Ibrahim Mustafa, 5779 Quicksilver Cir, Las Vegas, NV 89110

A General Approach Leading To Typical Results

Introduction. Notations. In this paper, we shom that if Φ is a slosed subfamily of. the bounded Darboux Baire 1 functions, and if Φ is closed mith respect to the addition of a continuous, piecewise linear function, then many of the properties known to be typical in bounded Darboux Baire 1 are also typical in Φ.

We shall see, in Lemma $A 2$, that the subfamilies of bounded Darboux Baire 1 functions satisfying the above conditions include the families of continuous functions, bounded Darboux upper semi-continuous functions, bounded Darboux lower semicontinuous functions, bounded derivatives, and the bounded Zahorski classes. These families will be denoted by E, bDusc, $b D 1 s c, b \Delta$, and $b m_{i}(i=1,2, \ldots, 5)$, respectively. Note that $b \mathbb{R}_{1}=b D B_{1}([10])$, we will use either notation for this class. Various proper, ies have been shown to be typical in some of these families, see [3], [4], [5], [6], [7], [8], and [9]. Throughout, we assume that all functions are defined on the closed unit interval $[0,1]$, which is denoted by I. Each of the above mentioned families is a Banach space with norm $||f||=\sup |f|$. For any function $f, \operatorname{Gr}(f)$ and $C(f)$ denote, respectively, the graph of f and the continuity points of f. For any set $A, f \mid A$ denotes the restriction of f to A. The closure and interior of A are denoted by clA and IntA,
respectively. If A is a nonempty subset of the plane then, domA denotes $\{x:(x, y) E A\}$. Finally, R will denote the real numbers.

A subfamily Φ of $b D B_{1}$ will be called an b-family, if it is closed in $b D B_{1}$, and whenever f is in Φ and p is a real-valued, continuous, piecewise linear function defined on I, then fop is in Φ.

In the following, Φ will denote an arbitrary L-family unless we explicitly state otherwise.
A. Preliminary Results: In this section we prove Lemma A2 which was mentioned in the introduction. First, we state Lemma Al which is needed in its proof.

Lemma A1. If $f \in b D B_{1}$ and $g E B$, then $f+g E b D B_{1}$.
Proof. [2] Theorem 3.2.

Lemma A2. Each of the families b, bDusc, bDlsc, b Δ, and b; $(i=1,2, \ldots, 5)$ is an $L-f a m i l y$.

Proof. Each of the families above is closed in bDB, (See [2] and [9].) Let p be a real-valued, continuous, piecewise linear function defined on I. By Lemma Al, $\Phi+p \subset$ bDB, for any family \$ appearing in the statement of this lemma. Moreover, it is clear that $\Phi+p \subset \Phi$ whenever Φ is one of \mathcal{C}, bDusc, bDlsc, or bi. Thus, we only need to show that $p+b F_{i} C b$. C. Let $i \in\{1,2, \ldots, 5\}$ and $f \in b R_{i}$.

For any real number α and r rational, set
$A_{\alpha}=\{x: f(x)+p(x)>\alpha\}, B_{r}=\{x: f(x)>\alpha-r\}$, and $C_{r}=\{x: p(x)>r\}$.
Since $f \in b \mathbb{R}_{i}$ and $p \in \mathscr{E}, B_{r} \in M_{i}[10]$, and C_{r} is open. Hence, $B_{r} \cap C_{r}$ is in M_{i}. since $A_{\alpha}=U\left\{B_{r} \cap C_{r}: r\right.$ is rational $\}$, it follows that $A_{\alpha} \in M_{i}$. Hence, fopEb波. This completes the proof.
B. Typical Properties in L-families: We shall now disciuss the typical behavior of functions in an L-family. In particular, among other results, we shom that a typical function in an family has every extended real number as a derived number at every point. To carry out this discussion, some notation is necessary.

Let s and t be real numbers with $t>0$. Let k be a natural number greater than 2 , and let $\left\langle x_{0}, y_{0}\right\rangle$ be any point in the plane.

The set $K^{+}\left\langle x_{0}, y_{0} ; s, t\right)$ (resp. $\left.K^{-}\left(x_{0}, y_{0} ; s, t\right)\right)$ denotes all points $\langle x, y\rangle$ in the plane such that $x_{0}<x<x_{0}+t$ (resp. $x_{0}-t<x<x_{0}$) and $\left.\left(y-y_{0}\right) /\left(x-x_{0}\right)\right\rangle s$, and the set $\dot{K}\left(x_{0}, y_{0} ; s, t\right)$ denotes $K^{+}\left\langle x_{0}, y_{0} ; s, t\right\rangle \cup K^{-}\left(x_{0}, y_{0} ; s, t\right)$.

If f is a function defined on I, the set $\chi^{+}(f ; s, t)$ denotes all points x in I such that $\operatorname{Gr}(f) \cap K^{+}\langle x, f(x) ; s, t\rangle=0$, and $\chi_{k}^{+}(f ; s, t)$ denotes $\chi^{+}(f ; s, t) \cap[1 / k, 1-1 / k]$. The sets $\chi^{-}(f ; s, t)$, $\chi\langle f ; s, t\rangle, \chi_{k}^{-}(f ; s, t)$ and $x_{k}(f ; s, t)$ are defined in the obvious manner.

If Φ is a subfamily of $b D B, A(s, t, k)$ denotes the $01 a s s$ of functions f in Φ such that $\chi_{k}(f ; s, t)$ is not empty.

Finally, if X is one of the symbols in $\left\{K^{+}, K^{-}, K, x^{+}\right.$, $\left.x^{-}, x\right\}$ we denote $x(* ; k, 1 / k)$ by $x(* k)$. If x is one of the symbols in the set $\left\{x_{k}^{+}, x_{k}^{-}, x_{k}\right\}$ we denote $x(f ; k, 1 / k)$ by $x(f)$, and we denote $A(k, 1 / k, k)$ by A_{k}.

To begin with, we prove

Lemma B1. If Φ is closed in $b D B_{1}$, then for all natural numbers $k>2, A_{k}$ is closed in Φ.

Proof. Fix $k>2$. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions in A_{k} that converges to a function $f \in \Phi$. We must show that $f E A_{k}$.

