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 A CONCEPT OF DIFFERENTIAL BASED ON VARIATIONAL

 EQUIVALENCE UNDER GENERALIZED RIEMANN INTEGRATION

 For appropriate types of integral the variational equivalence S~T of

 two objects of integration S,T is the relation /|S-T| = 0. Kolmogorov [11]

 introduced such a notion, aptly called "differential equivalence," for set

 functions. He discussed its basic properties and even noted the differential

 invariance of Lipschitz functions. Variational equivalence has been used in

 the development of the generalized Riemann integral [6], [7], [8]. It is

 essential for the definition of the variational integral. But we contend it

 has a more important role to play. If S~T and S is integrable then so

 is T and moreover /S = /T. Thus the ultimate object of integration in not

 S itself but the equivalence class a « [S] to which S belongs. Our con-

 tention here is that these equivalence classes provide a viable mathematical

 formulation for a concept of differential. Differentials defined in this way

 greatly facilitate the study of the integral and afford easy access to its

 applications. We gain a rigorous foundation for a calculus of differentials

 that includes differentials of discontinuous functions.

 In this survey we explore the feasibility of integrational definition of

 differential by applying it to the exposition of a specific type of integral.

 We use a modification of Kurzweil's generalized Riemann integral [8]. Where

 Kurzweil allows the tag for a cell to be any point in the cell we demand that

 the tag be a vertex of the cell. The differentials induced by this integral

 have many desirable properities. A suitable subclass of them conforms to the

 classical formulas of differential calculus. Our differentials yield elegant
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 formulations for arc length in an arbitrary norm. They offer some new con-

 cepts that should prove useful for analysis.

 Hopefully this survey will motivate analysts to study differentials

 induced by this and other types of integrals [9]. Such studies could yield

 new perspectives on differentials in their various manifestations.

 We shall define m-differentials on an n-cell K (a product of n closed

 intervals) and more generally on an n-figure (a finite union of n-cells).

 The m-differentials on K form a Riesz (lattice-ordered, linear) space on

 which all 1-functions on K act as multipliers. If || || is any norm on

 IRm and a is an m-differential on K then |M| is a 1-differential on

 K. Every m-differential a on K has a lower and upper integral with

 values in [- , «]m. a is integrable whenever these are equal and finite.

 Every m-function x » (xļ,...,xm) on K has an integrable m-differential

 dx ■ (dxi,. . . ,dxm) with /k dx = Ax(K) where A is the operator product of

 the partial difference operators in each coordinate across K. The differen-

 tial ļ dx I a (|dxļ|,. . ., |dxm| ) is integrable whenever x is of bounded var-

 iation, that is, whenever the 1-differential ||dx||i = |dxi| + ...+ |dxm|

 is integrable on K. For x of unbounded variation /« ||dx||i » «. Every

 integrable m-differential on K is the differential dx of some m-function x

 on K. Under mild restrictions which always hold in classical applications we

 get the chain rule formulas and the existence of various products of differ-

 entials.

 For the generalized Riemann integral [8], [12], and especially [17] are

 helpful. But none of these is essential here. An exposition of 1-differen-

 tials on 1-cells along the lines developed here is given in [16]. An exten-

 sive bibliography for the generalized Riemann integral can be found in [19].
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 For basic facts about Riesz spaces see [5]. We use only standard analysis

 here. A nonstandard approach to the generalized Riemann integral can be

 found in [1].

 1. PRELIMINARY DEFINITIONS. Let M be the set of all positive integers, rR

 the set of all real numbers, and IR+ the set of all t > 0 in IR. An m-func-

 tion is any mapping into IRm. For a = (aļ,...,an) and b » (bļ,...,bn) in

 IRn define a < b (a < b) to be a-j < bj (respectively a-j < b-¡) for i =

 l,...,n. Given a < b define the n-cell [a,b] to be the set of all t in

 Rn such that a < t < b. Since [a,b] is just the cartesian product of the

 1-cells [a-f, b-j], t is interior to [a,b] if and only if a < t < b. A

 point t in JRn is a vertex of [a,b] if ti is an endpoint of [a-j.b-j]

 for i = l,...,n. A tagged n-cell (I,t) is an n-cell I with selected

 vertex t. An n-figure F is a nonvoid union of finitely many n-cell s in

 !Rn. Two n-figures overlap if their intersection contains an n-cell. A

 finite set of n-cell s partitions (isa partition of ) their union F if no

 two of them overlap. A division ^ of an n-figure F is a finite set of

 tagged n-cell s which partition F. A gauge on F is a function 5 on F

 into IR+. A tagged n-cell (I,t) is ¿-fine if I is contained in the

 Euclidean ball of radius ¿(t) about t. A ¿-division is a division whose

 members are ¿-fine. For any gauge ¿ on an n-cell K the existence of a

 ¿-division of K can be proved by induction on n using a Heine-Borei argu-

 ment [17]. Thus, since every n-figure F can be partitioned into n-cell s,

 every ¿-division of an n-figure contained in F can be extended to a ¿-divi-

 sion of F.

 An m-summant S on an n-figure F is an m-f unction S(I,t) on the set

 of all tagged n-celļs (Ł,t) in F. For such S each division of F

 yields a Riemann sum £(S,^), the sum of S(I,t) over all (I,t) in 3**
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 S is integrable with integral /S ■ c in Rm if given e in R+ there exists

 a gauge 5 on F such that in the Euclidean norm | | c-E(S.O^) | | < e for

 every 6-division 3? of F. A necessary and sufficient condition for S to

 be integrable is the Cauchy criterion: given e in IR+ there exists a

 gauge 6 on F such that ||Z(S,v)^ļ) - s ( S ,3^* 2^11 < e 6-divisions

 3^1 and of F. The function space of all m-summants on F is a

 Riesz space. The integrable m-summants form a linear subspace Im of

 on which the integral acts as a positive linear m-f unction. But Im is not

 a Riesz space. It fails to be a lattice because integrability of S » (Sļ,

 ...,Sm) does not imply integrability of |S| = ( |Si| , . . . , |Sm| ) although

 it does imply (See THEOREM 4) that /|S| exists in [0,«]m. S is absolutely

 integrable if both S and |S| are integrable. Clearly S is integrable

 if and only if all its component 1-summants Si,...,Sm are.

