 $i = 1,...,p$
 $|\pi_{p+1}(S_{p+1})| \leq |S_{p}| = (m+1)^{p}$

as desired. Finally, we take $S = S_m$ and check

$$\sum_{i=1}^{m} |\pi_{i}(S)| \leq \sum_{i=1}^{m} (m+1)^{m-1} = m(m+1)^{m-1} < (m+1)^{m} = |S|.$$

$$Q.E.D.$$

2. The main thoerem.

Let $V_n(r)$ be the volume of a ball of radius r in \mathbb{R}^n . Then

$$V_n(r) = \frac{\pi^{n/2} r^n}{\Gamma(1+n/2)}$$

is homogeneous of order n in the variable r.

<u>2.1 Theorem</u>: Let A_1, \ldots, A_m be non-trivial c.g. affine-invariant sub-g-algebras of $\mathcal{B}(\mathbb{R}^n)$ and let μ be a Borel probability measure on \mathbb{R}^n . If ν is an extreme point of $\mathbb{E}(A_1, \ldots, A_m; \mu)$, then ν is singular (with respect to Lebesgue measure λ^n).

<u>Proof</u>: By lemma 1.3, the σ -algebras A_1, \ldots, A_m are generated by orthogonal projections π_1, \ldots, π_m of \mathbb{R}^n onto subspaces L_1, \ldots, L_m . Let S be a finite subset of \mathbb{R}^n as in lemma 1.4. For each s ε S, let B(s) be a ball of radius r centered at s. We choose r small enough so that for each i = 1,...,m and any pair s,t in S, the projections $\pi_i(B(s))$ and $\pi_i(B(t))$ are either identical or disjoint. Select a large ball B of radius R containing all the sets B(s). Set k = |S|and put $\varepsilon = V_n(r)/[V_n(R)(k+1)]$.

Using the Lebesgue decomposition of v into singular and absolutely continuous parts, we write $dv = dv + Fd\lambda^n$ for some $F \ge 0$ in $L^1(\lambda^n)$. Suppose, for the sake of argument, that v is not singular. This means that for some positive δ , the set $P = \{x \in \mathbb{R}^n : F(x) > \delta\}$ has positive λ^n -measure. We now appeal to the Lebesgue density theorem and choose a ball B₀ such that $\lambda^n(P \cap B_0) > (1 - \varepsilon)\lambda^n(B_0)$.

Let $M : \mathbb{R}^n \to \mathbb{R}^n$ be a mapping which is central (the composition of a translation and a central homothety) and takes B onto B₀. Let the image of S under M be S₀ = {s₁,...,s_k}. If M(s) = s₁, define B₀(s₁) to be the image of B(s) under M. Then we claim that for i = 1,...,k,

$$\lambda^{n}(P \cap B_{o}(s_{1})) > \lambda^{n}(B_{o}(s_{1})) \frac{k}{k+1}$$
.

Otherwise,

$$\lambda^{n}(P \cap B_{o}) \leq \lambda^{n}(B_{o} \setminus B_{o}(s_{1})) + \lambda^{n}(P \cap B(s_{1}))$$

$$\leq \lambda^{n}(B_{o}) - \lambda^{n}(B_{o}(s_{1})) + \lambda^{n}(B_{o}(s_{1})) \frac{k}{k+1}$$

$$= \lambda^{n}(B_{o}) - \lambda^{n}(B_{o}(s_{1})) \frac{1}{k+1}$$

and

$$\frac{\lambda^{n}(P \cap B_{o})}{\lambda^{n}(B_{o})} \leq 1 - \frac{\lambda^{n}(B_{o}(s_{1}))}{\lambda^{n}(B_{o})(k+1)} = 1 - \varepsilon,$$

a contradiction.