First, since $\left\{f_{n}\right\}_{n=1}^{\infty} \subset A_{k}, x_{k}\left(f_{n}\right) \neq 0$ for all n. Let the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ be such that. $x_{n} \in X_{k}\left(f_{n}\right)$ for every n. Clearly, the sequence $\left\{\left(x_{n}, f_{n}\left(x_{n}\right)\right)\right\}_{n=1}^{\infty}$ is bounded. Hence, it has a limit point (x, y). We shall show that $y=f(x)$ and $x \in X_{k}(f)$.

Suppose that $y<f(x)$. Since $f \in D B_{1}$, there exists a point z such that $x<z<x+t$ and $(z, f(z)) \in K^{+}(x, y ; k)$. Then, since $f_{n} \rightarrow f$ and $x_{n} \rightarrow x$, it is clear that there exists an $N \geq 1$ such that $\left|x-x_{N}\right|<t$ and the point $\left(z, f_{N}(z)\right)$ lies above the line of slope k which contains the point $\left(x_{N}, f_{N}\left(x_{N}\right)\right)$; i.e., $x_{N} \mathbb{E} x_{K}\left(f_{N}\right)$, which is a contradiction. Hence, $y \geq f(x)$.

Similarly, $y \leq f(x)$. Hence, $y=f(x)$. It is also clear, from the above argument, that $x \in X_{k}(f)$. Therefore, $f \in A_{k}$.

In the next lemma and for the remainder of this paper, $s[x, y ; \delta]$ denotes the open square with center (x, y) and side length δ, and whose sides are parallel to the coordinate axes.

Lemma B2. Let f be in Φ. Let δ and ε be positive real numbers with $\delta<\varepsilon / 4$. Let \times in $(0,1)$ be such that $\operatorname{Gr}(f) \cap S[x, f(x)+\varepsilon / 2 ; \delta]$ is empty.

Then there exists a and b in I and a function u in such that
(1) $a<b<x$ and $\{(a, f(a)),(b, f(b))\} \subset S[x, f(x) ; \delta]$,
(2) $u \leq f$ on (a, b) and $u \geq f$ on (b, x),
(3) $\{x: f(x) \neq u(x)\} \in(z, b) \cup(b, x)$,
(4) $\operatorname{Gr}(u) \cap S[x, f(x)+\varepsilon / 2 ; \delta] \neq 0$,
(5) $\operatorname{Gr}(u) \cap S[x, f(x)-\varepsilon / 2 ; \delta] \neq 0$, and
(6) $||u-f||<\varepsilon$.

Proof: Since $f \in b D B_{1}$, it is clear that we can find points a, b, x_{1}, x_{2} in doms $[x, f(x) ; \delta]$ such that $a<x_{1}<b<x_{2}<x$ and the points $(a, f(a)\rangle,\left(x_{1}, f\left(x_{1}\right)\right\rangle,\langle b, f(b)\rangle$, and $\left\langle x_{2}, f\left(x_{2}\right)\right\rangle$ are all in $s[x, f(x) ; \delta]$. Define

$$
p(x)=\left[\begin{array}{ll}
0 & \text { if } x \in(a, b) \cup(b, x\rangle \\
f(x)-f\left(x_{1}\right)-\varepsilon / 2 & \text { if } x=x_{1}, \\
f(x)-f\left(x_{2}\right)+\varepsilon / 2 & \text { if } x=x_{2}, \\
\text { linear on }\left\langle a, x_{1}\right),\left(x_{1}, b\right),\left(b, x_{2}\right) \text { and }\left(x_{2}, x\right)
\end{array}\right.
$$

Let $u=f+p$. Since Φ is an L-family, $u \in \Phi$. Clearly, usatisfies (1), (2), and (3). Moreover, since $u\left(x_{1}\right)=f(x)-\varepsilon / 2$ and $u\left(x_{2}\right)=f(x)+\varepsilon / 2, u$ satisfies (4) and (5). Finally, since $x_{1}, x_{2} \in \operatorname{domS}[x, f(x) ; \delta]$ and $\delta<\varepsilon / 4$, we have $\left|f(x)-f\left(x_{i}\right)\right|<\varepsilon / 4$ for $i=1,2$. Hence, $||u-f||<\varepsilon$. This completes the proof.

Theorem B1. The class of functions $f \in \Phi$ having both ∞ and $-\infty$ as derived numbers at each point \times in $(0,1)$ is residual in Φ. Proof. Let A (resp. A') consist of all functions feq for which there exists x in (0,1) such that ∞ (resp. - ∞) is not a derived number from either side at x. We need to show that A U A ${ }^{\prime}$ is an F_{σ} of first category in Φ. For this, it is enough to show that A is an F_{σ} of first category. Clearly, $A=U_{k}>2^{A}{ }_{k}$. Hence, we only need to show that A_{k} is closed and nowhere dense for every k.

Fix k. By Lemma B1, A_{k} is closed in Φ. Thus, it suffices to show that A_{k} is also nowhere dense. To do this, we take fEX and $\varepsilon>0$, and we find a function $g \in \Phi$ such that $||f .-g||<\varepsilon$ and $x_{k}(g)=0$.

First, we prove that there exists a finite set $F=\left\{y_{1}, \ldots, y_{n}\right\}$ such that, if $x \in X_{k}(f)$, there exists a $y_{i} \in F$ and positive numbers $\varepsilon\left(y_{i}\right)$ and $\delta\left(y_{i}\right)$ such that $\delta\left(y_{i}\right)<\varepsilon\left(y_{i}\right) / 4$ and $S\left[y_{i}, f\left(y_{i}\right)+\varepsilon\left(y_{i}\right) / 2 ; \delta\left(y_{i}\right)\right] \subset K^{+}(z, f(z) ; k)$ for all points z in $^{\cdot}$ $\left(x-\delta\left(y_{i}\right), x+\delta\left(y_{i}\right)\right) \cap \chi_{k}(f)$.

