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 A General Approach Leading To Typical Results

 Introduction. Notations. In this paper, we show that if <ř is a

 closed subfamily of. the bo.unded Oarboux Bai re 1 functions, .and

 if <ř is closed with respect to the addition of a continuous,

 piecewise 1 i near function, then many of the properties known to

 be typical in bounded Darboux Bai re 1 are also typical in

 We shall see, in Lemma A2, that the subfamilies of bounded

 Darboux Baire 1 functions satisfying the above conditions

 include the families of continuous functions, bounded Darboux

 upper sem i -con t i nuous functions, bounded Darboux lower semi-

 continuous functions, bounded derivatives, and the bounded

 Zahorski classes. These families will be denoted by 5, būusc,

 bfllsc, bA, and büff. ( i = 1 , 2 , . . , 5) , respectively. Note that

 bū?ļ=b05ļ ([10]), we will use either notation for this class.
 Various properties have been shown to be typical in some of

 these families, see [3], [4], [5], [6], [7], [8], and [9].

 Throughout, we assume that all functions are defined on

 the closed unit interval [0,l], which is denoted by I. Each of

 the above mentioned families is a Banach space with norm

 ||f||=sup|f|. For any function f, Gr(f) and C(f) denote,

 respectively, the graph of f and the continuity points of f'„

 For any set A, f ļ A denotes the restriction of f to A.

 The closure and interior of A are denoted by clA and IntA,
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 respectively . If A is a nonempty subset of the plane then,

 domA denotes {x:(x,y)6A}. Finally, R will denote the real

 numbers.

 A subfamily i of bJJS^ will be called an L- fam i 1 y , if it is

 closed in bOS^, and whenever f is in $ and pisa real -valued,
 continuous, piecewise linear function defined on I, then f+p is

 in <ř.

 In the following, $ will denote an arbitrary L-family

 unless we explicitly state otherwise.

 A. Preliminary Results-. In this section we prove Lemma A2

 which was mentioned in the introduction. First, we state Lemma

 Al which is needed in its proof.

 Lemma Al. I_f f6bZ?S^ and g€£, then f+gĒbūSļ.
 Proo f . [2] Theorem 3.2.

 Lemma A2. Each of the families £, bZ?usc, bZ?1sc, bA, and bZP.

 ( i =1,2,.., 5) is an L- fami 1 y.

 Proof . Each of the families above is closed in bZ?S^ . (See [2]
 and [9].) Let p be a real-valued, continuous, piecewise linear

 function defined on I. By Lemma AI, <ř+p C bZ?S^ for any family

 $ appearing in the statement of this lemma. Moreover, it is

 clear that $-fp C $ whenever $ is one of 5, böusc, bölsc, or

 bÁ. Thus, we only need to show that p+büP. C bW. . Let

 i e{ 1 , 2, . . . , 5} and f6b HI. .
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 For any real number a and r rational , set

 A^={x: f (x) + p(x) >a} , B^={x: f(x)>ot-r}, and C^ = {x: p(x)>r}.

 Since fEb/f. and p6£, B^6M. [ 1 0 ] » and is open. Hence,
 B DC is in M,, Since A =UÍB D C : r is rational}, it
 r r i oc r r

 follows that A^6M . . Hence, f + p6b#. . This completes the proof.

 B. Typical Properties in L-families: We shall now discuss the

 typical behavior of functions in an L-family. In particular,

 among other results, we show that a typical function in an L-

 family has every extended real number as a derived number at

 every point. To carry out this discussion, some notation is

 necessary .

 Let s and t be real numbers with t>0. Let k be a natural

 number greater than 2, and let (xq> Vq) be anY point in the
 plane.

 The set K+ ( Xg , y^ ; s , t ) (resp. K (xg>yg>s,t)) denotes all

 points (x,y) in the plane such that xg<x<xg+t (resp. xg-t<x<xg)

 and (y-y0) /(x-Xg) >s, and the set K(xg,ygjs,t) denotes

 K+(xg,y0;s,t) U K~ ( xQ , yQ ; s , t ) .

 If f is a function defined on I, the set *+(f;s,t) denotes

 all points X in I such that Gr(f) D K+ (x , f (x) ; s , t ) =0 , and

 £*(f;s,t) denotes Z+(f;s,t) D [l/k,1-1/k]. The sets Z (f;s,t),

 Z(f;s,t), *k(f;s,t) and *k(f;s,t) are defined in the obvious
 manner .

