Real Analysis Exchange Vol. 12 (1986-56)

Ibrahim Mustafa, 5779 Quicksilver Cir, Las Vegas, NV 89110

A General Approach Leading To Typical Results

Introduction. Notations. In this paper, we show that if Φ is a closed subfamily of the bounded Darboux Baire 1 functions, and if Φ is closed with respect to the addition of a continuous, piecewise linear function, then many of the properties known to be typical in bounded Darboux Baire 1 are also typical in Φ .

We shall see, in Lemma A2, that the subfamilies of bounded Darboux Baire 1 functions satisfying the above conditions include the families of continuous functions, bounded Darboux upper semi-continuous functions, bounded Darboux lower semicontinuous functions, bounded derivatives, and the bounded Zahorski classes. These families will be denoted by \mathcal{E} , bDusc, bDlsc, bA, and b π_1 (i=1,2,..,5), respectively. Note that $b\pi_1 = bDB_1$ ([10]), we will use either notation for this class. Various properties have been shown to be typical in some of these families, see [3], [4], [5], [6], [7], [8], and [9].

Throughout, we assume that all functions are defined on the closed unit interval [0,1], which is denoted by I. Each of the above mentioned families is a Banach space with norm $||f||=\sup|f|$. For any function f, Gr(f) and C(f) denote, respectively, the graph of f and the continuity points of f. For any set A, f|A denotes the restriction of f to A. The closure and interior of A are denoted by clA and IntA,

180

respectively. If A is a nonempty subset of the plane then, domA denotes $\{x:(x,y)\in A\}$. Finally, R will denote the real numbers.

A subfamily Φ of bDB_1 will be called an <u>L-family</u>, if it is closed in bDB_1 , and whenever f is in Φ and p is a real-valued, continuous, piecewise linear function defined on I, then f+p is in Φ .

In the following, Φ will denote an arbitrary L-family unless we explicitly state otherwise.

A. **Preliminary Results**. In this section we prove Lemma A2 which was mentioned in the introduction. First, we state Lemma Al which is needed in its proof.

Lemma A1. If $f \in DB_1$ and $g \in C$, then $f + g \in DB_1$. <u>Proof</u>. [2] Theorem 3.2.

Lemma A2. Each of the families \mathcal{C} , bDusc, bDlsc, bA, and $\mathbf{b}_{i}^{\mathbb{R}}$; (i=1,2,..,5) is an L-family.

<u>Proof</u>. Each of the families above is closed in $b\mathcal{DB}_1$. (See [2] and [9].) Let p be a real-valued, continuous, piecewise linear function defined on I. By Lemma A1, Φ +p C $b\mathcal{DB}_1$ for any family Φ appearing in the statement of this lemma. Moreover, it is clear that Φ +p C Φ whenever Φ is one of \mathcal{C} , $b\mathcal{D}$ usc, $b\mathcal{D}$ lsc, or b Δ . Thus, we only need to show that $p+b\mathcal{R}_1$ C $b\mathcal{R}_1$. Let $i\in\{1,2,\ldots,5\}$ and $f\in b\mathcal{R}_1$.

For any real number α and r rational, set

 $\begin{array}{l} A_{\alpha}=\{x:\ f(x)+p(x)>\alpha\},\ B_{r}=\{x:\ f(x)>\alpha-r\},\ \text{and}\ C_{r}=\{x:\ p(x)>r\}.\\ \text{Since }fEb_{n},\ \text{and}\ pE_{r},\ B_{r}EM_{i}\ [10],\ \text{and}\ C_{r}\ \text{is open}. \ \text{Hence},\\ B_{r}\cap C_{r}\ \text{is in}\ M_{i}.\ \text{Since }A_{\alpha}=U\{B_{r}\cap C_{r}:\ r\ \text{is rational}\},\ \text{it}\\ \text{follows that}\ A_{\alpha}EM_{i}.\ \text{Hence,}\ f+pEb_{n},\ \text{This completes the proof}.\end{array}$

B. Typical Properties in L-families: We shall now discuss the typical behavior of functions in an L-family. In particular, among other results, we show that a typical function in an Lfamily has every extended real number as a derived number at every point. To carry out this discussion, some notation is necessary.

Let s and t be real numbers with t>0. Let k be a natural number greater than 2, and let (x_0, y_0) be any point in the plane.

The set $K^{+}(x_{0}, y_{0}; s, t)$ (resp. $K^{-}(x_{0}, y_{0}; s, t)$) denotes all points (x,y) in the plane such that $x_{0} < x < x_{0} + t$ (resp. $x_{0} - t < x < x_{0}$) and $(y-y_{0})/(x-x_{0}) > s$, and the set $K(x_{0}, y_{0}; s, t)$ denotes $K^{+}(x_{0}, y_{0}; s, t) \cup K^{-}(x_{0}, y_{0}; s, t)$.

If f is a function defined on I, the set $\chi^+(f;s,t)$ denotes all points x in I such that $Gr(f) \cap K^+(x,f(x);s,t)=0$, and $\chi^+_k(f;s,t)$ denotes $\chi^+(f;s,t) \cap [1/k,1-1/k]$. The sets $\chi^-(f;s,t)$, $\chi(f;s,t)$, $\chi^-_k(f;s,t)$ and $\chi^-_k(f;s,t)$ are defined in the obvious manner.

If Φ is a subfamily of $b\mathcal{DB}_1$, A(s,t,k) denotes the class of functions f in Φ such that $\chi_k(f;s,t)$ is not empty.

Finally, if X is one of the symbols in $\{K^+, K^-, K, \chi^+, \chi^-, \chi^-, \chi\}$ we denote X(#;k,1/k) by X(#;k). If X is one of the symbols in the set $\{\chi_k^+, \chi_k^-, \chi_k^-\}$ we denote X(f;k,1/k) by X(f), and we denote A(k,1/k,k) by A_k .