To do this, let $x \in x_{k}(f)$. As remarked in [6], $x_{k}(f)$ is closed and $f \mid X_{k}(f)$ is continuous. Since $f \in D B_{1}$, there exists a point $y>x$ and positive numbers $\varepsilon(y)$ and $\delta(y)$ such that $\delta(y)<\varepsilon(y) / 4$ and $S[y, f(y)+\varepsilon(y) / 2 ; \delta(y)] \subset K^{+}(z, f(z) ; k)$ for $2.11 z$ in $(x-\delta(y), x+\delta(y)) \cap x_{k}(f)$. Let $U(x)=(x-\delta(y), x+\delta(y))$. Then, the collection $\left\{U(x): x \in X_{k}(f)\right\}$ is an open cover. of the compact set $\chi_{k}(f)$. Hence, there exist $U\left(x_{1}\right), \ldots, U\left(x_{n}\right)$ which cover $x_{k}(f)$. Clearly, the set $F=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is the desired set.

Let $\delta_{1}=(1 / 2) \min \left\{|s-t|: s \neq t\right.$ and $\left.s, t \in\left\{y_{1}, \ldots, y_{n}\right\}\right\}$,
$\delta_{2}=(1 / 2) \min \left\{\delta\left(y_{1}\right), \ldots, \delta\left(y_{n}\right)\right\}$, and $\delta=(1 / 2) \min \left\{1 / k, \delta_{1}, \delta_{2}\right\}$. Then, $\operatorname{doms}\left[y_{i}, f\left(y_{i}\right) ; \delta\right] \cap \operatorname{domS}\left[y_{j}, f\left(y_{j}\right) ; \delta\right]=\emptyset i f i \neq j$.

For each $i \in\{1,2, \ldots, n\}$, let u_{i} be a function in Φ satisfying (1) through (6) of Lemma B2 with $x=y_{i}, \varepsilon=\varepsilon\left(y_{i}\right)$, and δ as defined above. Define

$$
g(x)=\left[\begin{array}{ll}
u_{i}\langle x\rangle & \text { if } y_{i}-\delta\left\langlex \left\langle y_{i}+\delta,\right.\right. \\
f(x) & \text { otherwise. }
\end{array}\right.
$$

Clearly, $g \in \Phi$ and $||f-g||<\varepsilon$. It remains to show that $x_{k}(g)=0$.
Let $x \in[1 / k, 1-1 / k]$. By (4) and (5) of Lemma B2, $x \in[1 / k, 1-1 / k] \backslash x_{k}(g)$ for all $x \in x_{k}(f) \cup\{x: f(x) \neq g(x)\}$. Thus, we may assume that $g(x)=f(x)$ and $x \in x_{k}(f)$.

By the definition of $x_{k}\langle f\rangle, x E X_{k}(f)$ implies that there exists a point z in (0,1) such that $(z, f(z)) E K(x, f(x) ; k)$. If $g(z)=f(z)$, then $x \in[1 / k, 1-1 / k] \backslash x_{k}(g)$ and we are done. Hence, we may assume that $g(z) \neq f(z)$. Then there exists an $i \geq 1$ such that $g(z)=u_{i}(z)$. By Lemma $B 2$, there exist points a and. b such that $a<b<x$, and either $a<z<b$ and $u_{i}(z)<f(z)$ or $b<z<x$ and $u_{i}(z)>f(z)$. Moreover, either $(z, f(z)) \in K^{+}(x, f(x) ; k)$ or $(z, f(z)) E K^{-}(x, f(x) ; k)$.

Assume that $(z, f(z)) \in K^{+}(x, f(x) ; k)$. Then, if $b<z<x$, $g(z)=u_{i}(z)>f(z)$. Hence, $(z, g(z)) \in K^{+}(x, f(x) ; k)$ and we are done. Thus, we may assume that $a<z<b$. By (4) of Lemma B2, there exists z^{\prime} in the interval (b, x) such that $u_{i}\left(z^{\prime}\right)>f(z)$. Then, $\left(z^{\prime}, g\left(z^{\prime}\right)\right) E K^{+}(x, f(x) ; k)$ and $x \in[1 / k, 1-1 / k] \backslash x_{k}(g)$.

Similarly, ($z, f(z)) \in K^{-}(x, f(x) ; k)$ implies that
$x \in[1 / k, 1-1 / k] \backslash \chi_{k}(g)$. Therefore, $\chi_{k}(g)=0$. This completes the proof.

Theorem 82. The class E of functions f in $\$$ having both ∞ and $-\infty$ as derived numbers at every point x in I is residual in Φ.

Proof.: Let E_{1} be the class of Theorem Bl which is residual in Φ. The class E_{2} of functions fex having both and $-\infty$ as derived numbers at 0 and 1 are residual in Φ, so it follows that $E=E_{1} \cap E_{2}$ is residual in Φ, completing the proof.

To prove Theorems B3 and B4 we need

Lemma B3. Let Φ be an L-family. Let f be in Φ. Let $\delta>0$, and $\langle x, y\rangle \in(0,1) \times R$ be such .that $|y-f(x)|>2 \delta$.

If $y-f(x)>2 \delta$, then there exists apoint a, with $a<x$ and $(a, f(a)) \in S[x, f(x) ; \delta]$, and a function $u \in \Phi$ such that

(2) $u \geq f$ on (a, x) and $u=f$ on $I \backslash(a, x)$,
(3) $\operatorname{Gr}(u) \cap S[x, y ; \delta] \neq 0$, and
(4) $||u-f||<|y-f(x)|+\delta$.

If $f(x)-y>2 \delta$, then there exists a point a in doms $[x, f(x) ; \delta]$, with $a<x$ and a function vEs satisfying (1) through (4) with u replacing v, "sup" replacing "inf" in (1), and " ${ }^{2}$ " replacing " \leq "in (2).

The proof of this lemma is similar to that of Lemma B2 and will be omitted. In the next lemma, we use the following notation.

Let n be a fixed positive integer and let $\left\langle x_{0}, y_{0}\right\rangle$ be any point in the plane, we define

$$
\begin{aligned}
& R_{n}^{+}\left(x_{0}, y_{0}\right)=\left\{(x, y): 0<x-x_{0}<\frac{1}{n}, \text { and } 0<\frac{y-y_{0}}{x-x_{0}}<\frac{1}{n}\right\}, \\
& R_{n}^{-}\left(x_{0}, y_{0}\right\rangle=\left\{(x, y): 0<x_{0}-x<\frac{1}{n}, \text { and }-\frac{1}{n}<\frac{y-y_{0}}{x-x_{0}}<0\right\}, \\
& K_{n}\left\langle x_{0}, y_{0}\right\rangle=\left\{\langle x, y\rangle: 0<\left|x-x_{0}\right|<\frac{1}{n}, \text { and }\left|\frac{y-y_{0}}{x-x_{0}}\right|<\frac{1}{n}\right\} .
\end{aligned}
$$

A real-valued function f is said to have property <n> at a point $\left\langle x_{0}, y_{0}\right\rangle$ if x_{0} Edomf and $\left.\operatorname{Gr} \dot{(\dot{f}}\right) \cap K_{n}\left\langle x_{0}, y_{0}\right\rangle \neq 0$. We say f has property $\langle n\rangle$ on a set E if it has property <n> at every point of E.