 If $ is a subfamily of bZ?J5^ , A(s,t,k) denotes the class of

 functions f in $ such that *k(f;s,t) is not empty.
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 Finally, if X is one of the symbols in {K+, K , K, X* ,

 X , X} ue denote X(*;k,1/k) by X(*;k), If X is one of the

 symbols in the set { X *, X^ } we denote X(f;k,1/k) by X(f),
 and we denote A(k,l/k,k) by

 To begin with, we prove

 Lemma B 1 . I_f $ is' c 1 o sed i n bZ?8 , . then for all natural

 numbers k>2, A^ is closed in

 Proof . Fix k>2. Let {fn}"_^ be a sequence of functions in A

 that converges to a function f€$. We must show that fEA^.
 First, since {f 1 }™ , C A. , X. (f ) *0 for all n. Let the 1 nJ n = 1 , k , kv n' è

 sequence {x^}"_.| be such that. x^E;?^ ( f ) for every n* Clearly,

 the sequence { (*n> f n(xn) ) } ^ 's bounded. Hence, it has a limit

 point (x,y). We shall show that y=f(x) and xE*k(f),

 Suppose that y<f(x). Since fEOS^ , there exists a point z
 such that x<z<x+t and (z , f (z) ) EK* (x , y ; k ) . Then, since f -* f

 and x x, .it is clear that there exi sts'an N>1 such that
 n

 |x-x^|<t and the point (z,f^(z)) lies above the line of slope k
 which contains the point (XļVļ,f^(x^));'i.e,, x^E^^(f^), which is
 a con trad i c t i on . Hence, y>f(x).

 Similarly, y<f(x), Hence, y=f(x). It is also clear, from

 the above argument, that xE£^(f). Therefore, fEA^.

 In the next lemma and for the remainder of this paper, S[x,y;5]

 denotes the open square with center (x,y) and side length S,

 and whose sides are parallel to the coord i na te axes .
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 Lemma B2. Let f be i n Let 5 and s be positive real

 numbers w i th 5<s/-4. Let x j_n (0,l) be such that

 Gr(f) H S [ x , f ( x ) -f s /2 ; 5 ] i s emp ty .

 Then there exists a and b j_n I and a f une t i on u j_n $ such

 t h a t

 (1) a<b< x and { (a , f (a ) ) , ( b , f ( b ) ) } C S[x,f(x);S],

 (2) u<f on (a,b) and u>f oj2 (b,x),

 (3) {x: f(x)*u(x)} C ( "a , b ) U (b,x),

 (4) Gr (u) n S (x, f (x)*e/2; 5] *0,

 (5) Gr(u) D S [ x , f (x ) - e /2 ; S ] *0 , and

 (6) I I u- f I I <s .

 Proo f . Since f£bZ?S^, it is clear that we can find points a, b,

 Xj, x 2 in domS [x, f (x) ; 5] such that a<x^<b<x^<x and the points

 (a , f (a) ) , (xj.fixj)), (b,f(b)), and (x2,f(x2)) are all in
 S[x,f(x);S]. Define

 0 if x6(a , b) U (b , x) ,

 f (x) - f (x j ) - s /2 if x =

 " f (x)-f (x2)f£/2 if x = x2,
 linear on (a.x^, (x^b), (b,x2) and (x2,x).

 Let u=f+p, Since $ is an L-family, Clearly, u satisfies

 (l), (2), and (3), Moreover, since u (x ļ ) = f (x) - s /2 and

 u ( x^ ) = f ( x ) + s /2 , u satisfies (*ł) and (5), Finally, since

 x ļ , x^EdornS [ x , f ( x ) ; S ] and 5<s/4, we have ļ f ( x ) - f ( x . ) ļ < s /4 for

 i =1,2, Hence, ļ j u- f | | < e ♦ This completes the proof,
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 Theorem BI . The class of functions f6# hav i nq both ® and -•

 as derived numbers at each point x j_n_ (0,1) is resi dua 1 i n <ř.

 Proof. Let A (rasp, A') consist of all functions fE$ for

 which there exists x in (0,1) such that ■ (resp. -•) is not a

 derived number from either side at x. We need to show that

 AUA' i s an of first category in $. For this, it is enough

 to show that A i s an F ^ of first category. Clearly, ^ =

 Hence, we only need to show that A^ is closed and nowhere dense
 for every k.

 Fix k. By Lemma B1, A^ is closed in $. Thus, it suffices
 to show that A. is also nowhere dense. To do this, we take f6$

 k

 and s>0, and we find a function g€$ such that | | f.-g| |<s and

 Zk(g)=0.
 First, we prove that there exists a finite set

 F = {y. » . . . ,y } such that, if x€Z. ( f) , there exists a y.6F and
 in K '

 positive numbers s(y.) and S( y.) such that 6 (y . ) < s (y . ) /4 - and

 s[y. » f(y. )+s(y5 )/2;5(y. )] C K* (z , f (z) ; k) for all points z in

 (x-sCyj ) > x+S(y. ) ) n

 To do this, let x6Z (f). As remarked in [6], *k(f) ' s

 closed and f|*k(f) is continuous. Since fEZ?»^ there exists a
 point y>x and positive numbers s(y) and S(y) such that

 $(y)<«(y)/4 and S[y, f(y) + s(y)/2;S(y)j C K* (z, f (z) ;k) for all z

 in (x-S(y) , x+5(y) ) n *k(0* Let U(x) =(x-S(y) , x-ê(y) ) . Then,

 the collection {u(x): x6*k(f)} is an open cover of the compact

 set Zk(f). Hence, there exist U (x ļ ) , . . . , U (x^) which cover

 *k(f). Clearly, the set F={ y ļ , y2 , . . , yn} is the desired set.
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 Let S j = ( 1 /2) m i n{ ļ s- 1 1 : s* t and s , t6 { y ļ , . . . , y^ } } ,

 = ( ^ /2) mi n{S(y ^ ),..., S(yn) } , and & = ( 1 /2 ) m i n { 1 /k , S ^ } • Then,

 domS [ y . , f (y . ) ; S] D domS [ y ^ , f (y ^ ) ; S] =0 if i *j .

