RESEARCH ARTICLES Real Analysis Exchange Vol. 12 (1986-87)

Jan Malý, matematicko-fyzikálnî fakulta UK, 186 00 Praha 8, Sokolovská 83, Czechoslovakia

Perfect level sets in many directions

The so-called locally recurrent functions are defined by the following property: for every $c \in R$ the set $\{x : f(x) = c\}$ is perfect. (We include the empty set among the perfect sets.) The existence of a nonconstant continuous localy recurrent function is not obvious, but there are several known examples. (See e.g. Bush (1962, [2]).) In the present paper we construct a continuous function f on [0,1] such that the functions $f - \lambda id$ are locally recurrent for every $\lambda \in \Lambda$, where $\Lambda \subseteq \mathbb{R}$ is a given countable set. (The function id is defined by id(x) = x.) This construction cannot be improved to Λ being uncountable because of the results of Bruckner and Garg (1977, [1]) concerning the level sets of arbitrary continuous functions. (Gillis (1939, [3]) claimed that one can take $\Lambda = \mathbb{R}$, but this is a mistake.) Further, we show that every continuous functions.

<u>Definition</u>. A function u on [0,1] is termed <u>admissible</u> if there is a finite set $A_u < (0,1)$ such that

- (1) if $I \in [0,1] \setminus A_u$ is an interval, then u is linear on I,
- (2) $u(x) < \liminf_{y \to x} u(y)$ for every $x \in A_u$.

<u>Lemma</u>. Let s, -t be admissible functions on [0,1], t \leq s on [0,1]and t \leq s except on a finite set. Let $\epsilon > 0$ be given. Then there are admissible functions s*, -t* on [0,1] such that

- (1) $t \leq t \leq s \leq s$ on [0,1],
- (2) $t \ll s \ll except$ on a finite set,
- (3) $s* t* < \varepsilon$ on [0,1],
- (4) if f is a continuous function on [0,1], $t \neq f \neq s \neq s$, then for each $x \in [0,1]$ there is $y \in [0,1]$ such that $0 < |x - y| < \varepsilon$ and f(x) = f(y).

<u>**Proof.</u>** We can easily find a continuous function g on [0,1] such that $t \leq g \leq s$ on [0,1] and $t \leq g \leq s$ wherever $t \leq s$. Using the uniform continuity of g on [0,1] we find a partition</u>

$$0 = z_0 < z_1 < \ldots < z_p = 1$$

of the interval [0,1] such that for every j = 1,...,p and $I = [z_{j-1},z_j]$ we have $z_j - z_{j-1} < \varepsilon$, and one of the following situations happens:

- (1) $(A_{s} \cap I) \cup (A_{t} \cap I) \subset \{z\}$ for some $z \in (z_{j-1}, z_{j})$, there are $\alpha, \beta \in \mathbb{R}$ such that $\beta - \alpha < \varepsilon$, $t \neq \alpha < g < \beta \neq s$ on $I \setminus \{z\}$,
- (2) $A_s \cap I = \{z\}$ for some $z \in (z_{j-1}, z_j)$, s(z) = t(z), t is linear but nonconstant on I, there are $\alpha, \beta \in \mathbb{R}$ such that $\beta - \alpha < \varepsilon$, inf_I t < $\alpha < g < \beta \leq s$ on I,
- (3) $A_{-t} \cap I = \{z\}$ for some $z \in (z_{j-1}, z_j)$, s(z) = t(z), s is linear but nonconstant on I, there are $\alpha, \beta \in \mathbb{R}$ such that $\beta - \alpha < \varepsilon$, $t \leq \alpha < g < \beta <$ suppression I.