Lemma B4. Assume $f \in \Phi, \varepsilon>0$, and k and n are positive integers with $k>2$. Then there exists a function $g \in \Phi$ and a number $\delta>0$ such that
(1) $||f-g||\langle\varepsilon$, and g has property $\langle n\rangle$ on $\operatorname{Gr}(g \mid[1 / k, 1-1 / k])$,
(2) if $h \in \Phi$ and $||g-h||<\delta$, then h has property < $n>$ on $\operatorname{Gr}(h \mid[1 / k, 1-1 / k])$.

In particular, the class of functions $f \in \Phi$ having property $\langle n\rangle$ on $\operatorname{Gr}(f \mid[1 / k, 1-1 / k])$ is residual in Φ. Proof. Let $A=c 1 f \mid[1 / k, T-1 / k]$. Since $f \in D B$, for each $z \in A$ we
can find $z^{\prime}=\left\langle x^{\prime}, y^{\prime}\right)$ in $(0,1\rangle \times R \cap\left[R_{n}^{+}(z) \cup R_{n}^{-}(z)\right]$ such that
(a) $\left|y^{\prime}-f\left(x^{\prime}\right)\right|<\varepsilon / 2$.

Then, it is clear that, we can find $\delta(z)$, with $0<\delta(z)<1 / n$ and
(b) weS [z; $\delta(z)]$ implies $S\left[z^{\prime} ; \delta(z)\right] \subset R_{n}^{+}(w) \cup R_{n}^{-}(w)$,
(c) wes [z'; $\delta(z)]$ implies $s[z ; \delta(z)] \subset K_{n}(w)$.

The collection $\{S[z ; \delta(z) / 2]: z \in A\}$ is an open cover of the
compact set A, so there is a finite subcollection
$s\left[z_{1} ; \delta\left(z_{1}\right) / 2\right], s\left[z_{2} ; \delta\left(z_{2}\right) / 2\right], \ldots, s\left[z_{m} ; \delta\left(z_{m}\right) / 2\right]$ which covers A. Then, clearly, we can redefine $z_{i}^{\prime}, z_{2}^{\prime}, \ldots, z_{m}^{\prime}$ to all have distinct first coordinates and still satisfy (a) through (o) above.

Let $\delta_{i}=(1 / 4) \min \left\{\varepsilon,\left|y_{i}^{\prime}-f\left(x_{i}\right)\right|, 1 / n, \delta\left(z_{i}\right)(1 \leq i \leq m\rangle\right\}$,
$\delta_{2}=(1 / 4) \min \left\{|s-t|: s \neq t, s, t \in\left\{x_{1}, x_{2}, \ldots, x_{m}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}^{\prime}\right\}\right\}$, and $\delta=m i n\left\{\delta_{1} \cdot \delta_{2}\right\} . \quad C l e a r l y, ~ d o m S\left[z_{i}^{\prime} ; \delta\right] \cap \operatorname{domS}\left[z_{j}^{\prime} ; \delta\right]=\varnothing i f i \neq j$.

Let $M_{1}=\left\{i: 1 \leq i \leq m, y_{i}<f\left(x_{i}^{\prime}\right)\right\}$ and $M_{2}=\left\{i: 1 \leq i \leq m, y_{i}^{\prime}>f\left(x_{i}^{\prime}\right)\right\}$.
For each $i \in M_{1}$ (resp. $i \in M_{2}$) let u_{i} (resp. v_{i}) be the function of Lemma $B 3$ with $x=x_{i}^{\prime}, y=y_{i}^{\prime}$, and δ as defined above, and define

$$
g(x)=\left[\begin{array}{ll}
u_{i}(x) & \text { if } x_{i}^{\prime}-\delta<x<x_{i}^{\prime}+\delta, \\
v_{i}(x) & \text { if } x_{i}^{\prime}-\delta<x<x_{i}^{\prime}+\delta, \\
f(x) & \text { otherwise. }
\end{array}\right.
$$

Clearly, $g \in \Phi$, and by (3) of Lemma B3, $||f-g||<\varepsilon / 2+2 \delta<\varepsilon$.
We now prove (1) and (2) of this Lemma. For this, we show that if hEX satisfies $||g-h||<\delta$, then h has property $\langle n\rangle$ on $\operatorname{Gr}(h \mid[1 / k, 1-1 / k])$.

First, since $\operatorname{Gr}(g) \cap \operatorname{s}\left[z_{i} ; \delta\right] \neq 0$ when $1 \leq i \leq m$, and since
$2 \delta\left\langle\delta\left(z_{i}\right)\right.$, we have $\operatorname{Gr}(h) \cap S\left[z_{i}^{\prime} ; \delta\left(z_{i}\right)\right] \neq 0$ when $1 \leq i \leq m$. Hence, by (b) and (c) above, h hias property $\langle n\rangle$ on the set $T=\operatorname{Gr}(n) \cap{ }_{i=1}^{U_{1}^{m}}\left\{s\left[z_{i} ; \delta\left\langle z_{i}\right\rangle\right] \cup S\left[z_{i}^{\prime} ; \delta\left(z_{i}\right)\right]\right\}$.

Let $(x, h(x)) E G r(h \mid[1 / k, 1-1 / k]) \backslash T$. Then, there exists an i such that $g(x)=u_{i}(x)$ or $g(x)=v_{i}(x)$. If not, then $g(x)=f(x)$, and since $||g-h||<\delta,|f(x)-h(x)|<\delta$, forcing $(x, h(x))$ to be in some $S\left[z_{i} ; \delta\left(z_{i}\right)\right]$ contradicting the choice of $(x, h(x))$.