 For each i E{ 1 , 2, . . . , n} , let u. be a function in <ř

 satisfying (1) through (6) of Lemma B2 with x = y., e=s(y.), and

 5 as defined above. Define

 u. (x) i f y. - 5< x< y . +S,

 g(x) =
 _f(x) otherwise.

 Clearly, gE$ and ļļf-gļļ<s. It remains to show that *k(g)=0-
 Let xE [ 1 /k , 1 - 1 /k ] , By (^) and (5) of Lemma 62,

 xE[l/k,1-l/k]'Z (g) for all xeZR(f) U {x: f(x)*g(x)}. Thus, we
 may assume that g(x)=f(x) and xE*k(f).

 By the definition of Z ( f ) , x€Z^(f) implies that there
 exists a point z in (0,1) such that (z, f (z) )EK(x, f (x) ; k) . If

 g(z)=f(z), then xE[ 1 /k, 1 - 1 /k] 'Z^(g) and we are done. Hence, we
 may assume that g(z)*f(z). Then there exists an i>1 such that

 g(z)=u.(z). By Lemma B2, there exist points a and.b such that

 a<b<x, and either a<z<b and u.(z)<f(z) or b<z<x and u.(z)>f(z).

 Moreover, either ( z , f (z) ) EK* (x , f ( x ) ; k ) or (z,f(z))EK (x,f(x);k).

 Assume that (z , f (z) ) EK + (x , f (x ) ; k ) . Then, if b<z<x,

 g(z) =u. (z) >f (z) . Hence, (z, g(z) )EK+ (x, f (x) ; k) and we are

 done. Thus, we may assume that a<z<b. By (4) of Lemma B2,

 there exists z' in the interval (b,x) such that u.(z')>f(z).

 Then, (z ' , g (z ' ) ) EK + (x , f ( x) ; k ) and xE[ 1 /k, 1 - 1 /k] (g) .

 Similarly, (z,f(z))EK (x,f("x);k) implies that

 186



 x€ [ 1 /k , 1 - 1 /k] (g) . Therefore, £^(g)=0. This completes the
 proof.

 Theorem B 2 . The class E of functions f J_n $ hav i nq bo th »

 and -® as derived numbers at every point x j_n. I is res i dua 1 in

 Proo f . . Let E .J be the class of Theorem B1 which is residual in

 <ř. The class E^ of functions fS$ having both « and -® as
 derived numbers at 0 and 1 are residual in so it follows

 that E= E.| D E 2 is residual in completing the proof.

 To prove Theorems B3 and B4 we need

 Lemma B3. Let <ř be an L- f am i 1 y . Le t f be i n $. Let 5>0, and

 (x,y)€(0, 1 )XR be such .that |y-f(x)|>2S,

 I f y-f(x)>25, then there exists a poi nt a, with a<x and

 (a » f (a) ) ES [ x , f (x ) ; $] , and a f une t i on u€$ such that

 (1) f ( t ) - i n f { f ( t ) : a<t<x} < 5/2,

 ( 2 ) u > f OJ2 ( a , x ) and u = f on I ' ( a , x ) ,

 (3) Gr(u) H S [ x , y ; 5 ] *0 , and

 (4) I I u- f ļ I < I y-f (x) 1*5.

 I f f(x)-y>26, then there exists a po i n t a j_n

 domS [x, f (x) ; 5] , w i th a<x and a function vE$ sati sfy i nq (l)

 through (^) wi th u repi ac i nq v, "suo" repi aci nq "Inf" j_ņ (1)>

 and ">" repi ac i nq "<"j_ņ (2).
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 The proof of this lemma is similar to that of Lemma B2 and

 will be omitted. In the next lemma, we use the following

 nota t i on *

 Let n be a fixed positive integer and let (xq»Vq) be anY
 point in the plane, we define

 y - y

 = {(*•*)' ° < *"V i ' ä"d « < < n )•

 y - y

 R nx (x<-»»yr.) = { 1 (x, v y) J/ : 0 < X- X < -, and - - < nx 0 }0/ 1 v J/ 0 -, n n x - Xq '

 y - y

 K nx (xn,yn) J0/ = {(x,y): LX 3 ' 0 < 1 |x-x-| O' < -, and nx 0 J0/ LX 3 ' 1 O' -, n x ~ x0 n
 A real-valued function f is said to have property <n> at a

 po i nt (xqjYq) 'f Xg6domf and Gr(f) D ^(x^y^)*®. We say f has
 property <n> on a set E if it has property <n> at every point

 of E.