To begin with, we prove

Lemma B1. If Φ is closed in bDB₁, then for all natural numbers k>2, A_k is closed in Φ . <u>Proof</u>. Fix k>2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in A_k that converges to a function fE Φ . We must show that fEA_k.

First, since $\{f_n\}_{n=1}^{\infty} \subset A_k$, $\chi_k(f_n) \neq \emptyset$ for all n. Let the sequence $\{x_n\}_{n=1}^{\infty}$ be such that $x_n \in \chi_k(f_n)$ for every n. Clearly, the sequence $\{(x_n, f_n(x_n))\}_{n=1}^{\infty}$ is bounded. Hence, it has a limit point (x, y). We shall show that y = f(x) and $x \in \chi_k(f)$.

Suppose that $y \leq f(x)$. Since $f \in DB_1$, there exists a point z such that $x \leq z \leq x+t$ and $(z, f(z)) \in K^+(x, y; k)$. Then, since $f_n \rightarrow f_n$ and $x_n \rightarrow x$, it is clear that there exists an $N \geq 1$ such that $|x-x_N| \leq t$ and the point $(z, f_N(z))$ lies above the line of slope k which contains the point $(x_N, f_N(x_N))$; i.e., $x_N \notin X_k(f_N)$, which is a contradiction. Hence, $y \geq f(x)$.

Similarly, $y \leq f(x)$. Hence, y = f(x). It is also clear, from the above argument, that $x \in \mathcal{I}_k(f)$. Therefore, $f \in A_k$.

In the next lemma and for the remainder of this paper, $S[x,y;\delta]$ denotes the open square with center (x,y) and side length δ , and whose sides are parallel to the coordinate axes.

Lemma B2. Let f be in Φ . Let δ and ϵ be positive real numbers with $\delta \langle \epsilon/4$. Let x in (0,1) be such that Gr(f) $\cap S[x, f(x) + \epsilon/2; \delta]$ is empty.

Then there exists a and b in I and a function u in Φ such that

(1)
$$a \leq b \leq x$$
 and $\{(a, f(a)), (b, f(b))\} \in S[x, f(x); \delta],$

(2)
$$u \leq f \text{ on } (a,b) \text{ and } u \geq f \text{ on } (b,x),$$

- (3) {x: $f(x) \neq u(x)$ } C (a,b) U (b,x),
- (4) Gr(u) \cap S[x, f(x)+ $\epsilon/2$; δ] $\neq 0$,
- (5) Gr(u) \cap S[x, f(x)- $\varepsilon/2$; δ] $\neq 0$, and
- (6) ||u-f||<ε.

<u>Proof</u>. Since $fEbDB_1$, it is clear that we can find points a, b, x₁, x₂ in domS[x, f(x); δ] such that $a < x_1 < b < x_2 < x$ and the points (a, f(a)), (x₁, f(x₁)), (b, f(b)), and (x₂, f(x₂)) are all in S[x, f(x); δ]. Define

$$p(x) = \begin{bmatrix} 0 & \text{if } x \in \langle a, b \rangle \cup \langle b, x \rangle, \\ f(x) - f(x_1) - \varepsilon/2 & \text{if } x = x_1, \\ f(x) - f(x_2) + \varepsilon/2 & \text{if } x = x_2, \\ \text{linear on } \langle a, x_1 \rangle, \ \langle x_1, b \rangle, \ \langle b, x_2 \rangle \text{ and } \langle x_2, x \rangle. \end{bmatrix}$$

Let u=f+p. Since Φ is an L-family, uE Φ . Clearly, u satisfies (1), (2), and (3). Moreover, since $u(x_1)=f(x)-\epsilon/2$ and $u(x_2)=f(x)+\epsilon/2$, u satisfies (4) and (5). Finally, since x_1, x_2 EdomS[x, f(x); δ] and $\delta < \epsilon/4$, we have $|f(x)-f(x_1)| < \epsilon/4$ for i=1,2. Hence, $||u-f|| < \epsilon$. This completes the proof.

<u>Theorem B1.</u> The class of functions $f \in \Phi$ having both ∞ and $-\infty$ as derived numbers at each point \times in (0,1) is residual in Φ . <u>Proof</u>. Let A (resp. A') consist of all functions $f \in \Phi$ for which there exists \times in (0,1) such that ∞ (resp. $-\infty$) is not a derived number from either side at \times . We need to show that A U A' is an F_{σ} of first category in Φ . For this, it is enough to show that A is an F_{σ} of first category. Clearly, $A=U_{k>2}A_{k}$. Hence, we only need to show that A_{k} is closed and nowhere dense for every k.

Fix k. By Lemma B1, A_k is closed in Φ . Thus, it suffices to show that A_k is also nowhere dense. To do this, we take $f \in \Phi$ and $\epsilon > 0$, and we find a function $g \in \Phi$ such that $||f-g|| < \epsilon$ and $\chi_k(g) = 0$.