First, assume that $g(x)=u_{i}(x)$, and let
($y, h(y)) \in S\left[z_{i}^{\prime} ; \delta\left(z_{i}\right)\right]$. By (3) of Lemma B3, since $(x, h(x)) E s\left[z_{i}^{\prime} ; \delta\left\langle z_{i}\right\rangle\right]$, it follows that $h(y)>h(x)$. Using Lemma $B 3$ and the fact that $x E T$, we can find a point a in $\operatorname{domS}\left[z_{i}, \delta\left(z_{i}\right)\right]$ such that $a<x<x_{i}$ and exactly one of the following is true:
(a) $h(x)>\max \left\{h(a), h\left(x_{i}\right)\right\}$;
(β) $h(x)<\min \left\{h(a), h\left(x_{i}\right)\right\}$.
If (α) is true, then, since $h(y)>h(x)$ and h is Darboux, h crosses the horizontal line $y=h(x)$ in at least two distinct points, one between a and y and the other between y and x_{i}. Hence, $\operatorname{Gr}(h) \cap K_{n}(x, h(x)) \neq \theta$, and h has property $\langle n\rangle$ at $(x, h(x))$. If (β) is true, we use (1) of Lemma $B 3$ and the fact that. h is Darboux to conclude that $\operatorname{Gr}(h) \cap K_{n}(x, h(x)) \neq 0$.

A similar argument holds if $g(x)=v_{i}(x)$. Therefore h has property $\langle n\rangle$ on $\operatorname{Gr}(h \mid[1 / k, 1-1 / k])$. This completes the proof.

Theorem B3. The class $\boldsymbol{\Psi}$ of functions $f \in \Phi$ having zero as a derived number at each point \times in I is residual in Φ.

Proof. For integers $n \geq 1$ and $k>2$, let $E(n, k)$ be the class of functions $f \in \Phi$ having property $\langle n\rangle$ on $\operatorname{Gr}\langle f|[1 / k, 1-1 / k])$. By the previous lemma, each $E(n, k)$ is residual in Φ.

Clearly, the class E of functions fed having zero as a derived number at the points 0 and 1 is residual in Φ. Since

As a corollary to Theorem B3 we have

Theorem B4. The class of functions f in Φ having every extended real number as a derived number at every point x in I is residual in Φ.

Proof. Let \mathbf{I} be the class of Theorem B3. For each real
number r, let L_{r} be the function defined by $L_{r}(x)=r x$ for all points x in I. Put $E_{r}=\left\{f+L_{r}: f \in \Psi\right\}$. Each E_{r} is residual in Φ. This follows from the easily proven fact that $N+L_{r}=\left\{f+L_{r}: f \in N\right\}$ is nowhere dense in Φ, if N is nowhere dense in Φ. Clearly, the family of functions $\cap\left\{E_{r}: r\right.$ is rational\} is the desired family.

Definition B1. A real-valued function f defined on I is said to be nowhere monotonic on I if it is not monotonically increasing or decreasing on any subinterval J of I.

Theorem B5. The class of functions f in Φ such that $f(x)+r x$ is nowhere monotonic for every real number r is residual in Φ.

Proof. This class is a superset of the class, Ψ, in Theorem B4. Let $f \in \Psi$. Then $f+L_{r}$ has all real numbers as derived numbers at every point x in I.

Suppose that $f+L_{r}$ is monotonic on some interval J. Say it is increasing on J. Then f has no negative derived numbers on J, a contradietion, proving Theorem BS.

We close this section with a discussion of the bilateral behavior of derived numbers of a function f in some residual subset of an $L-f a m i l y \Phi$. For $\Phi \subset b D B$, we denote by Φ, the class of functions $f \in \Phi$ having ∞ and $-\infty$ as derived numbers at each point $x \in I$. We begin with

Lemma 85. For any positive integer k greater than. 2, the class F_{k} of functions $f \in \Phi_{\infty}$ such that $\chi^{+}(f ; k) \cap C(f)$ is closed and nowhere dense in $C(f)$ is residual in Φ_{∞}. Proof. Let $E(f ; k)=\chi^{+}(f ; k) \cap C(f)$. First, we show that $E(f ; k)$ is closed in $C(f)$ whenever $f \in \Phi_{\infty}$.

Let $x \in C(f) \backslash E(f ; k)$. Then $K^{+}(x, f(x) ; k\rangle$ contains a point
($t, f(t)$). Clearly, there exists a $\delta>0$ such that
$\langle u, v\rangle \in S[x, f(x) ; \delta]^{\prime}$ implies $(t, f(t)) \in K^{+}(u, v ; k)$. Since fis
continuous at x, we can find an open interval J containing x such that $f(J) \subset S[x, f(x) ; \delta]$. Since $J \cap C(f) \subset C(f) \backslash E(f ; k)$, it follows that $E(f ; k)$ is closed in $C(f)$.

Now, for an interval I with rational endpoints, define $A(I ; k)=\left\{f \in \Phi_{\infty}: I \cap C(f) \subset E(f ; k)\right\}$. Since each $E(f ; k)$ is closed
in $C(f)$, it follows that $F_{k}=\Phi_{\infty} \backslash U_{I} A(I ; k)$, where the union is taken over all intervals I with rational endpoints. To complete the proof, it suffices to show that each $A(I ; k)$ is closed and nowhere dense in Φ_{∞}.

Let us show that $A(I ; k)$ is closed in Φ_{∞}. To this end, let $\left\{f_{\Omega}\right\}_{n=1}^{\infty}$ be a sequence of functions in $A(I ; K)$ converging to a function $f \in \Phi_{\infty}$. We must show that $f \in A(I ; k)$.