 Lemma B4. Assume f£ł, s>0, and k and n are positive integers

 wi th k^2. Then there exists a function g£$ and a number 5>0

 such that

 (1) ļ I f - g ļ J < s , and g has property <n> on Gr(g|[l/k,1-1/k]),

 (2) j_f h€<ř and ļ ļ g - h ļ |<6, then h has property <n>

 on Gr (h ļ [ 1 /k, 1 - 1 /k] ) .

 In particular, the class of functions f 6$ having property <n>

 on Gr(f| [ 1 /k , 1 - 1 /k ] ) i s resi dual i n

 Proo f . Let A=clfļ[l/k,T-l/k]. Since f€Z?B^ , for each z6A we
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 can find z'=(x',y') in (0,l)XR 0 [R*(z) U r^z)1 such that
 (a) |y'-f(x')|<s/2.

 Then, it is clear that, we can find <5(z), with 0<S(z)<l/n and

 (b) w6S[z;S(z)] implies S[z';S(z)] C R*(w) U R~(w)>

 (c) w6S[z';S(z)] implies S[z;S(z)] C K (w).

 The collection { S [ z ; 5 (z ) /2 ] : z6A} is an open cover of the

 compact set A, so there is a finite subco 1 1 ec t i on

 S [ z 1 ; 6 (z ļ ) /2 ] , S [ ; 5 (z2^ ^ l ' * * ' ' ^ f Zm ' ^ ( zm ) ^ I which covers A.

 Then, clearly, we can redefine z', z',..., z' to all have
 i 2 m

 distinct first coordinates and still satisfy (a) through (c)

 above .

 Let S j = ( 1 /4 ) m i n { e , | y ļ - f ( x ļ ) | , 1 /n , 5 ( z . ) ( 1 < i < m ) } ,

 S2 = ( 1 /4)rni n{ ļ s- 1 1 : s^t, s , t6{ x ļ , , . . . , x^ , x j , . . . , x^} } , and

 S = m i n{ 5 ļ . • Clearly, domS[zļ;5] D domS[Zj;S]=0 if i *j .
 Let M ^ = { i : 1<i<m, yļ<f(xļ)} and M_ = { i : 1<i<m, y|>f(x|)}.

 For each i6M^ (resp. iGf^) let u. (resp. v.) be the function of
 Lemma B3 with x = xļ, y=y|, and 5 as defined above, and define

 u.(x) if x ? - <S< x<x +5 , iEMj,

 g(x) = v. (x) i f x|-6<x<xļ+5, iSM^,

 f(x) otherwise.

 Clearly, g€$, and by (3) of Lemma B3, | ļ f-g | ļ < s /2+2S< s .

 We now prove (l) and (2) of this Lemma. For this, we show

 that if h6$ satisfies ||g~h||<S, then h has property <n> on

 Gr (h ļ [ 1 /k, 1 - 1 /k] ) .

 First, since Gr(g) fl S[z|;5]*0 when l<i<m, and since
 189



 2 S < 5 ( z . ) , we have Gr(h) H S [ z ; ô ( z . ) ] * 0 when 1<i<m. Hence, by

 (b) and (c) above, h has property <n> on the set

 T = Gr (h) n .y™ { S ( z . ; 6 ( z . )] U S [ z ļ ; S ( z . ) ] } .

 Let (x , h{x) )6Gr (h | [ 1 /k , 1 - 1 /k] ) 'T . Then, there exists an i

 such that g(x) = u. (x) or g(x)=v.(x). If not, then g(x)=f(x),

 and since | | g- h | | < S , |f(x)-h(x)|<5, forcing ( x , h ( x ) ) to be in

 some S[z.;5(z.)] contradicting the choice of (x,h(x)).

 First, assume th*at g(x)=u.(x), and let

 (y»h(y))6S[z| ;5(z. )] . By (3) of Lemma B3, since

 ( x , h (x ) ) 0S [ z ļ ; 5 (z . ) ] , it follows that h(y)>h(x). Using Lemma
 B3 and the fact that xiT, we can find a point a in

 domS [z. , S(z. ) ] such that a<x<x. and exactly one of the

 following is true:

 (a) h(x) > max{ h ( a ) , h (x . ) } ;

 ( j8 ) h(x) < mi n{h(a) ,h(x. )} .

 If (a) is true, then, since h(y)>h(x) amd ^ 'S Oarboux, h

 crosses the horizontal line y=h(x) in at least two distinct

 points, one between a and y and the other between y and x. .

 Hence, Gr(h) fl Kn(x, h(x) ) *0, and h has property <n> at
 (x,h(x)). If (/8) is true, we use (l) of Lemma 83 and the fact

 that. h is Oarboux to conclude that Gr(h) fl K^(x, h(x) ) *0.
 A similar argument holds if g(x)=v.(x). Therefore h has

 property <n> on Gr (h ļ [ 1 /k , 1 - 1 /k ] ) . This completes the proof.