First, we prove that there exists a finite set $F=\{y_1,\ldots,y_n\} \text{ such that, if } x\in \mathcal{I}_k(f), \text{ there exists a } y_i\in F \text{ and}$ positive numbers $\varepsilon(y_i)$ and $\delta(y_i)$ such that $\delta(y_i)<\varepsilon(y_i)/4$ and $S[y_i,f(y_i)+\varepsilon(y_i)/2;\delta(y_i)] \subset K^+(z,f(z);k) \text{ for all points } z \text{ in}$ $(x-\delta(y_i),x+\delta(y_i)) \cap \mathcal{I}_k(f).$

To do this, let $x \in \mathcal{I}_{k}(f)$. As remarked in [6], $\mathcal{I}_{k}(f)$ is closed and $f \mid \mathcal{I}_{k}(f)$ is continuous. Since $f \in \mathcal{DB}_{1}$, there exists a point y>x and positive numbers $\varepsilon(y)$ and $\delta(y)$ such that $\delta(y) \langle \varepsilon(y)/4$ and $S[y, f(y) + \varepsilon(y)/2; \delta(y)] \subset K^{+}(z, f(z); k)$ for all z in $(x - \delta(y), x + \delta(y)) \cap \mathcal{I}_{k}(f)$. Let $U(x) = (x - \delta(y), x + \delta(y))$. Then, the collection $\{U(x): x \in \mathcal{I}_{k}(f)\}$ is an open cover of the compact set $\mathcal{I}_{k}(f)$. Hence, there exist $U(x_{1}), \ldots, U(x_{n})$ which cover $\mathcal{I}_{k}(f)$. Clearly, the set $F = \{y_{1}, y_{2}, \ldots, y_{n}\}$ is the desired set.

Let $\delta_1 = (1/2) \min\{|s-t|:s \neq t \text{ and } s, t \in \{y_1, \dots, y_n\}\},\$ $\delta_2 = (1/2) \min\{\delta(y_1), \dots, \delta(y_n)\},\ \text{and } \delta = (1/2) \min\{1/k, \delta_1, \delta_2\}.$ Then, domS[y_i, f(y_i); \delta] \cap domS[y_i, f(y_i); \delta] = 0 if i \neq j.

For each $i \in \{1, 2, ..., n\}$, let u_i be a function in Φ satisfying (1) through (6) of Lemma B2 with $x=y_i$, $\epsilon=\epsilon(y_i)$, and δ as defined above. Define

 $g(x) = \begin{bmatrix} u_{i}(x) & \text{if } y_{i} - \delta \langle x \langle y_{i} + \delta, \\ f(x) & \text{otherwise.} \end{bmatrix}$

Clearly, gEP and $||f-g|| < \epsilon$. It remains to show that $\chi_k(g) = 0$. Let xE[1/k,1-1/k]. By (4) and (5) of Lemma B2,

 $x \in [1/k, 1-1/k] \setminus \mathcal{X}_{k}(g) \text{ for all } x \in \mathcal{X}_{k}(f) \cup \{x: f(x) \neq g(x)\}. \text{ Thus, we}$ may assume that g(x) = f(x) and $x \notin \mathcal{X}_{k}(f)$.

By the definition of $\chi_k(f)$, $x \notin \chi_k(f)$ implies that there exists a point z in (0,1) such that $(z,f(z))\in K(x,f(x);k)$. If g(z)=f(z), then $x\in [1/k, 1-1/k]\setminus \chi_k(g)$ and we are done. Hence, we may assume that $g(z)\neq f(z)$. Then there exists an $i\geq 1$ such that $g(z)=u_i(z)$. By Lemma B2, there exist points a and b such that a < b < x, and either a < z < b and $u_i(z) < f(z)$ or b < z < x and $u_i(z) > f(z)$. Moreover, either $(z,f(z))\in K^+(x,f(x);k)$ or $(z,f(z))\in K^-(x,f(x);k)$.

Assume that $(z,f(z))\in K^{+}(x,f(x);k)$. Then, if b<z<x, g(z)=u₁(z)>f(z). Hence, $(z,g(z))\in K^{+}(x,f(x);k)$ and we are done. Thus, we may assume that a<z<b. By (4) of Lemma B2, there exists z' in the interval (b,x) such that u₁(z')>f(z). Then, $(z',g(z'))\in K^{+}(x,f(x);k)$ and $x\in [1/k,1-1/k]\setminus X_{k}(g)$.

Similarly, $(z, f(z)) \in K^{-}(x, f(x); k)$ implies that

xE[1/k,1-1/k]\ $\chi_k(g)$. Therefore, $\chi_k(g)=0$. This completes the proof.

Theorem B2. The class E of functions f in Φ having both ∞ and $-\infty$ as derived numbers at every point x in I is residual in Φ .

<u>Proof</u>. Let E_1 be the class of Theorem B1 which is residual in Φ . The class E_2 of functions fE Φ having both ∞ and $-\infty$ as derived numbers at 0 and 1 are residual in Φ , so it follows that $E = E_1 \cap E_2$ is residual in Φ , completing the proof.

To prove Theorems B3 and B4 we need

Lemma B3. Let Φ be an L-family. Let f be in Φ . Let $\delta>0$, and $(x,y)\in(0,1)XR$ be such that $|y-f(x)|>2\delta$.

If $y-f(x)>2\delta$, then there exists a point a, with a<x and (a,f(a))ES[x,f(x); δ], and a function uEP such that

- (1) $\lim_{t\to\infty} \inf f(t) \inf \{f(t): a < t < x\}$ < $\delta/2$,
- (2) $u \ge f$ on (a,x) and u=f on $I \setminus (a,x)$,
- (3) $Gr(u) \cap S[x,y;\delta] \neq 0$, and
- (4) $||u-f|| < |y-f(x)| + \delta$.

If $f(x)-y>2\delta$, then there exists a point a in domS[x,f(x); δ], with a<x and a function vE Φ satisfying (1) through (4) with u replacing v, "sup" replacing "inf" in (1), and ">" replacing "<" in (2). The proof of this lemma is similar to that of Lemma B2 and will be omitted. In the next lemma, we use the following notation.