Suppose that $f \in \Phi_{\infty} \backslash A(I ; k)$. Then, there exists a point $x \in[I \cap C(f)] \backslash E(f ; k)$ such that $\operatorname{Gr}(f) \cap K^{+}(x, f(x) ; k) \neq 0$. Let $\langle t, f(t)\rangle E K^{+}(x, f(x) ; k\rangle$. Then there exists a number $\delta>0$ such that $(x-\delta, x+\delta) \subset I$, and $i f(u, v) \in S[x, f(x) ; \delta]$ then $S[t, f(t) ; \delta] \subset K^{+}(u, v ; k)$. Since $f_{n} \rightarrow f$ as $n \rightarrow \infty$, there exists an $N \geq 1$ such that $\left(t, f_{N}(t)\right) \in S[t, f(t) ; \delta]$. Moreover, since $n=1{ }_{n}^{\infty} C\left\langle f_{n}\right\rangle$ is residual in I, there exists $y E_{n} U_{1}^{\infty} C\left(f_{n}\right)$ suoh that $\left(y, f_{N}(y)\right\rangle \in S[x, f(x) ; \delta]$. But this implies that $f_{N} \mathbb{E A}(I ; k)$, which is a contradiction. Therefore $A(I ; k)$ is closed in Φ_{∞}.

Now we show that if $f \in \Phi_{\infty}$ and $\varepsilon>0$, then there exists a function $U \in \Phi_{\infty} \backslash A\langle I ; K\rangle$ such that $||u-f||\langle\varepsilon$. That is, $A\langle I ; k\rangle$ is nowhere dense in Φ_{∞}. Obviously, we may assume that $f \in \Phi_{\infty} \backslash A(I ; k)$.

Let $t \in I \cap C(f)$. Then there exists a number η, with $0<\eta<1 / k$. and $(t, t+\eta) \subset I$, and a point z in $(t, t+\eta)$ such that $\langle z, f(z\rangle+\varepsilon / 2) \in K^{+}(t, f(t) ; K\rangle$.

Choose $\delta>0$ such that $(z-\delta, z+\delta) C(t, t+\eta)$ and $\delta<\varepsilon / 4$. Since Φ_{∞} is àn L-family, there exists a function uEs satisfying the conclusions of Lemma $B 3$, with $x=z$ and $y=f(z)+\varepsilon / 2$: Moreover,
since $f(t\rangle=u\langle t\rangle$ and u and f have the same continuity points, we have that $t \in[I \cap C(U)] \backslash E(f ; k)$. Hence $u \in \Phi_{\infty} \backslash A(I ; k)$ and by (3) if Lemma B3, ||u-f||EE. This completes the proof.

Theorem 86. There exists a residual subset Ψ of Φ such that for every feit there exists a residual subset $E(f)$ of I such that every extended real number is a bilateral derived number of f at each $\times \in E(f)$.

Proof. For each fEs, let $E_{+}(f)$ (resp. $E_{-}(f)$) denote the set of points $x \in C(f)$ such that $-\infty$ is a derived number from the right (resp. left) at x, but that ∞ is not a derived number from the right (resp. left) at x. We will show that $E_{+}(f\rangle U E_{-}(f)$ is of first category for every function in some residual subset of Φ_{∞}.

For each $k>2$, let F_{k} be the residual subset of Φ_{∞} obtained from Lemma B5. Let $F={ }_{k} \bigcap_{3}^{\infty} F_{k}$. Clearly, F is residual in Φ_{∞}. Moreover, if fef, then $E_{+}(f)==_{.} \underline{U}_{3}^{\infty} E(f ; k)$ which is of first category in $C(f)$, and hence in I.

Similarly, there exists a residual subset F, of Φ_{∞} such
that for every $f \in F$, the set $E_{-}(f)$ is of first category in I. If we put $\Psi=F \cap F^{\prime}$, then it follows that Ψ is residual in Φ_{∞}. By Theorem B1, Φ_{∞} is residual in Φ. It follows that Ψ is residual in. Φ. Clearly, Ψ is the desired set and the proof is complete.

Two questions arise in connection with Theorem B6.

Question 81. Given an L-family Φ, does there exist a residual subset Ψ of Φ such that $i f f \in \Phi$, then every real number is a bilateral derived number of f at every point x in I ?

Question B2. Given an L-family Φ, does there exist a residual subset Ψ of Φ and a residual subset E of I such that $i f f \in \Psi$, then every real number is a bilateral derived number of f at every point of E ?

The first question has a negative answer for b, busc, $b D 1 s c, b \Delta$, and $b F_{i}(i=1,2, \ldots, 5)$. This is a consequence of a theorem of M. Chlebik, [5] Lemma 5, which implies the following

Theorem B7[Chlebik [5]]. Each of the families E, bDusc, $b D 1 s c, b \Delta$, and $b R_{i}(i=1,2, \ldots, 5)$ contains a residual subset Ψ such that if $f \in \Psi$, then f attains a relative maximum (and minimum) at exactly one point in each open subinterval of I with rational endpoints.

If Ψ is as in Theorem.$B 7$ and $f \in \Psi$, then number 1 is not a derived number at the points where f achieves a maximum. The answer to the second question is still open for many Lfamilies. However, it has a negative answer in the case of $b D B_{1}$, as the following theorem shows.

Theorem B8. For every residual subset Ψ of bDB, and every residual subset E of I there exists a function fex and a point $x \in E$ such that 1 is not a bilateral derived number of f at \times. Proof. Let Ψ be a residual subset of $b D B$, and let E be a residual subset of I. Let F be a bilaterally c-dense-in-itself F_{0} subset of E. Then, there exists a function fEbDR, such that $0<f(x) \leq 1$ for $x \in F,||f||=1$, and $f(x)=0$ if $x \in I \backslash F[1]$.

By Theorem B7, there exists a function gex which attains a relative maximum at exactly one point in each open subinterval of I with rational endpoints, and such that $||f-g||<1 / 4$. Clearly, g attains its maximum at a point $x \in E$. Therefore the number 1 is not a derived number at x. This completes the proof.
C. Intersections with Lines: In this section we consider the size and structure of the set consisting of the intersection of a line, with a given slope, with the graph of a function f. We begin with two definitions, the first of which is due to Bruckner and Garg [3].

Definition C1. A nowhere monotone function is said to be of the second species if $f(x)+r x$ remains nowhere monotone for every real number r.

Definition C2. A subset B of R is called a boundary set if Int $B=0$.

Theorem Cl[Bruckner-Garg [3]]. If a function f in $0 D B_{1}$ is of the second species, then for every countable set E of R there exists a residual set H in R such that $\{x: f(x)=r x+s\}$ is a dense-in-itself boundary set whenever r is in E and sisin H.