Fix $j \in \{1,...,p\}$ and let $I = [z_{j-1}, z_j]$. If (1) holds on I, choose points $y_i \in (z_{j-1}, z_j) \setminus \{z\}$, i = 1, 2, 3, 4, $y_1 < y_2 < y_3 < y_4$, and put

$$s * = \begin{cases} \alpha & \text{on } \{y_1, y_3\} \\ g & \text{on } \{z_{j-1}, z, z_j\} \setminus \{0, 1\} \\ \beta & \text{elsewhere on } I, \end{cases}$$
$$t * = \begin{cases} \beta & \text{on } \{y_2, y_4\} \\ g & \text{on } \{z_{j-1}, z, z_j\} \setminus \{0, 1\} \\ \alpha & \text{elsewhere on } I. \end{cases}$$

If (2) holds on I, choose points $y_i \in (z_{j-1}, z_j)$, i = 1, 2, 3, 4, such that $t(y_i) < \alpha$ and $y_1 < y_2 < y_3 < y_4$. Further denote by y_0 the point of I satisfying $t(y_0) = \alpha$. Define s* as in the previous case and put

$$t * = \begin{cases} \beta & \text{on } \{y_2, y_4, y_0\} \\ g & \text{on } \{z_{j-1}, z, z_j\} \setminus \{0, 1\} \\ \max(t, \alpha) & \text{elsewhere on } I. \end{cases}$$

If (3) holds on I, we proceed symmetrically as in (2). It is easy to see that we have constructed admissible functions s^* , $-t^*$ on [0,1], $t \le t^* \le s^* \le s$, $s^* - t^* < \varepsilon$ and $t^* < s^*$ except on a finite set. Choose a continuous function f on [0,1], $t^* \le f \le s^*$, and $x \in [0,1]$. Find $j \in \{1,...,p\}$ such that $x \in [z_{j-1}, z_j]$. Let α , β , y_i be as in the construction. Let J be one of the intervals $[y_1, y_2]$, $[y_3, y_4]$ such that $x \notin J$. Then we have

$$\inf_{T} f = \alpha \leq f(x) \leq \beta = \sup_{T} f$$

By the Darboux property of continuous functions there is $y \in J$ with f(y) = f(x). Of course, $0 < |x - y| \le |z_j - z_{j-1}| \le \varepsilon$.

<u>Theorem</u>. Let $\Lambda \subseteq \mathbb{R}$ be a countable set. Then there is a continuous function f on [0,1] such that for every $\lambda \in \Lambda$ and $c \in \mathbb{R}$ the set

$$\{x : f(x) = \lambda x + c\}$$

is perfect.

<u>**Proof.**</u> Let $\{\lambda_n\}$ be a sequence of reals such that every $\lambda \in \Lambda$ equals λ_n for infinitely many indices n. By means of induction we construct sequences $\{s_n\}$, $\{-t_n\}$ of admissible functions on [0,1] such that

(1) $t_1 \neq t_2 \neq \ldots \neq s_2 \neq s_1$, (2) $|s_n - t_n| < 2^{-n}$, $t_n < s_n$ except on a finite set, (3) if h is a continuous function on [0,1] with $t_n \neq h \neq s_n$, then for every

> x ϵ [0,1] there is y ϵ [0,1] such that 0 < |x - y| < 2⁻ⁿ and h(x) - $\lambda_n x = h(y) - \lambda_n y$

Namely, apply the Lemma to $s = s_{n-1} - \lambda_n id$, $t = t_{n-1} - \lambda_n id$ (taking $s_0 = 1$, $t_0 = 0$ for the first step n = 1) and put $s_n = s^* + \lambda_n id$, $t_n = t^* + \lambda_n id$.

It is easy to see that the function

$$f = \lim_{n \to \infty} s_n = \lim_{n \to \infty} t_n$$

has the required properties.

<u>Remark.</u> Let g be a continuous function on [0,1], and let

The set B is countable. Let us construct a continuous function f on [min g - 1, max g + 1] such that both the functions f + id, f - id are locally recurrent. By a slightly more careful treatment of the construction, we can achieve that every $x \in B$ is a bilateral point of accumulation of the sets

$$\{y : f(y) - y = f(x) - x\},\$$

$$\{y : f(y) + y = f(y) + x\}.$$

Then the functions $\frac{1}{2}(g - f \cdot g)$, $\frac{1}{2}(g + f \cdot g)$ are locally recurrent and their sum equals g.

References

- 1. A.M. Bruckner, K.M. Garg: The level structure of a residual set of continuous functions. Trans. Amer. Math. Soc. 232 (1977), 307-321.
- 2. K.A. Bush: Locally recurrent functions. Amer. Math. Monthly 69 (1962), 199-206.
- 3. J. Gillis: Note on a conjecture of Erdös. Quart. J. math. Oxford Ser. 10 (1939), 151-154.

Received March 12, 1984