 Th-eorem B3. The class $ of functions f£$ having zero as a

 derived number at each point x j_n I is resi dua 1 i n i.
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 Proof . For integers r>>1 and k>2, let E(n,k) be the class of

 functions f6$ having property <n> on Gr ( f | [ 1 /k , 1 - 1 /k ] ) . By the

 previous lemma, each E(n,k) is residual in <ř.

 Clearly, the class E of functions f€4 having zero as a

 derived number at the points 0 and 1 is residual in Since

 ,ř = ErinQ™|4_n™E(n, k) , it follows that í is also residual in

 As a corollary to Theorem B3 we have

 Theorem B4 . The class of functions f j_n <ř hav i nq every

 extended real number as a derived number at every point x j_n I

 is resi dua 1 i n i.

 Proof . Let $ be the class of Theorem B3. For each real

 number r, let be the function defined by L^(x)=rx for all

 points x in I. Put E^ = {f + l_r: f€$} . Each E^ is residual in

 This follows from the easily proven fact that N+L^ ={ f+L^ : f6N}
 is nowhere dense in <ř, if N is nowhere dense in Clearly,

 the family of functions 0 {E^: r is rational} is the desired
 f ami 1 y .

 De f i n i t i on Bl. A real-valued function f defined on I is said

 to be nowhere monotonie on I if it is not monoton i cal 1 y

 increasing or decreasing on any subinterval J of I.

 Theorem B5. The class of functions f i n i such that f(x) + rx

 is nowhere monotonie for every real number r i s res i dua 1 i n
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 Prop f . This class is a superset of the class, ł, in Theorem

 B4. Let f6$. Then f + L has all real numbers as derived
 r

 numbers at every point x in I.

 Suppose that f + l- 's monotonie on some interval J. Say it

 is increasing on J, Then f has no negative derived numbers on

 J, a contradi cti on, proving Theorem B5.

 We close this section with a di scussi on of the bilateral

 behavior of derived numbers of a function f in some residual

 subset of an L-family <ř. For <ř C bOS , we denote by $ the
 I oo

 class of functions fE$ having « and -« as derived numbers at

 each point x6I. We begin with

 Lemma 85. For any positive integer k greater than 2, the

 class F, of functions fG# such that £+(f;k) H C(f) is closed
 «-MM«».««»»«««««»«»-»». gg

 and nowhere dense in C(f) is residual in ł ,
 mm-mmm-mmmmmm-mmmmmmmmm, mmm- ^mmmmm^mm^m^mmmmmmm^mmmmmmmm^mmmm^^-mm gg

 Proof. Let E ( f ; k ) =*" ( f ; k ) D C(f). First, we show that E(f;k)

 is closed in C(f) whenever fE# .
 OB

 Let xEC ( f ) 'E ( f ; k ) . Then K+(x,f(x);k) contains a point

 (t,f(t)). Clearly, there exists a 5>0 such that

 (u , v ) ES [ x , f (x) ; 6] implies ( t , f ( t ) ) EK + (u , v ; k ) . Since f is

 continuous at x, we can find an open interval J containing x

 such that f(j) C S[x,f(x);6]. Since J fl C(f) C C(f)'E(f;k), it

 follows that E(f;k) is closed in C(f).

 Now, for an interval I with rational endpoints, define

 A ( I ; k ) = { f E$^ : I D C(f) C E(f;k)}. Since each E(f;k) is closed
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 in C ( f ) , it follows that F =<ř 'UTA(l;k), where the union is K OB 1

 taken over all intervals I with rational endpoints. To

 complete the proof , it suffices to show that each A(l;k) is

 closed and nowhere dense i n $ .
 00

 Let us show that A(l;k) is closed in $ . To this end, let
 00

 {f }n_ļ be a sequence of functions in A(l;k) converging to a
 function fE$ . We must show that fEA(l;k).

 00

 Suppose that fS$ 'A(l;k), Then, there exists a point
 00

 xE[l PI C(f)]'E(f;k) such that Gr(f) fl K + (x , f ( x ) ; k ) *0 . Let

 ( t , f ( t) )EK + (x , f (x) ; k) . Then there exists a number <S>0 such

 that (x-5,x+S) C I, and if (u , v ) ES [ x , f ( x ) ; S] then

 S[t,f(t);S] C K* (u, v; k) . S ince f -» f as n -» », there exists

 an N>1 such that ( t , f ^ ( t ) ) ES [ t , f ( t ) ; 5 ] . Moreover, since

 n"c(f v ) is residual in I, there exists 3 yE U?C(f v ) such that n = 1 v n' 3 n = 1 v n'

 (y > f iy|(y ) )£S [ x , f (x) ; 5] . But this implies that f^€A(l;k), which

 is a contradiction. Therefore A(l;k) is closed in

 Now ue show that if fE$ and s>0, then there exists a
 0»

 function uE$ 'A(l;k) such that ļ I u- f ! ļ < s - That is, A(ljk) is
 QB

 nowhere dense in $ . Obviously, we may assume that

 f€ł 'A(l ;k) .