Theorem C2. There exists a residual set in in such that for each f in Ψ there exists a residual set $H(f)$ in R such that $\{x: f(x)=r x+s\}$ is a dense-in-itself boundary set whenever r is rational and s is in $H(f)$.
Proof. By Theorem BS, the set Ψ^{*} of functions $f \in \Phi$ of the second species is residual in Φ. Now apply the previous theorem with E the rational numbers.

Theorem C3. Let h be an arbitrary real-valued, continuous function defined on I. Suppose that $\Phi+h=\Phi$. Then there exists a residual subset $\Psi(h)$ in Φ such that for every f in $\Psi(h)$ there exists a residual set $H(f)$ in R such that $\{x: f(x)=h(x)+s\}$ is a dense-in-itself boundary set whenever's is in $H(f)$. Proof. It. is clear, from the hypothesis, that the mapping $\varphi: \Phi \rightarrow \Phi$ defined by $\varphi(f)=f-h$ is a homeomorphism of Φ onto Φ. By Theorem C2, there exists a residual set $\Psi^{*} C \Phi=\varphi(\Phi)$ such that for every $g \in \Psi^{*}$ there exists a residual set $H^{*}(g) \subset R$ such that $\{x: g(x)=s\}$ is a dense-in-itself boundary set whenever $\mathbf{s} \in H^{*}(g)$.

Since, $\Psi(h)=\varphi^{-1}\left(\Psi^{*}\right)$ is residual in Φ, it follows that for each $f \in \Psi(h)$ there $i s^{\prime \prime}$ a residual set $H(f)=H^{\prime \prime}(f-h) \subset R$ such that
$\{x:(f-h\rangle\langle x\rangle=s\}=\{x: f(x)=h(x)+s\}$ is a dense-in-itself boundary set whenever $s \in H(f)$. This proves the theorem.

Corollary C1. Let H be a countable family of real-valued, continuous functions defined on I. Suppose that $\$+h=\Phi$ for every h in H, then there exists a residual set $\Psi(H)$ in Φ such that for every. f in $\Psi(H)$ there exists a residual set $H(f)$ in R such that $\{x: f(x)=h(x)+s\}$ is a dense-in-itself boundary set whenever $h \in H$ and $s E H(f)$.

Proof. For each heH there exists, by Theorem C3, a residual set $\Psi(h) C \Phi$ such that $i f f \in \Psi(h)$, there exists a residual set $H(f, h) \subset R$ satisfying the conclusion of Theorem C3. Let $\Psi(H)={ }_{n} \cap_{H} \Psi(n)$, which is residual in Φ. Finally, iffex $f(H)$ we only need to take $H(f)={ }_{n} \hat{\Omega}_{H} H(f, n)$.

Corollary C2. Each of the families b, bousc, bDlsc, b Δ, and bre $\quad(i=1,2, \ldots 5)$ satisfies the hypothesis of Theorem $C 2$ and its corollary.

In Theorem 3.2 of [2], Bruckner shows that there exists a residual class N of continuous functions such that for each function f in N there exists a countable dense set $S_{f} C R$ such that the set E_{α}, defined by, $E_{\alpha}=\{x: f(x)=\alpha\}$, is a perfect set when $\alpha \in R \backslash S_{f}$ and is a nonempty perfect set union an isolated point when $\alpha \in S_{f}$.

We will show that for certain subfamilies Φ of bDB, there

```
exists a residual set N of \Phi such that for each f in N there
exists a countable dense set S f C R such that E E is a dense-in-
itself boundary G}\mp@subsup{G}{\delta}{}\mathrm{ set when aER\S f and is a nonempty dense-in-
itself boundary G}\mp@subsup{G}{\delta}{}\mathrm{ set union an i solated point when xES .
    This is an analogue to Bruckner's result since a dense-in-
itself boundary G}\mp@subsup{G}{\delta}{}\mathrm{ set is homeomorphic to the bilateral limit
points of the Cantor set.
    Many of the theorems and lemmas appearing below have
proofs similar to those found in [3]. We begin with the
following
```

Definition C3. A function f in bDB, will be called of oscillatory type if every extended real number is a derived number of f at every point x in I.

Remark C1. As a consequence of Theorem B4, the functions of oscillatory type form a residual subset of any L-family Φ.

Lemma Ci.. Let Φ be an L-family and let A consist of those functions f in Φ for which no set of the form $\{x: f(x\rangle=x\}$ contains more than one point at whioh the function achieves a relative extremum. Then A is a residual G_{δ} in Φ.

Proof. For two disjoint intervals I and J with rational endpoints, iet $A(I, J)$ denote the set of functions fES for which neither the supremum nor the infimum of f on I is equal to either the supremum or the infimum of f on J. We wish to show
that $A=\cap A(I, J)$ is a dense subset of Φ of type G_{δ}. For this purpose, it suffices to show that $A(I, J)$ is dense and open in Φ for every pair (I, J).

Suppose that I and J are disjoint closed intervals. Let E_{1} denote the class of functions $f \in \Phi$ such that
(*) $\sup \{f(x): x \in I\} \neq \sup \{f(x): x \in J\}$.
Choose $f \in E_{1}$. Write $\alpha=\sup \{f(x): x \in I\}$ and $\beta=\sup \{f(x): x \in J\}$, arid set $\varepsilon=|\alpha-\beta|$. It is clear that if $g \in \Phi$ and $||f-g||<\varepsilon / 2$ then $g E_{1}$. Hence, E_{1} is open. To see that E_{1} is also dense, let f be an open subset of Φ, then g contains an open set $g_{h}=\{g:||g-h||<\varepsilon\}$ for some $h \in \mathcal{g}$ and some $\varepsilon>0$. We must show that $E_{1} \cap \mathcal{F}_{h} \neq 0$. To do this, assume that $\sup \{h(x): x \in I\} \geq$ $\sup \{h(x): x \in J\}$. By Lemma $B 3$, there exists a function $g \in \Phi$ such that $||h-g||<\varepsilon,\{x: g(x) \neq h(x)\} \subset I$, and $\sup \{g(x): x \in I\}>$ $\sup \{h(x): x \in I\}$. Hence, $g \in E_{1}$, and since $||g-h||<\varepsilon$, we see $g \in g_{h} \subset$ 8. Thus, $E_{1} \cap \forall \neq 0$ and E_{1} is dense in. Φ. Now, replacing "sup" by "inf" in one or both sides of the inequality in (*) above, we arrive at the sets E_{2}, E_{3}, and E_{4} which are also dense and open in Φ. It is clear that $A(I, J)=$ $i n^{4} E_{i}$ and that $A(I, J)$ is therefore dense in and open in Φ.