 For S an m-summant on F define the. lower and upper integrals to be

 the lower and upper limits in of the Riemann sums of S. Explicit-

 ly for each gauge 6 on F define £(S,5) to be the infimum in [- ,«]m,

 T(S,6) the supremum, of all sums Z(S,cř) with ^ any 6-division of F.

 Define the lower integral /S ■ ^ £(S,6) and the upper integral /S = 1n^ • 6

 T(S,6) where 5 runs -through all gauges on F. For -S = (Sļ,...,Sm) we

 clearly have '/ S = (/Sļ,...,/Sm) and fS s (/Si", . . . ,/Sm). S is integrable if

 and only if its lower and upper integrals are equal and finite. Moreover,

 /S = /S = / S for S integrable. By extension we use this to define /S in

 [-oo,»]m whenever /S = /S .

 A cell summa nt is a summant S(I,t) = S ( I ) whose values are independent

 of the tag t. Similarly a tag summant T(L,t) » T(t) depends only on the •

 tag t.

 2. DIFFERENTIALS. Hereafter F will always be an n-figure. In the Riesz
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 space <îm of all m-summants on F those S for which /|S| =0 form a

 Riesz ideal Zm. That is, Zm is a linear subspace of which is solid:

 If Ss 'Sļļļj T £ Z u), and |S| < ļ T ļ then S s Z^. Thus = ^m/^m ^ ®

 Riesz space with the linear and lattice operations transferred homomorphical-

 ly from to Dm. We define an m-dif ferenti al a on F to be any element of

 Dm. Explicitly a is an equivalence class [S] of m-summants on F under

 the equivalence S ~ T defined by / ļ S - T| = 0. S ~ T if and only if

 Sļ ~ Tļ for i =l,...,m. So a = [S] has 1-differential components a-j = [S-j]

 for S » (Sļ

 tials p ■ [R] and a = [S] on F the homomorphism gives p+a = [R + S], co -

 [cS] for any scalar c, |a| » CļSļ], p/'a » [RaS], pva = [RvS], a+ = [S+],

 and a' 3 [S"]. It is useful to transfer the differential ordering p < a

 defined by (p - a)+ = 0 to representative summants. So define R < S to

 be /(R - S)+ = 0. Then R ~ S if and only if both R < S and S < R. It is

 easy to see that R < S implies /R < / S and /R < /S. So R ~ S implies

 /R » / S and /R = / S. Thus we can effectively define the lower and upper

 integrals of any differential a = [S] by fa - ¡S and Ja = / S. Define fa =

 fa - fa whenever the lower and upper integrals are equal. Call a i nte-

 grable (absolutely integrable) whenever S is so, respectively. Define

 n(a) 3 II /M 111 " 2i=l /kil for every m-differential a = (<Jļ,. . . ,am) on

 F. łi has all the properties of a Riesz norm (a norm such that m(p) < m (a)

 whenever |p| < ļ a | ) on Dm except that it is improper: *i(cr) = « for some

 a. Indeed, Dm being nonarchimedean admits no proper Riesz norm. Scalar

 multipliers have discontinuities.

 Let Z be mapping of in-t0 f°r which there exists c in R+ such

 that 1 1 (Z(S) - Z(T) ) (I, t) I |i < c| I (S - T )(I,t)||i for all S, T in and
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 all tagged n-cells (I,t) in F. Under this Lipschitz condition Z transfers

 homomorphically to a mapping of IDm into D|< effectively defined by Z (a) =

 CZ(S)] for o - [S]. Later it will be clear that this is effective even if c

 is a positive 1 -function on F.

 Every Lipschitz k-function f on lRm induces a transferable mapping Z

 defined by Z(S)(I,t) » f(S(I,t)). We can apply this to any norm f(r) ®

 1 1 r J I on IRm to get a 1-differential IMI s [||S||] for every m-differen-

 tial a - [S]. Clearly ||a|| » 0 if and only if a = 0. Also 1 1 a 1 1 > 0,

 I I a + t|| < 1 1 a 1 1 + J |x| I, and ||c<j|| = |c| ||cr|| for m-differentials a,t

 on F and scalar c.

 3. INTEGRABLE DIFFERENTIALS. A coordinate hyperplane H in IRn cuts an

 n-cell K if H intersects the interior of K (thereby partitioning K into

 two abutting n-cells). Our first theorem exploits the restriction of tags to

 the vertices of cells.

 THEOREM 1. Given a partition of F there exists a gauge 6 on F such

 that every 6-division of F refines -P.

 P-F. Let Hļ,...,H|< be all the coordinate hyperplanes which pass through any

 vertices of n-cells belonging to An n-cell in F which is not cut bý

 any Hj must be contained in some member of "P. Take 6 on F fine enough

 so that 6 ( t ) is less than the distance from t to each Hj that does not

 contain t. Consider any 6-fine (I,t) in F. Since t is a vertex of I

 no coordinate hyperplane through t cuts I. By our choice of 6 no Hj

 which avoids t can cut I. So no Hj cuts I;

 Hereafter we shall use /p in place of / wherever the figure over

 which we are integrating may be amibiguous.
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 THEOREM 2. Let a be an Hi-differential on the union C of two non-over-

 lapping n-figures A,B. Then £ça s £a 0 + Lb 0 an<* ¡C a s ¡A a + ¡B a

 ignoring the indeterminate form « - «. If a is integrable on both A and

 B then a is integrable on C and Je a = /a 0 + /b a«

 PF. Let 'A0 partition A andM30 partition B. Then <0 =uA0U"B0 partitions

 C. By THEOREM 1 there exists a gauge 6 on C such that every 5- di vision -C

 of C refines <0. Thus < is the union of 6-di visions J' of A and -6 of

 B. So E(S.'C) = £ (S,J') + E ( S ,"B ) for any summant S. Since 5-fine *A,i3 may

 be chosen independently to form such we have THEOREM 2.