Let n be a fixed positive integer and let (x_0, y_0) be any point in the plane, we define

$$R_{n}^{+}(x_{0},y_{0}) = \{(x,y): 0 < x-x_{0} < \frac{1}{n}, and 0 < \frac{y-y_{0}}{x-x_{0}} < \frac{1}{n}\}$$

$$R_n(x_0, y_0) = \{(x, y): 0 < x_0 - x < \frac{1}{n}, and -\frac{1}{n} < \frac{y - y_0}{x - x_0} < 0 \},$$

$$\kappa_{n}(x_{0},y_{0}) = \{(x,y): 0 < |x-x_{0}| < \frac{1}{n}, and \left| \frac{y-y_{0}}{x-x_{0}} \right| < \frac{1}{n} \}.$$

A real-valued function f is said to have property $\langle n \rangle$ at a <u>point</u> (x_0, y_0) if x_0 Edomf and $Gr(f) \cap K_n(x_0, y_0) \neq 0$. We say f has <u>property $\langle n \rangle$ on a set</u> E if it has property $\langle n \rangle$ at every point of E.

Lemma B4. Assume $fE\Phi$, $\epsilon>0$, and k and n are positive integers with k>2. Then there exists a function $gE\Phi$ and a number $\delta>0$ such that

- (1) $||f-g|| < \varepsilon$, and g has property $\langle n \rangle$ on Gr(g|[1/k, 1-1/k]),
- (2) if hEP and $||g-h|| < \delta$, then h has property $\langle n \rangle$ on Gr(h|[1/k,1-1/k]).

In particular, the class of functions $fE\Phi$ having property $\langle n \rangle$ on Gr(f|[1/k,1-1/k]) is residual in Φ .

<u>Proof</u>. Let A=clf [1/k, 1-1/k]. Since fEDB₁, for each zEA we

can find z' = (x', y') in $(0, 1) XR \cap [R_n^+(z) \cup R_n^-(z)]$ such that (a) $|y' - f(x')| < \epsilon/2$.

Then, it is clear that, we can find $\delta(z)$, with $0 < \delta(z) < 1/n$ and

- (b) wES[z; $\delta(z)$] implies S[z'; $\delta(z)$] C R⁺_n(w) U R⁻_n(w),
- (c) wES[z'; $\delta(z)$] implies S[z; $\delta(z)$] C K₂(w).

The collection $\{S[z;\delta(z)/2]: z \in A\}$ is an open cover of the compact set A, so there is a finite subcollection $S[z_1;\delta(z_1)/2], S[z_2;\delta(z_2)/2], \ldots, S[z_m;\delta(z_m)/2]$ which covers A. Then, clearly, we can redefine z_1', z_2', \ldots, z_m' to all have distinct first coordinates and still satisfy (a) through (c) above.

Let $\delta_1 = (1/4)\min\{\epsilon, |y_i' - f(x_i')|, 1/n, \delta(z_i)(1 \le i \le m)\},\$ $\delta_2 = (1/4)\min\{|s-t|:s \ne t, s, t \in \{x_1, x_2, \dots, x_m, x_1', x_2', \dots, x_m'\}\},\$ and $\delta = \min\{\delta_1, \delta_2\}.\$ Clearly, domS[$z_i'; \delta$] \cap domS[$z_i'; \delta$]=0 if $i \ne j.$

Let $M_1 = \{i: 1 \le i \le m, y_i^2 < f(x_i^2)\}$ and $M_2 = \{i: 1 \le i \le m, y_i^2 > f(x_i^2)\}$. For each $i \in M_1$ (resp. $i \in M_2$) let u_i (resp. v_i) be the function of Lemma B3 with $x = x_i^2$, $y = y_i^2$, and δ as defined above, and define

 $g(x) = \begin{bmatrix} u_{i}(x) & \text{if } x_{i}^{2} - \delta \langle x \langle x_{i}^{2} + \delta, \text{ iEM}_{1}, \\ v_{i}(x) & \text{if } x_{i}^{2} - \delta \langle x \langle x_{i}^{2} + \delta, \text{ iEM}_{2}, \\ f(x) & \text{otherwise.} \end{bmatrix}$

Clearly, gE4, and by (3) of Lemma B3, $||f-g|| < \epsilon/2 + 2\delta < \epsilon$.

We now prove (1) and (2) of this Lemma. For this, we show that if hET satisfies $||g-h|| < \delta$, then h has property $\langle n \rangle$ on Gr(h|[1/k, 1-1/k]).

First, since $Gr(g) \cap S[z_1^2; \delta] \neq 0$ when $1 \leq i \leq m$, and since

 $2\delta \langle \delta(z_i)$, we have $Gr(h) \cap S[z_i^2; \delta(z_i)] \neq 0$ when $1 \leq i \leq m$. Hence, by (b) and (c) above, h has property $\langle n \rangle$ on the set $T=Gr(h) \cap \bigcup_{i=1}^{m} \{S[z_i; \delta(z_i)] \cup S[z_i^2; \delta(z_i)]\}$.

Let $(x,h(x)) \in Gr(h|[1/k,1-1/k]) \setminus T$. Then, there exists an i such that $g(x) = u_i(x)$ or $g(x) = v_i(x)$. If not, then g(x) = f(x), and since $||g-h|| < \delta$, $|f(x) - h(x)| < \delta$, forcing (x,h(x)) to be in some $S[z_i;\delta(z_i)]$ contradicting the choice of (x,h(x)).

First, assume that $g(x)=u_i(x)$, and let $(y,h(y))ES[z_i^*;\delta(z_i)]$. By (3) of Lemma B3, since $(x,h(x))ES[z_i^*;\delta(z_i)]$, it follows that h(y)>h(x). Using Lemma B3 and the fact that xET, we can find a point a in $domS[z_i,\delta(z_i)]$ such that $a<x<x_i$ and exactly one of the

following is true:

 $(\alpha) h(x) > max{h(a),h(x,)};$

(β) h(x) < min{h(a),h(x_i)}.