Now one may write $B_o(s_i) = s_i + C$, where C is a ball in \mathbb{R}^n centered at the origin, $i = 1, \dots, k$. Define $P_o \subseteq C$ by

$$P_{o} = \bigcap [(P \cap B_{o}(s_{i})) - s_{i}].$$

i=1

We claim that $\lambda^n(P_o) > 0$. Otherwise, we have for j = 1, ..., n

$$\lambda^{n}(B_{o}(s_{j})) = \lambda^{n}(B_{o}(s_{j}) \cap P) + \lambda^{n}(B_{o}(s_{j}) \cap P^{c})$$

>
$$\lambda^{n}(B_{o}(s_{j})) \xrightarrow{k}{k+1} + \lambda^{n}(B_{o}(s_{j}) \cap P^{c}),$$

so that

$$\lambda^{n}(B_{o}(s_{j}) \cap P^{c}) < \frac{\lambda^{n}(B_{o}(s_{j}))}{k+1},$$

and

$$\begin{split} \lambda^{n}(B_{o}(s_{j})) &= \lambda^{n}(C) = \lambda^{n}(C \setminus P_{o}) \\ &= \lambda^{n} \begin{bmatrix} U & [(P \cap B_{o}(s_{1})) - s_{1}]^{C} \cap C] \\ &= 1 \\ \leq \sum_{i=1}^{k} \lambda^{n} [(P \cap B_{o}(s_{1}))^{C} \cap B_{o}(s_{1})] \\ &= \sum_{i=1}^{k} \lambda^{n}(B_{o}(s_{1}) \cap P^{C}) \\ < \sum_{i=1}^{k} \lambda^{n}(B_{o}(s_{1})) \frac{1}{k+1} \\ &= \lambda^{n}(B_{o}(s_{j})) \frac{k}{k+1} < \lambda^{n}(B_{o}(s_{j})), \end{split}$$

a contradiction.

For each i = 1, ..., k, we define $A_{1} = P_{o} + s_{1}$ and the linear functional $l_{1} : L^{1}(v) \rightarrow R$ by

$$\ell_{i}(f) = \int_{A_{i}} f d\lambda^{n}.$$

Noting that $A_i \subseteq P$, we find

$$|\mathfrak{L}_{1}(f)| \leq \frac{1}{\delta} \int_{A_{1}} |f| F d\lambda^{n} \leq \frac{1}{\delta} \int_{A_{1}} |f| d\nu \leq \frac{1}{\delta} \int_{A_{1}} |f| d\nu,$$

so that ℓ_1 is continuous. Define a linear transformation $\ell : L^1(v) \longrightarrow \mathbb{R}^k$ by setting $\ell = (\ell_1, \dots, \ell_k)$.

Let F be the subspace of $L^1(v)$ comprising all functions of

the form $f_{1} \circ \pi_1 + \ldots + f_m \circ \pi_m$, where f_1, \ldots, f_m are bounded Borelmeasurable real functions on L_1, \ldots, L_m . Note that if $\pi_C(s_1) = \pi_C(s_j)$, then

$$\begin{split} \boldsymbol{\ell}_{i}(\boldsymbol{f} \circ \boldsymbol{\pi}_{c}) &= \int_{A_{i}} \boldsymbol{f} \circ \boldsymbol{\pi}_{c} d\lambda^{n} = \int_{A_{i}} \boldsymbol{f} \circ \boldsymbol{\pi}_{c} d\lambda^{n} \\ &= \int_{A_{i}} \boldsymbol{f}(\boldsymbol{\pi}_{c}(\boldsymbol{x}) + \boldsymbol{\pi}_{c}(\boldsymbol{s}_{i})) d\lambda^{n}(\boldsymbol{x}) \\ &= \int_{P_{o}} \boldsymbol{f}(\boldsymbol{\pi}_{c}(\boldsymbol{x}) + \boldsymbol{\pi}_{c}(\boldsymbol{s}_{j})) d\lambda^{n}(\boldsymbol{x}) = \boldsymbol{\ell}_{j}(\boldsymbol{f} \circ \boldsymbol{\pi}_{c}). \\ &= \int_{P_{o}} \boldsymbol{f}(\boldsymbol{\pi}_{c}(\boldsymbol{x}) + \boldsymbol{\pi}_{c}(\boldsymbol{s}_{j})) d\lambda^{n}(\boldsymbol{x}) = \boldsymbol{\ell}_{j}(\boldsymbol{f} \circ \boldsymbol{\pi}_{c}). \end{split}$$