 THEOREM 3. Let a be an integrable m-differential on F. Let Sea.

 Then S is uniformly integrable on all n-figures E contained in F. Spe-

 cifically if <S is a gauge on F such that

 (1) 1 1 E ( S ,3e) - ff a I ļ < e for every 6-division of F

 then for every n-figure E contained in F

 (2) 1 1 £(S,5) - ¡i a J 1 < e for every 6-division 2 of E.

 PF. Let the n-figure D be the closure of F'E. Given e in IR+ take a

 gauge 6 on F so that (1) holds. Take any ô-division JÕ of D. Given <5-

 divisions Sļ, of E let = oõ u Sj for i = 1,2. Each ^ is a 5-
 division of F. So ||£(S, £ļ) - £(S, 2-2)11 * ll^tS.J^i) - s ( S, 0^2 ) I I * 2e

 by (1). The Cauchy criterion for integrability of S on E is thus satis-

 fied. So a is integrable on E. For ê = êj, and ^"-3^1 THEOREM 2 and

 (1) imply ||E(S,S) - /E a|| = | JeCS,^») - E(S,^) + /D a - JF a| | <

 I |ï(s,^) - /f <j|| + II/d^ " E(S,«Ô)|| < e + II/d a - £(S,<jÔ)||. Taking <&■

 fine enough we can force the last norm towards 0 giving (2).
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 Call a summant S on F addi ti ve if S is a cell summant such that

 S(K) = E(SrP) for every n-cell K in F and partition ^ of K. It suffices

 for this to hold for all two-member partitions since every partition has a

 refinement formed by finitely many cuts with coordinate hyperplanes.

 THEOREM 4. Let a be an integrable m-differential on F. Define the

 additive summant S on F by

 (3) S(I) ■ / J a for every n-cell I contained in F.

 Then tea. For || || any norm on IRm, /p IM| exists in [0,®] and

 (4) ¡f I M I = sup I(||§||/P) over n-cell partitions -P of F.
 *P

 Similarly / p | a ļ » sup Z ( ļ | , -P ) in C0,®]m.
 -P

 PF. Existence and addi ti vity of t follow from THEOREM 3 and THEOREM 2.

 Let Sea. Given e in IR+ take a gauge * 5 on F such that (1) holds for

 II ||ļ. Given any 6-division of F and 1 < i < m let consist of all

 members of 3^ at which Si > $f. Let E-j be the union of the cells from

 €■{. For each i, E ( ( S-f - $j)+> «X) ■ £(Sļ - %, ê-j) ■ S ( Sļ , êj) - ļg a-j
 i

 < 1 1 £ ( S , ēļ) - fe CT 1 1 1 < e by THEOREM 2 and THEOREM 3. Summing over i we
 i

 get I J E ( ( S-^)+, J^)! li <-me. So 1 1 Z( | S-S ļ , ) | Il < 2me for every <S-
 ^ A /S A division'^ ^ of F. Hence S ~ S. So S e a. Since ||S|| is subadditive

 E(||§|j;4>) < ^(llsll,^) for «Q a refinement of -P. Given a partition -P

 of F choose <5 by THEOREM 1. Then £(| |Š| | ,<?) < E ( 1 1 S 1 1 , ) for every

 6-division -J^of F. This gives (4). Apply (4) to each component a-,* of a

 to prove the final statement in THEOREM 4. (The statement that tea is a

 differential formulation of Henstock's Lemma.)

 Using additive summants one can easily see that the integrable m-differ-

 entials on F form a complete topological group under addition and the im-
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 proper norm ß(a) » ff |Mli.

 Let us characterize the ordering for integrable differentials.

 THEOREM 5. Let a be an integrable m-differential on F. Then a > 0

 if and only if /¡ a > 0 for every n-cell I in F. So a = 0 if and only

 if ¡i a - 0 for every n-cell I in F.

 PF. Given a > 0 let Sea. Then S+ e a+ = a. So /¡ a = S+ > 0.

 Conversely if /¡ a > 0 for all I then S' > 0 by (3). Sea by THEOREM
 4. So t ■ $+ e a+. Hence a = a+ > 0.

 A regular closed set A is the closure U of an open set U, in par-

 ticular the closure of the interior A* of A. The regular closed subsets

 of a regular closed set C form a boolean algebra -fl(C) with lattice oper-

 ations Avb * AUB, AAB = (An B)°, and A" ». C'A. The n-figures contained

 in an n-cell K = [a,b] form a boolean subalgebra -F(K) of •'R(K). Let us

 review some facts [15],

 Let (-, t] consist of all s in IRn with s < t. The set of all

 (-,t] with t in K forms a meet-semi lattice *B(K) which is a basis for

 the boolean subalgebra ^(K) of ^(-«.b] that it generates. That is, every

 m-f unction S(-«,t] on -B(K) has a unique extension to an additive m-f unc-

 tion S on ^(K), S(AUB) » S ( A ) + S(B) for nonoverlapping A,B invA(K).

 Moreover -f(K) is contained in vA(K). For I = [q,r] an n-cell in K the

 extension is prescribed by the inclusion-exclusion formula

 (5) S(I) = z (-i)M(I't) s(- ,t]
 teV

 where V is the set of all 2n vertices of I and M(I,t) is the number

 of coordinates of t for which t-¡ 3 q-¡. Given an m-f unction x on K we
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 can set Sí-.t] » x(t) in (5) to define an additive m-summant Ax on K

 by

 (6) Ax ( I ) = Z (-l)M((I,t) X ( t) .
 teV

 Given h in |Rn let h(i) be the point in IRn with i-th coordinate h-¡

 and all other coordinates 0. Define the shift operator E-j by (Eļx) (t) =

 x(t + h(i)). Let A-j » E-j - 1 where 1 is the identity operator. Since E-¡,

 ...,En commute the sum in (6) is the expansion of Aļ...An = (Eļ - 1)...