If (α) is true, then, since h(y)>h(x) and h is Darboux, h crosses the horizontal line y=h(x) in at least two distinct points, one between a and y and the other between y and x_i . Hence, $Gr(h) \cap K_n(x,h(x))\neq 0$, and h has property $\langle n \rangle$ at $\langle x,h(x) \rangle$. If (β) is true, we use (1) of Lemma B3 and the fact that h is Darboux to conclude that $Gr(h) \cap K_n(x,h(x))\neq 0$.

A similar argument holds if $g(x)=v_i(x)$. Therefore h has property <n> on Gr(h|[1/k,1-1/k]). This completes the proof.

<u>Theorem</u> B3. The class Ψ of functions fEP having zero as a derived number at each point x in I is residual in Φ .

<u>Proof</u>. For integers $n \ge 1$ and k > 2, let E(n,k) be the class of functions fEP having property $\langle n \rangle$ on Gr(f|[1/k, 1-1/k]). By the previous lemma, each E(n,k) is residual in Φ .

Clearly, the class E of functions fEP having zero as a derived number at the points 0 and 1 is residual in Φ . Since $\Psi = E \prod_{n=1}^{\infty} \prod_{k=3}^{\infty} E(n,k)$, it follows that Ψ is also residual in Φ .

As a corollary to Theorem B3 we have

Theorem B4. The class of functions f in Φ having every extended real number as a derived number at every point x in I is residual in Φ .

<u>Proof</u>. Let Ψ be the class of Theorem B3. For each real number r, let L_r be the function defined by $L_r(x)=rx$ for all points x in I. Put $E_r=\{f+L_r: f\in\Psi\}$. Each E_r is residual in Φ . This follows from the easily proven fact that $N+L_r=\{f+L_r: f\in N\}$ is nowhere dense in Φ , if N is nowhere dense in Φ . Clearly, the family of functions $\cap \{E_r: r \text{ is rational}\}$ is the desired family.

Definition B1. A real-valued function f defined on I is said to be <u>nowhere monotonic</u> on I if it is not monotonically increasing or decreasing on any subinterval J of I.

Theorem B5. The class of functions f in Φ such that f(x)+rx is nowhere monotonic for every real number r is residual in Φ .

<u>Proof</u>. This class is a superset of the class, Ψ , in Theorem B4. Let fE Ψ . Then f+L has all real numbers as derived numbers at every point x in I.

Suppose that $f+L_r$ is monotonic on some interval J. Say it is increasing on J. Then f has no negative derived numbers on J, a contradiction, proving Theorem B5.

We close this section with a discussion of the bilateral behavior of derived numbers of a function f in some residual subset of an L-family Φ . For $\Phi \subset bDB_1$, we denote by Φ_m the class of functions fE Φ having ∞ and $-\infty$ as derived numbers at each point xEI. We begin with

Lemma B5. For any positive integer k greater than 2, the class F_k of functions $fE\Phi_m$ such that $\chi^+(f;k) \cap C(f)$ is closed and nowhere dense in C(f) is residual in Φ_m . <u>Proof</u>. Let $E(f;k)=\chi^+(f;k) \cap C(f)$. First, we show that E(f;k)is closed in C(f) whenever $fE\Phi_n$.

Let $xEC(f) \setminus E(f;k)$. Then $K^{+}(x, f(x);k)$ contains a point (t, f(t)). Clearly, there exists a $\delta > 0$ such that $(u, v) ES[x, f(x); \delta]$ implies $(t, f(t)) \in K^{+}(u, v; k)$. Since f is continuous at x, we can find an open interval J containing x such that $f(J) \subset S[x, f(x); \delta]$. Since J Π $C(f) \subset C(f) \setminus E(f;k)$, it follows that E(f;k) is closed in C(f).

Now, for an interval I with rational endpoints, define $A(I;k) = \{f \in \Phi_{i}: I \cap C(f) \subset E(f;k)\}$. Since each E(f;k) is closed in C(f), it follows that $F_{k} = \Phi_{\infty} \setminus U_{I}A(I;k)$, where the union is taken over all intervals I with rational endpoints. To complete the proof, it suffices to show that each A(I;k) is closed and nowhere dense in Φ_{-} .

Let us show that A(I;k) is closed in Φ_{∞} . To this end, let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in A(I;k) converging to a function fE Φ_{-} . We must show that fEA(I;k).

Suppose that $f \in \Phi_m \setminus A(I;k)$. Then, there exists a point $x \in [I \cap C(f)] \setminus E(f;k)$ such that $Gr(f) \cap K^+(x,f(x);k) \neq \emptyset$. Let $(t,f(t)) \in K^+(x,f(x);k)$. Then there exists a number $\delta > 0$ such that $(x-\delta,x+\delta) \subset I$, and if $(u,v) \in S[x,f(x);\delta]$ then $S[t,f(t);\delta] \subset K^+(u,v;k)$. Since $f_n \rightarrow f$ as $n \rightarrow m$, there exists an $N \geq 1$ such that $(t,f_N(t)) \in S[t,f(t);\delta]$. Moreover, since $n = \prod_{n=1}^{\infty} C(f_n)$ is residual in I, there exists $y \in n = \prod_{n=1}^{\infty} C(f_n)$ such that $(y,f_N(y)) \in S[x,f(x);\delta]$. But this implies that $f_N \notin A(I;k)$, which is a contradiction. Therefore A(I;k) is closed in Φ_m .