This fact allows a description of a set of spanning vectors for l(F). For each c = 1, ..., m and each $p \in \pi_C(S_0)$, there is a k-vector v = v(c,p) whose co-ordinates are given by

$$\mathbf{v}_{\mathbf{i}} = \begin{cases} 1 & \text{if } \pi_{\mathbf{C}}(\mathbf{s}_{\mathbf{i}}) = p \\ 0 & \text{if } \pi_{\mathbf{C}}(\mathbf{s}_{\mathbf{i}}) \neq p. \end{cases}$$

These vectors span l(F). By lemma 1.4, there are fewer than k such vectors, so that l(F) is a proper subspace of \mathbf{R}^{k} .

However, the range of ℓ is all of \mathbb{R}^k , as may be seen by taking linear combinations of indicator functions for the sets A_1 . Now, the Douglas-Lindenstrauss Theorem implies that F is dense in $L^1(\mathfrak{V})$. But this means that $\mathbb{R}^k = \ell(\overline{F}) \subseteq \overline{\ell(F)} = \ell(F)$, a contradiction.

Q.E.D.

There seems to be no straightforward generalization of the theorem to the case m = -. For example, let $L_1 L_2 \ldots$ be an enumeration of all lines in \mathbb{R}^2 passing through the origin and having non-zero rational slope. Let $\pi_1 : \mathbb{R}^2 \to L_1$ be the projection maps generating the σ -algebras A_1 , $i = 1, 2, \ldots$. Then $E = E(A_1, A_2, \ldots; \mu)$ is always a singleton set, even for absolutely continuous μ . To see this, let r_1 be the slope of L_1 . Then whenever $t_2 = r_1 t_1$, we see that the Fourier-Stieltjes transform

$$\hat{\mu}(t_{1}, t_{2}) = \begin{cases} i(x_{1}t_{1}+x_{2}t_{2}) \\ e & d\mu(x_{1}, x_{2}) \end{cases}$$
$$R^{2}$$
$$= \int e^{i(x_{1}t_{1}+x_{2}r_{1}t_{1})} \\ e & d\mu(x_{1}, x_{2}) \end{cases}$$
$$= \int e^{it_{1}(x_{1}+x_{2}r_{1})} \\ e^{-it_{1}(x_{1}+x_{2}r_{1})} \\ e^{-it_{1}(x_{1}+x_{2}r_{1})}$$

depends only on the projection of $\,\mu\,$ on $\,L_1^{}\,.\,$ Therefore, these projections determine $\,\hat{\mu}\,$ on a dense set. So $\,E\,$ is a singleton set.

3. <u>References</u>

[1] Bhaskara Rao, K. P. S. and Rao, B. V. Borel spaces. <u>Dissertationes</u> <u>Mathematicae</u> <u>CXC</u> (1981)

- [2] Brown, J. R. and Shiflett, R. C. On extreme double stochastic measures. <u>Michigan Math. Journal</u> <u>17</u> (1970) 249-254
- [3] Douglas, R. G. On extremal measures and subspace density. Michigan Math. J. <u>11</u> (1964) 243-246
- [4] Doublas, R. G. On extremal measures and subspace density II. Proc. AMS 17 (1966) 1363-1365
- [5] Lindenstrauss, J. A remark on doubly-stochastic measures. Amer. Math. Monthly 72 (1965) 379-382
- [6] Losert, V. Counter-examples to some conjectures about doubly stochastic measures. <u>Pacific J. of Math. 99</u> (1982) 387-397

Received November 15, 1985