 (En - 1) acting on x(t) at t=q with h = r-q. (This formula gives an

 alternate proof of the addi ti vity of Ax.)

 Define the m-differential dx on K by

 (7) dx » [Ax].

 The operator a in (6) maps m-functions linearly into m-summants. So d.

 maps m-functions linearly into m-differentials. d maps constant functions

 into 0.

 Hereafter we may revert to the notation /ab for /[a,b]» We a^s0 de"

 fine /ab a * 0 for a any differential on an n-cell containing a,b if

 Ca,b] is degenerate, a < b but a / b.

 THEOREM 6. An m-differential a on F is integrable if and only if o »

 dx for some m-f unction x on F. Ax(I) a /¡ dx for every m-f unction x

 on F and every n-cell I contained in F.

 PF. Let a be integrable on F. By THEOREM 2 and THEOREM 3 we need only

 consider the case where F is an n-cell [a,b]. Define x by

 (8)' x(t) s /a* a for a < t < b
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 which exists by THEOREM 3. x(t) = t[a,t] for a < t < b by (8), (3). So

 Ax = S by (5), (6). Hence dx = a by THEOREM 4. The rest of THEOREM 6 fol-

 lows trivially from (7) since Ax is additive.

 Let X be an m-f unction on an n-cell K = [a,b] with |dx| integra-

 ble. By THEOREM 6 there exists an m-function v on K with dv = |dx|,

 namely v(t) = fãt |dx|. Let y = (v+x)/2 and z = (v-x)/2 to get the

 Jordan decomposition x = y-z with v = y+z, dy = (dx)+ and dz = (dx)".

 Using THEOREM 6 and (6) it is an easy exercise to show that given an in-

 tegrable in-differential a on an n-cell K, a point c in K, and an m-

 f unction w on the set L of all t in K such that tļ 3 Cj for some

 i, there is a unique m-function x on K such that dx = a and x(t) «

 w(t) for all t in L.

 Every 1-function z on F defines a multiplication operator on by

 (zS)(I,t) = z(t)S(I,t) for each m-summant S on F. If .z is bounded this

 is a Lipschitz operator, so zcr = [zS] is defined for a = [S], This defi-

 nition turns out to be effective even if z is unbounded. Our next section

 will show this.

 4. MONOTONE CONVERGENCE. For THEOREM 7 we need two lemmas.

 LEMMA A. Let S > 0 be a 1-summant on F. Let a,s be gauges on F

 such that o(t) < ß(t) for all t where S(I,t) > 0 for some n-cell I

 tagged by t. Then Ē"(S,a) < 7(S,ß).

 PF. Given an o-di vision ^ of F let 3?0 consist of all members of

 for which S = 0, and those for which S > 0. Let G be the figure with

 division Take any ß-divi.sion -M. of G and let U^£. Then

 y is a e-division of F and 2(S,^) = < zCS,^) + 2(S,4t) =
 E(S,^ ). So E(S,^) < T(S,S) for every a-division 0f F. Hence
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 Z ( S , et ) < E(S,0).

 LEMMA B. Let T,Tļ,T2,...> O be 1-summants on F such that given q < 1 '

 in IR+ there exists a function r on F into IN for which qT(I,t) <
 r(t) " - 7

 Ek=l Tk(I,t) for all tagged n-cells (I,t) in F. Then JT < Ekefl JTķ.

 PF. Given q take r as hypothesized and let Sk(I,t) = Tk(I,t) for k <

 r(t), 0 for k > r(t). Then qT < £|<eN Sk* So for every gauge 6 on F

 (9) ' q/T < ZfceN T(Sļ(,5).

 Let e be given in IR+. Since 0 < Sk < Tk we can choose gauges on F

 small enough so that

 (10) TíSfc.ók) < /Tk + s/2k for all k in N.

 Let 5(t) be the minimum of 6^ ( t ) for k » 1

 (11) I(Sk>6) < I(Sk,5k) for all k in IN.

 By (9) f (11), (10) q/T < Ekejj /Tk + e. Letting e * 0+ and then q 1- we

 get LEMMA B.

 THEOREM 7. Let S > 0 be an m-summant on F. Let v,vļ,v2»...> 0 be

 1 -functions on F such that v < £kefj vk. Then

 (12) /v S < EkeN /vkS.

 If moreover /vkS exists for all k in N and v = E^ vk then

 JvS ■ Ek£N /vkS.

 PF. We may assume m=l since this case can be applied to each coordinate.
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 Apply LEMMA 8 with T = vS and Tk = V|<S to get (12). The final statement

 follows from (12) and the trivial reversed inequality for the lower integrals.

 THEOREM 8. Let T be an m-summant on F such that T ~ 0. Then yT ~ 0

 for every 1 -function y on F.

 PF. Apply THEOREM 7 with v a |y|, Vķ = 1, and S - |T| to conclude that

 yT ~ 0 from (12).

 For E a subset of F let l£ be the indi ca tor of E, lg(t) a 1 if

 t e E, 0 if te F'E. Since indicators are bounded l£a = [l^S] is effec-

 tively defined for any m-dif ferenti al a » [S] on F. Call E cr-null if

 l^a =0. A condition on the points p of F holds a-everywhere (or for

 a-all p) if it holds at every point p in F'E for some cr- nul 1 E. We

 also use this terminology for any summant S representing a. By THEOREM 7

 a union of countably many a-null sets is a-null.