Now we show that if $f \in \Phi_m$ and $\epsilon > 0$, then there exists a function $u \in \Phi_m \setminus A(I;k)$ such that $||u-f|| < \epsilon$. That is, A(I;k) is nowhere dense in Φ_m . Obviously, we may assume that $f \in \Phi_m \setminus A(I;k)$.

Let tEI \cap C(f). Then there exists a number η , with $O(\eta(1/k \text{ and } (t,t+\eta) C I)$, and a point z in $(t,t+\eta)$ such that $(z,f(z)+\epsilon/2)\in K^{+}(t,f(t);k)$.

Choose $\delta > 0$ such that $(z-\delta, z+\delta) \subset (t, t+\eta)$ and $\delta < \varepsilon/4$. Since Φ_{∞} is an L-family, there exists a function $u \in \Phi_{\infty}$ satisfying the conclusions of Lemma B3, with x=z and y=f(z)+ $\varepsilon/2$. Moreover,

since f(t)=u(t) and u and f have the same continuity points, we have that $t \in [I \cap C(u)] \setminus E(f;k)$. Hence $u \in \Phi_m \setminus A(I;k)$ and by (3) of Lemma B3, $||u-f|| \in \varepsilon$. This completes the proof.

Theorem 86. There exists a residual subset Ψ of Φ such that for every fE there exists a residual subset E(f) of I such that every extended real number is a bilateral derived number of f at each xEE(f).

<u>Proof</u>. For each $f \in \Phi_m$, let $E_+(f)$ (resp. $E_-(f)$) denote the set of points xEC(f) such that $-\infty$ is a derived number from the right (resp. left) at x, but that ∞ is not a derived number from the right (resp. left) at x. We will show that $E_+(f) \cup E_-(f)$ is of first category for every function in some residual subset of Φ_- .

For each k>2, let F_k be the residual subset of Φ_m obtained from Lemma B5. Let $F = \prod_{k=3}^{\infty} F_k$. Clearly, F is residual in Φ_m . Moreover, if fEF, then $E_+(f) = \bigcup_{k=3}^{\infty} E(f;k)$ which is of first category in C(f), and hence in I.

Similarly, there exists a residual subset F' of Φ_{∞} such that for every fEF' the set E_(f) is of first category in I. If we put Ψ =F \cap F', then it follows that Ψ is residual in Φ_{∞} . By Theorem B1, Φ_{∞} is residual in Φ . It follows that Ψ is residual in Φ . Clearly, Ψ is the desired set and the proof is complete.

194

Two questions arise in connection with Theorem B6.

<u>Question</u> B1. Given an L-family Φ , does there exist a residual subset Ψ of Φ such that if fE Ψ , then every real number is a bilateral derived number of f at every point x in I ?

<u>Question</u> B2. Given an L-family Φ , does there exist a residual subset Ψ of Φ and a residual subset E of I such that if fE Ψ , then every real number is a bilateral derived number of f at every point of E ?

The first question has a negative answer for \mathcal{E} , bDusc, bDlsc, b Δ , and b \mathcal{R}_i (i=1,2,...,5). This is a consequence of a theorem of M. Chlebik, [5] Lemma 5, which implies the following

<u>Theorem</u> B7[Chlebik [5]]. Each of the families \mathcal{E} , bDusc, bDlsc, b Δ , and b \mathcal{R}_i (i=1,2,...,5) contains a residual subset Ψ such that if f E Ψ , then f attains a relative maximum (and minimum) at exactly one point in each open subinterval of I with rational endpoints.

If Ψ is as in Theorem B7 and fE Ψ , then number 1 is not a derived number at the points where f achieves a maximum. The answer to the second question is still open for many L-families. However, it has a negative answer in the case of bDB₁, as the following theorem shows.

<u>Theorem</u> B8. For every residual subset Ψ of bDB_1 and every residual subset E of I there exists a function fEV and a point xEE such that 1 is not a bilateral derived number of f at x. <u>Proof</u>. Let Ψ be a residual subset of bDB_1 and let E be a residual subset of I. Let F be a bilaterally c-dense-in-itself F_{σ} subset of E. Then, there exists a function fEbDB₁ such that $0 \le f(x) \le 1$ for xEF, ||f||=1, and f(x)=0 if xEINF [1].

By Theorem B7, there exists a function $gE\Psi$ which attains a relative maximum at exactly one point in each open subinterval of I with rational endpoints, and such that ||f-g|| < 1/4. Clearly, g attains its maximum at a point xEE. Therefore the number 1 is not a derived number at x. This completes the proof.

C. Intersections with Lines: In this section we consider the size and structure of the set consisting of the intersection of a line, with a given slope, with the graph of a function f. We begin with two definitions, the first of which is due to Bruckner and Garg [3].

<u>Definition</u> C1. A nowhere monotone function is said to be of the <u>second species</u> if f(x)+rx remains nowhere monotone for every real number r.

Definition C2. A subset B of R is called a <u>boundary</u> set if Int B=0. <u>Theorem</u> C1[Bruckner-Garg [3]]. If a function f in bDB_1 is of the second species, then for every countable set E of R there exists a residual set H in R such that {x: f(x)=rx+s} is a dense-in-itself boundary set whenever r is in E and s is in H.

Theorem C2. There exists a residual set Ψ in Φ such that for each f in Ψ there exists a residual set H(f) in R such that $\{x: f(x)=rx+s\}$ is a dense-in-itself boundary set whenever r is rational and s is in H(f).

<u>Proof</u>. By Theorem B5, the set Ψ^{-} of functions fE Φ of the second species is residual in Φ . Now apply the previous theorem with E the rational numbers.

Theorem C3. Let h be an arbitrary real-valued, continuous function defined on I. Suppose that Φ +h= Φ . Then there exists a residual subset $\Psi(h)$ in Φ such that for every f in $\Psi(h)$ there exists a residual set H(f) in R such that $\{x: f(x)=h(x)+s\}$ is a dense-in-itself boundary set whenever s is in H(f).