 Let tEI H C(f). Then there exists a number r', with

 0<ri< 1 /k and (t,t + rļ) C I, and a point z in (t,t + rļ) such that

 (z, f (z)-f s /2 JEK* ( t, f (t) ; k) .

 Choose 5->0 such that (z-6,z+ô) C (t,t + r>) and 5<s/4. Since

 $ i s an L-family, there exists a function uE$ satisfying the
 00 «

 conclusions of Lemma B3, with x=z and y=f(z)+s/2. Moreover,
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 since f(t)=u(t) and u and f have the same continuity points, we

 have that t'€ [ I H C (u ) ] 'E ( f ; k ) . Hence uE'ř 'A(l;k) and by (3) bf
 OB

 Lemma B3 > 1 1 u -f||Ee. This completes the proof.

 Theorem 86. There exists a residual subset 'i o_f i such that

 for every f 6 'ř there exists a residual subset E ( f ) of_ I such

 that every extended real number is a bilateral derived number of

 f at each xEE(f).

 Proof. For each f€$ , let E (f) (resp. E (f)) denote the set
 - "mmmm mmm OD + ™

 of points xEC(f) such that -«»isa derived number from the

 right (resp. left) at x, but that <■ is not a derived number

 from the right (resp. left) at x. We will show that

 E+(f) U E_(f) is of first category for every function in some
 residual subset of i .

 0»

 For each k>2, let F. be the residual subset of $ obtained
 K OD

 from Lemma B5. Let F = q"f . Clearly, F is residual in $ .
 K = O K ao

 Moreover, if fEF, then E + ( f ) =^U™E ( f ; k ) which is of first

 category in C(f), and hence in I.

 Similarly, there exists a residual subset F' of $ such
 OD

 that for every fEF' the set E_ ( f ) is of first category in I.

 If we put $=F H F', then it follows that i is residual in $ .
 OD

 By Theorem BI, $ is residual in 4. It follows that i is
 OD

 residual in 4. Clearly, <ř is the desired set and the proof is

 co.mpl e te .

 194



 Two questions arise in connection with Theorem B6.

 Que s t i on Bl, Given an L-family >ř, does there exist a residual

 subset i of $ such that i f fE'i, then every real number i s a

 bilateral derived number of f at every point x in I

 Quest i on B2- Given an L-family <ř, does there exist a residual

 subset 'ř of $ and a residual subset E of I such that if fE'i,

 then every real number is a bilateral derived number of f at

 every point of E ?

 The first question has a negative answer for 5 , bZ?usc,

 bZ?1sc, bA, and b2ř. ( i = 1 , 2 , . . . , 5 ) . This is a consequence of a

 theorem of M. Chlebík, [5] Lemma 5, which implies the following

 Theorem B7[Chlebik [5]]. Each of the families 5, bZ?usc,

 bZ?lsc, bA, and biff. ( i = 1 , 2 , . . . , 5) contains a residual subset 'It

 such that i f f 6 then f attains a relative maximum (and

 minimum) at exactly one point in each open subinterval of I

 with rational endpoints.

 If f is as in Theorem .67 and f6$, then number 1 is not a

 derived number at the points where f achieves a maximum. The

 answer to the second question is still open for many L-

 families. However, it has a negative answer in the case of

 bZ?®^ , as the following theorem shows.
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 Theorem B8. For every residual subset $ o_f and every

 res i dua 1 subset E o_f I there exists a function fEł and a point

 x6E such that 1 is not a bilateral derived number of f a_t x.

 Proof . Let $ be a residual subset of bZ?S^ and let E be a
 residual subset of I. Let F be a bilaterally c- den se- i n- i t se 1 f

 F subset of E. Then, there exists a function f6bZ?S, such that
 o 1

 0<f(x)<1 for x£F , . I I f 1 ļ = 1 , and f(x)=0 if x6I'F [l].

 By Theorem B7, there exists a function g6'ř which attains a

 relative maximum at exactly one point in each open subinterval

 of I with rational endpoints, and such that | | f-g | | < 1 /4 .

 Clearly, g attains its maximum at a point x6E. Therefore the

 number 1 is not a derived number at x. This completes the

 proof .

 C. Intersections with Lines: In this section we consider the

 size and structure of the set consisting of the intersection of

 a line, with a given slope, with the graph of a function f.

 We begin with two definitions, the first of which is due to

 Bruckner and Garg [3].

 De fini ti on Cl. A nowhere monotone function is said to be of

 the second species if f(x)+rx remains nowhere monotone for

 every real number r.