 THEOREM 9. Let T be an m-summant and z a 1 -function on F. Then

 zT ~ 0 if and only if z = 0 T-everywhere.

 PF. For Ic in IN let Aķ consist of all points in F at which |z| > 1/k.

 Let A consist of all points where z X 0. .Then 1a < SfceH Ia^. Since
 1a < k I z I , ļ 1a T| < kļzTļ . So zT ~ 0 implies 1a T ~ 0. Hence (12) in
 k k k

 THEOREM 7 with S * |T|, v ■ 1a, and V|< « ^ implies IaT ~ 0. Conversely
 IaT ~ 0 implies zIaT ~ 0 by THEOREM 8. Hence zT ~ 0 since zIa * 2«

 We can now effectively multiply an m-differential a = [S] on F by any

 1-function y that is defined a-everywhere on F. In particular y may be
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 an extended real -valued function on F that is finite a-everywhere. Define

 y a a CuS] where, u is any 1 -function on F such that u » y a-everywhere.

 To show effectiveness let T'~ S and v be any 1 -function on F with v = y

 a-everywhere. Then v = u a-everywhere and |uS - vT| < [ ( u- v ) S | + ļ v | |S-T|

 ~ 0 by THEOREM 8 and THEOREM 9. So uS ~ vT. We can now formulate a

 monotone convergence theorem.

 THEOREM 10. Let a > 0 be an m-differential on F. Let <y^> .be a

 sequence of 1 -functions defined a-everywhere on F such that 0 < yj^ < y^+i

 a-everywhere, y^a is integrable, and fy^a t q in IRm. Then y^ + y

 a-everywhere, where y is finite a-everywhere and /ya = q.

 PF. We may assume the a-everywhere hypothesis holds everywhere on F. Let A

 consist of all points in F at which y = «. Let yo a 0 and vj< = Y|<~yk-1
 j

 for all k in IN. Then yj = Eķsļ v^ so riß < vj< for all r in W

 since the series diverges on A. By (12) in THEOREM 7 with v ■ rlA and

 S > 0 representing a we find that r/l/'S < fyefl /v^S ■ q. Hence l^a = 0

 since r can be arbitrarily large. Thus for B = F'A, lga » a. Let v s y

 on B and 0 on A. Then v a y a-everywhere, 0 < v < • on F, and

 v » Vfclß. Also /v^S ■ /v^lßS since S ~ lßS implies that v^S ~ v^lßS

 by THEOREM 8. So THEOREM 7 gives /ya » /v S » īķgfl /v^lgS = Eķgfl /v^a = q.

 5. ABSOLUTELY INTEGRABLE DIFFERENTIALS. Given an m-differential a on an n-

 cell K call a subset E of K a-measurable if Iça is absolutely integra-

 ble on K. From our foregoing results it easily follows that the a-measurable

 subsets of K form a sigma-ring, a sigma -algebra if a is absolutely

 integrable on K. For such a the Borei sets in K are a-measurable, a

 result of THEOREM 11.
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 THEOREM 11. Let a be an absolutely integrable m-differential on an

 n-cell K. Then every n-figure A in K is a-measurable and

 (13) /K 1a<J 3 limB+A /B a

 where the limit is taken on the filterbase of all n-figures B in K

 whose interiors relative to K contain A.

 PF. Considering a+, a- separately we may in effect assume o > 0. Then the

 limit in (13) exists as an infimum. Given B in "ft! take a gauge .5 on K

 fine enough so that for every 6-fine (I,t): (i) I is disjoint from A if

 t is not in A, (ii) I is contained in B if t is in A. Let S' be the

 additive summant representing a. Given any 5-division -K of K let 0

 be the union of those cells in -K whose tags lie in A. So Ed/^/K) = /q a.

 Also D t 171 by (1) and D SB by (ii). Hence infßeTfl. <

 Z(1a?,"K) < / b cr which gives (13).

 We can now explore the connection between finite Borei measures and pos-

 itive integrable 1-differentials. Each such differential induces a measure

 and each measure arises in this way. But distinct differentials may induce

 the same measure. This occurs because mass distributed on a coordinate hyper-

 plane H by the measure can be apportioned additively by the differential to

 the two closed half-spaces which share the boundary H. We shall give a sim-

 ple example of this shortly.

 Let a > 0 be an integrable 1-differential on K. Let L(c) be the

 Riesz space of all 1-functions y on K with y o absolutely integrable. By
 /"W

 our foregoing results cr induces a complete Daniel! integral a on L(a)

 defined by

 (14) a(y) = /K ya.
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 As is well known this coincides with the Lebesgue-Stieltjes integral of y

 against the measure IM defined by (M(E) = ailç) on the Borei sets E con-

 tained in K. The Riesz space IB of all bounded Borei functions y on K

 is a subspace of L(a) in which it is dense under the pseudonorm m(ycr) =

 /k l'y Iff • T° see that a » x does not imply a - t let K be the 1 -ce 1 1

 [-1,1], a = dx, and t = dv where x = *[0,1] and v = 1(0, 1]* Then
 Orf

 = t(y) = y ( 0 ) for every 1-function y on K by (14). But /q* a = 0 and

 /q* t » 1, so a ' t. Indeed ctat = 0, a attaching a unit left mass at 0, t

 a unit right mass. (Of course there a one-one correspondence between posi-

 tive integrable 1 -differential s on an n-cell K and finite measures on the

 Stone space of the boolean algebra *f(K) of n-figures in K. Each point t

 in K yields points in the Stone space where m(t) is the number of

 coordinate hyperplanes. through t that cut K.)