<u>Proof</u>. It is clear, from the hypothesis, that the mapping $\varphi: \Phi \to \Phi$ defined by $\varphi(f)=f-h$ is a homeomorphism of Φ onto Φ . By Theorem C2, there exists a residual set $\Psi^{\#} \subset \Phi=\varphi(\Phi)$ such that for every $gE\Psi^{\#}$ there exists a residual set $H^{\#}(g) \subset R$ such that $\{x: g(x)=s\}$ is a dense-in-itself boundary set whenever $sEH^{\#}(q)$.

Since, $\Psi(h) = \varphi^{-1}(\Psi^{\#})$ is residual in Φ , it follows that for each fE $\Psi(h)$ there is a residual set $H(f) = H^{\#}(f-h) \subset R$ such that

{x: (f-h)(x)=s}={x: f(x)=h(x)+s} is a dense-in-itself boundary set whenever sEH(f). This proves the theorem.

Corollary C1. Let \mathcal{H} be a countable family of real-valued, continuous functions defined on I. Suppose that $\Phi+h=\Phi$ for every h in \mathcal{H} , then there exists a residual set $\Psi(\mathcal{H})$ in Φ such that for every f in $\Psi(\mathcal{H})$ there exists a residual set H(f) in R such that {x: f(x)=h(x)+s} is a dense-in-itself boundary set whenever hE \mathcal{H} and sEH(f).

<u>Proof</u>. For each hEH there exists, by Theorem C3, a residual set $\Psi(h) \subset \Phi$ such that if $f \in \Psi(h)$, there exists a residual set $H(f,h) \subset R$ satisfying the conclusion of Theorem C3. Let $\Psi(H) = \prod_{h \in H} \Psi(h)$, which is residual in Φ . Finally, if $f \in \Psi(H)$ we only need to take $H(f) = \prod_{h \in H} \Psi(f,h)$.

<u>Corollary</u> C2. Each of the families \mathcal{E} , bDusc, bDlsc, bA, and b \mathcal{R}_i (i=1,2,...5) satisfies the hypothesis of Theorem C2 and its corollary.

In Theorem 3.2 of [2], Bruckner shows that there exists a residual class N of continuous functions such that for each function f in N there exists a countable dense set $S_f \subset R$ such that the set E_{α} , defined by, $E_{\alpha} = \{x: f(x) = \alpha\}$, is a perfect set when $\alpha \in R \setminus S_f$ and is a nonempty perfect set union an isolated point when $\alpha \in S_f$.

We will show that for certain subfamilies Φ of bDB, there

exists a residual set N of Φ such that for each f in N there exists a countable dense set S_f C R such that E_a is a dense-initself boundary G_δ set when $\alpha \in \mathbb{R} \setminus S_f$ and is a nonempty dense-initself boundary G_δ set union an isolated point when $\alpha \in S_f$.

This is an analogue to Bruckner's result since a dense-initself boundary G_{δ} set is homeomorphic to the bilateral limit points of the Cantor set.

Many of the theorems and lemmas appearing below have proofs similar to those found in [3]. We begin with the following

<u>Definition</u> C3. A function f in bDB_1 will be called of <u>oscillatory type</u> if every extended real number is a derived number of f at every point x in I.

<u>Remark</u> C1. As a consequence of Theorem B4, the functions of oscillatory type form a residual subset of any L-family Φ .

Lemma C1. Let Φ be an L-family and let A consist of those functions f in Φ for which no set of the form $\{x: f(x)=\alpha\}$ contains more than one point at which the function achieves a relative extremum. Then A is a residual G_{δ} in Φ . <u>Proof</u>. For two disjoint intervals I and J with rational endpoints, let A(I,J) denote the set of functions fE Φ for which neither the supremum nor the infimum of f on I is equal to either the supremum or the infimum of f on J. We wish to show that $A=\Pi A(I,J)$ is a dense subset of Φ of type G_{δ} . For this purpose, it suffices to show that A(I,J) is dense and open in Φ for every pair (I,J).

Suppose that I and J are disjoint closed intervals. Let E, denote the class of functions fEP such that

(*) $\sup\{f(x): x \in I\} \neq \sup\{f(x): x \in J\}$. Choose $f \in E_1$. Write $\alpha = \sup\{f(x): x \in I\}$ and $\beta = \sup\{f(x): x \in J\}$, and set $\varepsilon = |\alpha - \beta|$. It is clear that if $g \in \Phi$ and $||f - g|| < \varepsilon / 2$ then $g \in E_1$. Hence, E_1 is open. To see that E_1 is also dense, let φ be an open subset of Φ , then φ contains an open set $\varphi_h = \{g: ||g - h|| < \varepsilon\}$ for some $h \in \varphi$ and some $\varepsilon > 0$. We must show that $E_1 \cap \varphi_h \neq 0$. To do this, assume that $\sup\{h(x): x \in I\} \ge$ $\sup\{h(x): x \in J\}$. By Lemma B3, there exists a function $g \in \Phi$ such that $||h - g|| < \varepsilon$, $\{x: g(x) \neq h(x)\} \in I$, and $\sup\{g(x): x \in I\} >$ $\sup\{h(x): x \in I\}$. Hence, $g \in E_1$, and $since ||g - h|| < \varepsilon$, we see $g \in \varphi_h \subset \varphi$. Thus, $E_1 \cap \varphi \neq 0$ and E_1 is dense in Φ .