 De fini ti on C2. A subset B of R is called a boundary set if

 Int B=0.
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 Theorem Cl [ Bruckner-Garg [3] ] . I f a f une t i on f _i_n bVB ^ is of

 the second species, then for every countable set E o_f R there

 exists a residual set H j_n R such that {x: f(x)=rx+s} i s a

 dense- i n- i tsel f boundary set whenever r is in E and s is in H.

 Theorem C 2 . There exists a residual set 'i j_n 'i such that for .

 each f j_n $ there exists a residual set H(f) j_n_ R such that

 {x: f(x)=rx+s} is a dense- i n- i tsel f boundary set whenever r i s

 rati ona 1 and s is in H ( f ) .
 «

 Proo f . By Theorem B5, the set Ý of functions f€$ of the

 second species is residual in Now apply the previous

 theorem with E the rational numbers.

 Theorem C3. Le t h be an arbitrary real -valued, continuous

 function defined on I. Suppose that $+h=$. Then there exists

 a residual subset í(h) i n $ such that for every f j_n. there

 exists a residual set H(f) j_n R such that {x: f(x)=h(x) + s} i s a

 dense- i n- i tsel f boundary set whenever s is in H(f).

 Proof. It. is clear, from the hypothesis, that the mapping

 <p: $ $ defined by <p(f)=f-h is a homeomorph i sm of •§ onto
 XI

 By Theorem C2, there exists a residual set $ C $ = <p(#) such
 M *

 that for every g£Ý there exists a residual set H (g) C R such

 that {x: g(x)=s} is a dense- i n- i t se 1 f boundary set whenever

 s£H ( g ) ♦
 « 1 M

 Since, $(h)=<p ($ ) is residual in it follows that for

 each f 6$(h) there i s' a residual set H(f)=H*(f-h) C R such that
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 {x: ( f-h ) (x ) = s} = { x : f (x ) =h ( x ) + s } is a dense- i n- i t se 1 f boundary

 set whenever s8H(f). This proves the theorem.

 Coro 1 1 ary C 1 . Let N be a countable family of real-valued,

 continuous functions defined on I. Suppose that $+h=$ for

 every h j_n "H , then there exists a residual set 'i ( N ) j_n $ such

 that for every . f i n i(W) there exists a residual set H(f) ļ_n R

 such that {x: f(x)=h(x)+s} is a dense- i n- i tsel f boundary set

 whenever hEW and s€H(f).

 Proo f . For each hEW there exists, by Theorem C3, a residual

 set *(h) C $ such that if f€i(h), there exists a residual set

 H(f,h) C R satisfying the conclusion of Theorem C3. Let

 *( y) =^g^*(h) , which is residual in Finally, if f€ł(?/) we
 only need to take H ( f ) ( f , h) .

 Coro 1 1 ary C2. Each of the families £, būusc, bZ?lsc, bA, and

 bS. (i=1,2,..5) satisfies the hypothesis of Theorem C2 and its

 corol 1 ary ♦

 In Theorem 3.2 of [2], Bruckner shows that there exists a

 residual class N of continuous functions such that for each

 function f in N there exists a countable dense set S^. C R such

 that the set E#, defined by, Ea={x: f(x)=a}, is a perfect set
 when oc€R'S, and is a nonempty perfect set union an isolated

 point when a€S^. .

 We will show that for certain subfamilies <ř of bZ?B^ there
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 exists a residual set N of î such that for each f in N there

 exists a countable dense set S, C R such that E isa dense- i n-
 f <x

 itself boundary set when a€R'S^. and is a nonempty dense- i n-

 itself boundary G^ set union an isolated point when a6Sf.
 This is an analogue to Bruckner's result since a dense- i n-

 itself boundary G^ set is homeomorphic to the bilateral limit
 points of the Cantor set.

 Many of the theorems and lemmas appearing below have

 proofs similar to those found in [3]. We begin with the

 fol 1 ow i ng

 De fini ti on C3. A function f in bZ?S^ will be called of
 oscillatory type if every extended real number is a derived

 number of f at every point x in I.

 Remark CI. As a consequence of Theorem B^, the functions of

 oscillatory type form a residual subset of any L-family <ř.

 Lemma CI. Let $ be an L-famil.y and let A cons i st of those

 f une t i ons f j_n $ for which no set of the form {x: f(x)=ot}

 contains more than one point at which the function achieves a

 relative extremum. Then A is a residual G„ in $.
 ______________________ _____ __________________ £

 Proof , For two disjoint intervals I and J with rational

 endpoints, let A(l,j) denote the set of functions f6$ for which

 neither the supremum nor the infirnum of f ori I is equal to

 either the supremum or the infimum of f on J, We wish to show
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 that A=DA(I,J) is a dense subset of $ of type G^. For this
 purpose, it suffices to show that A(l,j) is dense and open in

 for every pair (l,j).

 Suppose that I and J are disjoint closed intervals. Let

 denote the class of functions f6$ such that

 (*) sup{f(x): x€I } *sup{ f (x) : x6J}.