 Given a Daniel! integral on on B there exists a positive integrable 1-

 differential a on K such that a( y) = im(y) for all y in B. Since an

 corresponds to a finite Bore! measure W on K defined by JM ( E ) a biUe) we

 can construct a from IM. To this end consider any n-cell I s Cp,q] con-
 ★

 tained in K = [a,b]. I = I]x...xln for Ij = [p-¡, q-j]. Let I-¡ be I-¡ if
 * *

 Pi = a-j, I i' pi if p-¡ > a-j. Define I* = I]x...xln. Define the cell summant

 S on K by- S(I-) =JM(I*).' Now K* = K and for *P a partition of I the

 sets J* with J in -P disjointly cover I*. So S is an additive 1-sum-

 mant on K. Let cr = [S]. Then S(I) « / 1 a for every n-cell I in K. By

 (13) of THEOREM 11 and continuity of IM, /« 1 jCT s 1 "î 1 S ( J) * limj+j IM(J*) =
 /v

 CM ( I ) since J* is a neighborhood of I whenever J is. That is, a(li) =

 IM (I) for every n-cell I in K. So by uniqueness of the Danieli completion

 we conclude that a( y) =un(y) for all y in L(a).
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 6. TAG-FINITE, TAG-BOUNDED, AND TAG-NULL .DIFFERENTIALS. To simplify notation

 we denote the singleton [p,p] in lRm by p. An m-differential a on F

 is tag-finite on a subset A of F if m(lpa) < « for all p in A. Equi-
 valently there exists an m-function w on F such that

 (15) JV lp I a J < w(p) for all p in A.

 a is tag-bounded on A if (15) holds for some constant m-function w on F.

 Clearly every absolutely integrable a is tag-bounded on F. a is tag-nu.l 1

 on A if lp<j 3 0 for all p in A. If a is tag-null on A then o is
 tag-bounded on A. a = (aļ,...,am) is tag-finite, tag-bounded, or tag-null

 on A if and only if each aj has that property. We apply these terms to S

 if they hold for a = [$]. The integral in (15) can be expressed in terms of

 a simple limit involving S. For convenience set S(I,t) =0 if I does not

 overlap F. For tagged n-cells (I,t) with I * [q,r] let N-j { t) indicate

 t-j s r-j and define

 n

 (16) N(I,t) = E i=1 N-j ( t) 2n-i.

 This enumerates the vertices of I assigning them the values 0,...,2n-l.

 Two n-cells I, J with a common vertex t overlap if and only if N(I,t) =

 N(J,t). In taking limits of summants the convergence I+p refers to all p-

 tagged n-cells (I,p). filtered by the neighborhoods of p. The notation N=k

 adds the restriction that N(I,p) = k. Let (J,p) be a tagged n-cell in F.

 Let k ■ N(J,p). Since t = p for all sufficiently gauge-fine (I,t) con-

 taining p

 (17) /j lpļaļ = "Tim i - >p |S(I,p)|.
 N=k

 So the right side of (17) is independent of the representative S of a. By

 160



 THEOREM 2 (17) gives

 (18) /p lp|tf| 3 £k=o I > p I S ( I , p ) ļ
 M- k

 recalling that S ■ 0 off F.

 THEOREM 12. An m-differential o = [S] on F is tag-null, tag-finite, or

 tag-bounded on a subset A of F if and only if lim |S(I,p)| as I- *p is

 respectively 0, finite, or bounded for all p in A.

 PF. By (18) the inequality (15) implies

 (19) lim J - »p |S(Ifp)| < w(p) for all p in A.

 Conversely (19) implies by (18) that (15) holds for 2nw.

 Applying THEOREM 12 with S s Ax for an m-f unction on F we see that x

 bounded implies dx tag-bounded on F. If dx is tag-finite on F and x

 is bounded on each coordinate hyperplane in F then x is bounded on F. If

 x is continuous at p then dx is tag-null at p. The converse holds if

 the restriction of x to the coordinate hyperplanes through p is continuous

 at p.

 7. PRODUCTS WITH DIFFERENTIAL FACTORS. For S a tag-finite 1-summant on F

 and T = [T] a 1 -differential on F define

 (20) St = [ST], a 1 -differential on F.

 To see that (20) is effective let T' ~ T. Then | ST - ST ļ ļ = |S| |T - T'| $

 w |T - T'ļ ~ 0 by (19) and THEOREM 8. If x is not tag-finite then S' ~ S

 need not imply S't = St. But the implication does hold under tag-finiteness.

 For tag-finite -1- di f ferenti al s a, t on F define the 1 -differenti al
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 (21) ar = [ST] for a = [S] and x = [T] on F.

 To verify effectiveness choose w so that (15) holds on F for a and t.

 If S' ~ S and T' ~ T then |ST - S'T'| < |S| |T - T' | + |T'| |S - S' | <

 w|T - T' I + w |S - S' I ~ 0. The products (20), (21) extend by iteration to

 arbitrarily many factors as long as the appropriate factors are tag-finite.

 Such products are associative and distributive. We can extend (21) to con-

 struct multi-linear products of higher dimensional tag-finite differentials on

 F homomorphically from corresponding products of representative summants(e. g.

 exterior products). For differentials defined by products the factors often

 involve summants that are boosted onto higher dimensional cells from cells of

 lower dimension by projection of cartesian products. Specifically consider

 the projection of an n-cell JxL onto the q-cell J that takes t = (tļ,...,

 tq»..,tn) to t' = (tļ,...,tq). Each -tagged n-cell (I,tj in JxL projects
 onto a tagged q-cell (I', t') in J. Each m-summant R on J thereby in-

 duces an m-summant S on JxL defined by S(I,t) » R(I',ť). One must take

 care not to confuse the m-dif ferenti al a = [S] on JxL with the m-differen-

 tial p = [R] on J. (Indeed there are cases where p = 0 but m(a) = ®. )

 Typically let x-¡ be a bounded 1-function on a 1 -eel 1 K-j for i » l,...,n.