Definition C4. A subfamily Φ of $b D B_{1}$ is calledan $L^{\prime \prime \prime}$-family if it is an L-family and there exists a residual set Ψ of Φ such that each f in it attains a relative maximum (and minimum) at exactly one point in each open subinterval of I.

Lemma C2. The families C, bDusc, bDlsc, b Δ, and b;
$(i=1,2, \ldots, 5)$ are all L-families.

The proof of Lemma C 2 is a direct consequence of Theorem B7.
In the next theorem we will use the following notation.
Let Φ be an L-family and let feథ. We set $M_{f}=\sup \{f(x): x \in I\}$ and $m_{f}=\inf \{f(x\rangle: x \in I\}$.

Theorem C4. Let Φ be an $L^{* \prime-f a m i l y}$ and let N be the class of functions f in Φ to each of which corresponds a dense denumerable subset S_{f} of the interval $\left\langle m_{f}, M_{f}\right.$) such that $E_{\alpha}=\{x: f(x)=\alpha\}$ is
(1) a dense-in-itself boundary G_{δ} set when $\alpha \in S_{f} \backslash\left\{m_{f}, M_{f}\right\}$,
(2) a single point when $\alpha=m_{f}$ or M_{f},
(3) of the form $C_{\alpha} \cup\left\{x_{\alpha}\right\}$ where C_{α} is a nonempty dense-in-itself boundary G_{δ} set and x_{α} is an isolated point of E_{α}.

Then N is residual in Φ.
Proof. Let B be a residual set in Φ such that each f in. B attains a relative maximum (and minimum) at exactly one point. in each open subinterval of I. Let Ψ be the intersection of B with the residual subset in Remark C1. Then Ψ is residual in Φ and each set E_{α} of a function f in Ψ is a boundary G_{δ} set. We will show that $\Psi \subset N$ from which it will follow that N is residual in Φ.

Since f is of oscillatory type, a point will be isolated in some ε_{α} if and only if fachieves a strict extremum at x. [t follows, from Lemma C1, that each point of extremum is a strict point of extremum. Since a function fei attains a point of extremum in each open subinterval of I, it follows that the set, D, of points of extremum of a function fet is dense in I. Moreover, since each point of extremum is a strict point of extremum, D is denumerable.

We now show that $f(D)$ is a denumerable set dense in $\left(m_{f}, M_{f}\right)$. Clearly, $f(D)$ is denumerable. If $f(D)$ is not dense, then there exists an interval $(c, d\rangle \subset\left\langle m_{f}, M_{f}\right\rangle$ for which $f(D) \cap(c, d)=0$. Pick $\delta>0$ so that $\delta\langle(d-c) / 2$ and $1 e t$ $E=c 1 f^{-1}(c+\delta, d-\delta)$. Clearly, E is a nonempty perfect set.

Choose x to be point in E at which $f \mid E$ is continuous. This is possible since $f \in D B_{1}$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in $f^{-1}(c+\delta, d-\delta)$ approaching x. Since Φ is an L^{*}-family, the function f achieves a maximum and a minimum on each interval of the form $\left(x_{n}, x_{n+1}\right)$. Since $f(D)^{\wedge} \cap(c, d)=0, i t$ follows that the image of the extrema points on $\left(x_{n}, x_{n+1}\right)$ lie outside (c, d), and since $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and f is Darboux, it follows that the interval [c,d] is contained in a cluster set of fat x. It follows that (c, d) is contained in the cluster set of f|E at x. This contradicts the continuity of $f \mid E$ at x.

Now, iet $S_{f}=f(D) \backslash\left\{m_{f}, M_{f}\right\}$. Then, for any real number α, if aE $S_{f} U\left\{m_{f}, M_{f}\right\}$ then, since $f i s$ of oscillatory type, E_{α} contains no isolated points. Hence, E_{α} is a dense-in-itself

```
boundary G}\mp@subsup{G}{\delta}{}\mathrm{ set. If }\alpha=mf\mp@code{or M}\mp@subsup{M}{f}{}\mathrm{ , then E E is a single point
since the maximum and minimum of f over the interval I are
unique. Finally, if \alphaES f the E
extrema, }\mp@subsup{x}{\alpha}{}\mathrm{ . The point }\mp@subsup{x}{\alpha}{}\mathrm{ is isolated, and since m
since f is Darboux there are other points of E E . Since none of
these points are isolated, it follows that E N \{\mp@subsup{x}{\alpha}{\prime}}}\mathrm{ is dense-in-
itself. Thi.s completes the proof.
```


Bibliography

[1] S. Agronsky, Characterizations of certain subelasses of the Baire class l, Ph.D. dissertation, Dept. of Mathematics, University of California, Santa Barbara, 1974.
[2] A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Mathematics, 659, Springer-Verlag (Berlin, 1978).
[3] A. M. Bruckner and K. M. Garg, The level set strueture of a residual set of continuous functions, Tran. Amer. Math. Soc., vol.232 (1977), pp. 307-321.
[4]. A. M. Bruckner and G. Petruska, Some typical bounded Baire, functions, Acta Mat. Hung., vol.43,(3-4) (1984), pp. 325-333.
[5] M. Chlebik, Extréme typiky̆h reálnych funcki'i, to appear.
[6] J. G. Ceder and Gy. Petruska, Most Darboux functions map big sets into small sets, Acta Math. Hung., vol.41(1983), pp.37-46.
[7] I. Mustafa, On residual subsets of Darboux Baire class i functions, Real Anal. Exch., vol. 9 no. 2 (1983-84), pp. 394-395.
[8] I. Mustafa, On Darboux Semi-continuous Functions, Ph.D. dissertation, University of California, Santa Barbara (1985)
[G] D. Rinne, On Typical Bounded Functions in the Zahorski classes, Real Anal. Exch., vol. 9 no. 2 (1983-84), pp. 483-494.
[10] Z. Zahorski, Sur la premier derivee, Trans. Amer. Math. Soc., vol.69 (1950), pp. 1-54.

Received August 19, 1985