 Choose f6Eļ. Wr i te. oc = sup { f ( x ) : x€l} and /3 = sup{ f (x) : x£j} , and

 set s=|a-ß|. It is clear that if g€$ and ||f-g||<e/2 then

 g<EEļ. Hence, E^ is open. To see that E^ is also dense, let 9
 be an open subset of then Ģ contains an open set

 9h={g; I I 9"hl I <s} for some h69 and some s>0. We must show that

 ^ 9^*®- To do this, assume that sup{h(x): x€l}>
 sup{h(x): xEJ} . By Lemma B3, there exists a function g6$ such

 that ļ ļ h-g I | < s , {x: g(x)*h(x)} C I, and sup{g(x): xEl}>

 sup{h(x): x6l}. Hence, gSEj, and since ||g-h||<s, we see
 gG9h C Thus, D and E^ is dense i n

 Now, replacing "sup" by "inf" in one or both sides of the

 inequality in (■) above, we arrive at the sets E^> and E^
 which are also dense and open in It is clear that A(l,j)=

 - Q E . and that A(l,j) is therefore dense in and open in

 m

 De f i n i t i on C4. A subfamily $ of bZ?¡5^ is called an L -family
 if it is ah L-family and there exists a residual set t of i

 such that each f ini attains a relative maximum (and minimum)

 at exactly one point in each open subi nterval of I.
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 Lemma C2. The families 5 , bZ?usc, bOlsc, bA, and bis.

 (i=l,2,...,5) are all L -families.

 The proof of Lemma C2 is a direct consequence of Theorem B7.

 In the next theorem we will use the following notation.
 «

 Let $ be an L -family and let f€$. We set M =sup{f(x): xfEl}

 and m^=inf{f(x): x6l}.

 *

 Theorem C 4 . Let <ř be an L -family and let N be the class of

 f une t i ons f j_n $ to each of which corresponds a dense

 denumerabl e subset S^. of the i nterval (m^.,M^.) such that

 Eo = {x: f (x) =«} ļ_s

 (1) a dense- i n- i tsel f boundary G^ set when «ES ^'{ m^. , M } ,

 (2) a single point when a=m^. or

 (3) of the form U {*a} where i s a nonempty
 dense- i n- i tse 1 f boundary G „ set and x i s an

 * o „ - - - - - o

 isolated point of E^ .
 Then N i s resi dual i n $.

 Proof. Let B be a residual set in i such that each f in.B

 attains a relative maximum (and minimum) at exactly one point

 in each open subinterval of I. Let "ř be the intersection of B

 with the residual subset in Remark CI. Then $ is residual in #

 and each set E of a function f in í is a boundary G. set. We
 « o

 will show that Ý C N from which it will follow that N is

 res i dual in#.
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 Since f is of oscillatory type, a point will be isolated

 in some E^ if and only if f achieves a strict extremum at x.
 It follows, from Lemma CI, that each point of extremum is a

 strict point of extremum. Since a function fE't attains a point

 of extremum in each open subi nterval of I, it follows that the

 set, 0, of points of extremum of a function f6'ř is dense in I.

 Moreover, since each point of extremum is a strict point of

 extremum, 0 is denumerab 1 e .

 We now show that f(D) is a denumerabl e set dense in

 (""f'Mf)' Clearly , f(0) is denumerabl e. If f(0) is not dense,

 then there exists an interval (c,d) C (m^.,M^) for which
 f(0) D (c,d)=0. Pick 5>0 so that 5<(d-c)/2 and let

 E = cl f ' (c+6, d-S) . Clearly, Eisa nonempty perfect set.

 Choose x to be a point in E at which f ļ E is continuous.

 This is possible since f£Z725ļ . Let {xn}"_ļ be a sequence in
 - 1 / ' . ■

 f (c+S,d-S) / ' approaching . x. Since $ i s an L -family, the

 function f achieves a maximum and a minimum on each interval of

 the form (xn>xn+ļ)* Since f(D) D (c,d)=0, it follows that thè

 image of the extrema points on (xn»xp+ļ) ^'e outside (c,d), and
 since x -» x as n -» o» and f is Oarboux, it follows that the

 n

 interval [c,d] is contained in a cluster set of f at x. It

 follows that (c,d) is contained in the cluster set of f ļ E at

 x. This contradicts the continuity of f|E at x.

 Now, let S^. = f (D) '{m^., M^.} . Then, for any real number a, if

 «g S^. U {m^,M^.} then, since f is of oscillatory type, E^
 contains no isolated r points. Hence, E is a dense- i n- i tsel f r a
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 boundary G ^ set. If ot = m or M , then E ^ is a single point
 since the maximum and minimum of f over the interval I are

 unique. Finally, if otES^. the E^ contains exactly one point of

 extrema, x^. The point x^ is isolated, and since m^<ot<Mf and
 since f is Darboux there are other points of E . Since none of

 ot

 these points are isolated, it follows that E '{x 1 } ' is dense- i n- ot 1 ot '

 itself. Thi.s compi etes the proof.
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