 Define a 1-function x on K = Kix...xKn by x(t) = Xļ(tļ) . . .xn(tn) for t *

 (ti,...,tn). So Ax ( I ) » Axi(Ii)...Axn (In) for any n-cell I = I]x...xln

 in K where If is the projection of I into K-¡. The traditional notation

 expresses this as dx = dxļ...dxn. But as a product of differentials dx =

 <71... an with the 1-differential <yj » [S-j] on K defined by the boosted

 cell summant S-¡(I) = Ax-j(I-j) on K. Here aļ is determined by dx-¡ but

 must not be identified with it. We should use some such notation as a-j = "3xj.

 8. NEGLIGIBLE SETS AND DAMPABLE DIFFERENTIALS. A set .«Q of tagged n-cells
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 in F is g-negligible for an m-dif ferenti al a on F if Qa = 0 for Q

 the 1-summant on F that indicates KJ. A subset A of F is or- nul 1 if and

 only if the set of all tagged n-cells in F with tags in A is a-negligible.

 A damper is a function u on F into IR+. A 1 -differential a on F is

 dampable if ua is absolutely integrable for some damper u. An m-differen-

 tial is dampable if each component is dampable. An m-differential a is sum-

 mable if n(a) < ». o is damper-summable if u a is summable for some damper

 u. Equivalently a is damper-summable if F is the union of countably many

 sets E with Igor summable. For u s dx on a 1-cell K this resembles the

 condition that x be VBG* [18]. But V.BG*-functions may be unbounded on K

 whereas x must be bounded if dx is damper-summable on K. Indeed every

 damper-summable differential is tag-finite. There even exist bounded VBG*-

 functions whose differentials are not damper-summable (e.g. the indicator of

 the rationals in K). If a 1-function y on a 1-cell K has finite déri-

 vâtes dy-everywhere then dy is damper-summable. Since dampers need not be

 measurable there are some open questions: Is dx dampable if it is damper-

 summable, or even if |dx| is dampable?

 Damper-summable differentials a are a boon to analysis because they are

 archimedean: If |p| < e|a| for all e in R+ then p = 0. Our next re-

 sult exploits this property. It will be used to get differentials from deriv-

 atives.

 THEOREM 13. Let p = [R] and ir » [P] be 1 -differential s on F such

 that (i) it is damper-summable, (ii) given e in IR+ the set of all tagged

 n-cells (I,t) in F for which

 (22) |R(I, t) I > e|P(I,t) I
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 is p-negligible. Then p = 0. Condition (ii) is implied by:

 (iii) for p-all t in F

 (23) R(I,t) = o(P(I,t)) as I

 PF. Given e in K+ let Q indicate (22). Then (l-Q)R ~ R since QR ~ 0.

 Also I (1-Q)R| < e I P I . So |R| < e|P|. That is, |p| < e|ir|. By (1) this

 implies p = 0 since s is arbitrary. Given (iii) let A consist of all t

 for which (23) holds. Given e in IR+ choose a gauge 5 on F such that

 (23) gives |R| < e|P| on all ô-fine tagged n-cells in F with tags in A.

 F'A is p-null by (iii). So the set of all tagged n-cells with tags in F'A

 is p-negligible. The set of all tagged n-cells which are not 5-fine is ob-

 viously p-negligible. Since the union of two p-negligible sets is p-negligi-

 ble, (ii) follows from (iii).

 Applied to derivatives (iii) is useful only for dim F » 1.

 9. THE CHAIN RULE ON 1-CELLS. We shall present two formulations for the

 chain rule on 1-cells. Each gives the classical formulas of differential cal-

 culus. We denote the inner product in lRm by a dot between the two factors.

 Following [3] a 1-function f on a neighborhood of x in fRm is di f ferenti -

 able at x if there exists for x an m-function g on a neighborhood V of

 0 in IRm such that g is continuous at 0 and

 (24) f(x+h) - f(x) = g(h)'h for all h in V.

 Then g(0) gives the gradient of f at x, g(0) » grad f (x) = Of/3xļ,...,

 3f/?xn)(x). We shall prove THEOREM 14,15 together under the hypothesis (H):

 Let x be a continuous m-function on a 1 -cel 1 K with dx damper-summable,

 f a 1-function on a neighborhood of the curve . x(K) in IRm, and y(t) »

 f (x ( t) ) for all t in K.
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 THEOREM 14. Given (Hj with f differentiate at x(t) except for

 countably many t in K, and y continuous on K, let z ( t ) 3 grad f (x(t))

 wherever f is differentiate. Then dy » z-dx.

 THEOREM 15. Given (10 with f differentiate at x(t) for dy-all t

 in K let z(t) ■ grad f (x ( t ) ) if f is differentiate at x(t), and

 z(t) 3 0 otherwise. Then y is continuous and dy 3 z*dx.

 PF. Let D be the set of all t in K with f differenti able at x(t).

 Given t in D set x » x(t) in (24). Given a 1-cell I in K with end-

 point t let t+q be the other endpoint. Set h » x(t+q) - x(t) » (sgn q)

 Ax( I ) . Then f(x+h) - f(x) 3 y(t+q) - y(t) 3 (sgn q)Ay(I). So (24) multi-

 plied through by sgn q gives Ay(I) * g(h)'Ax(I). Hence, since g(0) 3

 z(t), Ay (I) - z( t) * Ax( I ) a (g(h)-g(O) ) 'Ax(I). Since x is continuous h+0

 as I+t. Thus, since g is continuous at 0, Ay(I) - z(t)'Ax(I) 3 o ( ļ ļ Ax ( I ) ļ | )

 as I+t in K for all t in D. That is, (23) holds for R s Ay - z* Ax and

 P 3 1 1 Ax 1 1 at all t in D. So we need only show that the complement C of

 D in K is p-null for p 3 dy - z*dx to get THEOREM 14,15 from THEOREM 13.

 In THEOREM 14 C is countable, hence dx-null and dy-null since x and y

 are continuous. So C "is also z- dy-null. Thus C is p-null.