Now, replacing "sup" by "inf" in one or both sides of the inequality in (*) above, we arrive at the sets E_2 , E_3 , and E_4 which are also dense and open in Φ . It is clear that $A(I,J) = \frac{1}{2} \prod_{i=1}^{4} E_i$ and that A(I,J) is therefore dense in and open in Φ .

<u>Definition</u> C4. A subfamily Φ of bDB_1 is called an <u>L</u>-family if it is an L-family and there exists a residual set Ψ of Φ such that each f in Ψ attains a relative maximum (and minimum) at exactly one point in each open subinterval of I. Lemma C2. The families \mathcal{C} , bDusc, bDlsc, b Δ , and b \mathcal{R}_i (i=1,2,...,5) are all \angle families.

The proof of Lemma C2 is a direct consequence of Theorem B7. In the next theorem we will use the following notation. Let Φ be an L[#]-family and let fE Φ . We set M_f=sup{f(x): xEI} and m_f=inf{f(x): xEI}.

<u>Theorem</u> C4. Let Φ be an L^{*}-family and let N be the class of functions f in Φ to each of which corresponds a dense denumerable subset S_f of the interval (m_f, M_f) such that $E_{\alpha} = \{x: f(x) = \alpha\}$ is

- (1) a dense-in-itself boundary G_{δ} set when $\alpha \notin S_{f} \setminus \{m_{f}, M_{f}\},\$
- (2) a single point when $\alpha = m_f$ or M_f ,
- (3) of the form $C_{\alpha} \cup \{x_{\alpha}\}$ where C_{α} is a nonempty dense-in-itself boundary G_{δ} set and x_{α} is an isolated point of E_{α} .

Then N is residual in Φ .

<u>Proof</u>. Let B be a residual set in Φ such that each f in B attains a relative maximum (and minimum) at exactly one point in each open subinterval of I. Let Ψ be the intersection of B with the residual subset in Remark C1. Then Ψ is residual in Φ and each set E_{α} of a function f in Ψ is a boundary G_{δ} set. We will show that Ψ C N from which it will follow that N is residual in Φ .

Since f is of oscillatory type, a point will be isolated in some E_{α} if and only if f achieves a strict extremum at x. It follows, from Lemma C1, that each point of extremum is a strict point of extremum. Since a function fEP attains a point of extremum in each open subinterval of I, it follows that the set, D, of points of extremum of a function fEP is dense in I. Moreover, since each point of extremum is a strict point of extremum, D is denumerable.

We now show that f(D) is a denumerable set dense in (m_f, M_f) . Clearly, f(D) is denumerable. If f(D) is not dense, then there exists an interval $(c,d) \in (m_f, M_f)$ for which $f(D) \cap (c,d)=0$. Pick $\delta>0$ so that $\delta<(d-c)/2$ and let $E=clf^{-1}(c+\delta, d-\delta)$. Clearly, E is a nonempty perfect set.

Choose x to be a point in E at which f|E is continuous. This is possible since $fEDB_1$. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in $f^{-1}(c+\delta,d-\delta)$ approaching x. Since Φ is an L[#]-family, the function f achieves a maximum and a minimum on each interval of the form (x_n,x_{n+1}) . Since $f(D) \cap (c,d)=0$, it follows that the image of the extrema points on (x_n,x_{n+1}) lie outside (c,d), and since $x_n \rightarrow x$ as $n \rightarrow \infty$ and f is Darboux, it follows that the interval [c,d] is contained in a cluster set of f at x. It follows that (c,d) is contained in the cluster set of f|E at x.

Now, let $S_f = f(D) \setminus \{m_f, M_f\}$. Then, for any real number α , if $\alpha \not\in S_f \cup \{m_f, M_f\}$ then, since f is of oscillatory type, E_{α} contains no isolated points. Hence, E_{α} is a dense-in-itself boundary G_{δ} set. If $\alpha = m_f$ or M_f , then E_{α} is a single point since the maximum and minimum of f over the interval I are unique. Finally, if $\alpha \in S_f$ the E_{α} contains exactly one point of extrema, x_{α} . The point x_{α} is isolated, and since $m_f < \alpha < M_f$ and since f is Darboux there are other points of E_{α} . Since none of these points are isolated, it follows that $E_{\alpha} \setminus \{x_{\alpha}\}$ is dense-initself. This completes the proof.

Bibliography

- S. Agronsky, Characterizations of certain subclasses of the Baire class 1, Ph.D. dissertation, Dept. of Mathematics, University of California, Santa Barbara, 1974.
- [2] A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Mathematics, 659, Springer-Verlag (Berlin, 1978).
- [3] A. M. Bruckner and K. M. Garg, The level set structure of a residual set of continuous functions, Tran. Amer. Math. Soc., vol.232 (1977), pp. 307-321.
- [4] A. M. Bruckner and G. Petruska, Some typical bounded Baire 1 functions, Acta Mat. Hung., vol.43,(3-4) (1984), pp. 325-333.
- [5] M. Chlebik, Extreme typikých realnych funckií, to appear.
- [6] J. G. Ceder and Gy. Petruska, Most Darboux functions map big sets into small sets, Acta Math. Hung., vol.41 (1983), pp.37-46.

- [7] I. Mustafa, On residual subsets of Darboux Baire class i functions, Real Anal. Exch., vol.9 no.2 (1983-84), pp. 394-395.
- [8] I. Mustafa, On Darboux Semi-continuous Functions, Ph.D. dissertation, University of California, Santa Barbara (1985)
- [9] D. Rinne, On Typical Bounded Functions in the Zahorski classes, Real Anal. Exch., vol.9 no.2 (1983-84), pp. 483-494.
- [10] Z. Zahorski, Sur la premier derivee, Trans. Amer. Math. Soc., vol.69 (1950), pp. 1-54.

Received August 19, 1985