 In THEOREM 15 C is dy-null by hypothesis. C is z*dx-null since 1{;Z 3 0

 by the definition of z. So C is p-null. Since dy 3 z*dx with x con-

 tinuous, y must be continuous because lpdy 3 z»lpdx 3 0 for all p in K.
 For x a continuous 1-function on a 1-cell K with dx damper-summable

 and y 3 f(x) with f a differentiate 1-function we get the classical

 fundamental theorem of calculus, dy 3 f'(x)dx.

 Let u,v be continuous 1-functions on a 1-cell K with du, dv damper-
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 summable. Then the 2-f unction x = (u,v) has the damper-summable differen-

 tial dx = (du, dv). For f(x) » uv we have z = grad f - (v, u). So the

 chain rule dy » z»dx gives the product rule d(uv) = vdu + udv. If v has

 no zeros on K we can apply the chain rule with f(x) 3 u/v to get d(u/v) »

 (vdu - udv)/v2. Note that dy ■ z*dx concisely formulates the statement that

 z*dx is integrable on K and Ay(I) » f¡ z«dx for every 1 -eel 1 I in K.

 10. DERIVATIVES ON 1-CELLS. Let x be a 1-function and y an m-function on

 dy Ay ( I )
 a 1-cell K. Define "37 (t) * lim ax(I) as in K wherever the limit

 dy lim y(t+h)-y(t)
 exists. Equivalently ďx(t) » ^+0 x(t+h)-x(t) under the restriction that

 h ' 0 and t+h e K. Existence of this limit requires that Ax(I) ' 0 for

 all sufficiently small 1-cell s I in K with endpoint t. It does not re-

 quire that Ax( I )*0 as I+t. Indeed (dy/dx)(t) may exisit at some t where

 x is discontinuous. Similar definitions hold for dy / 1 dx | , |dy|/dx, and ļ dy ļ

 / 1 dx I as the respective limits of Ay/|Ax|, ļ Ay ļ /Ax, and | Ay | / 1 Ax | . From our

 point of view these derivatives are not quotients of differentials despite the

 traditional Leibnitz notation. But with mild restrictions on x there is a

 connection between dy/dx = z and dy » z dx. One such restriction involves

 "balance". An m-differential o on an n-cell K is balanced at p in K

 if lp<j » 0 whenever Ji lpcr » 0 for some n-cell I in K with vertex p.

 a is balanced if it is balanced at p for all p in K. THEOREM 16 will be

 used to get derivatives from differentials on 1-cells. It is restricted to

 1 -cell s because the corona property that gives the Vitali Covering Theorem for

 Borei measures in one dimension fails in higher dimensions [4].

 THEOREM 16. Let a, p > 0 be 1 -differenti al s on a 1-cell K such that a is

 integrable and balanced, p is tag-finite, and pa » 0. Then p is tag-null
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 a-everywhere.

 PFs. Let a = [S], p = [R] with S > 0, R > 0. Given n in IN let C be

 the set of all p in K at which lim R(I,p) > 1/n as I+p in K. We need

 only show that C is a-null to conclude that R(I,p)+0 a-everywhere as I+p.

 Since pa = 0, lppa = 0 so lpRS ~ 0 for all p in K. Hence (SR) ( I,p)+0
 as I+p in K. So for all p in C, lim S(I,p) 5 0 as I+p in K. Since

 a > 0 is balanced and integrable this implies a is tag-null on C. Given

 e in IR+ the integrability of a > 0 implies the existence of a finite

 (possibly empty) subset D of K such that lpa > 0 for all p in D and

 (25) 2psK'D /k 1p(J < e-

 Since a is tag-null on C but nowhere on D, C/1D = JBf. Take a gauge 6

 on K small enough so that for every 5-division -K of K

 (26) |Z(S,-K) - /k cr| < e

 and

 (27) E(RS, -K) < s.

 Let -C be the set of all 1-cells I in K disjoint from D with an end-

 point- p such that

 (28) p e C, (I,p) 1s 6-fine, and R(I,p) > 1/n.

 The following version of Vitali Covering Theorem [4] is now applicable: Let

 C be a subset of a 1 -eel 1 K. Let < be a set of 1-cells in K such that

 given p in C and a neighborhood G of p, p belongs to some member of -C

 contained in G. Then given an integrable 1 -differenti al a > 0 on K there
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 exists a (countable) subset í of 'C whose members are disjoint and cover

 a-all of C. We thus get a cr-null set E with lç < + £¡¿ü Ii. Therefore

 Jk !ca < ÍK^IeD *I = 2IťO /k 1I° < zIéO fi a + EpeK'0" /k V < zIeO fi a +

 e by THEOREM 7, (13) in THEOREM 11, and (25). That is,

 (29) /k Ica < Ei¿q /i a + e .

 To each member I of i) assign a tag p satisfying (28) to get a set -E of

 tagged 1 -eel Is. By (26) and THEOREM 3 applied to the corresponding partial

 sums over "0 and "E

 (30) £¡¿0 fi <y < £(S,-£) + e .

 By (28) nR > 1 on «€. So E(S,~E) < n£(RS, -E) < ne by (27). That is,

 (31) E(S, -E) < ne.

 From (29), (30), (31) we conclude /« lea < (n+2)e for all e in IR+. Hence

 lc<J 35 0 since e is arbitrary.

 THEOREM 17. Let x be a 1 -function on a 1 -eel 1 K with |dx| dampable

 and balanced. Let y,z be m-functions on K. Let (c) denote the condition

 that every dx-null set in K is dy-null. Then (aj) is equivalent to (b-¡)

 for i = 1,2,3,4:

 (ai) dy » z dx, (bi) -dy/dx » z dx-everywhere and (c) holds,

 U2) dy » z|dx|, (b2) dy/|dx| » z dx-everywhere and (c) holds,

 (23) I dy I » z dx, (b3 ) |dy|/dx = z dx-everywhere and (c) holds,

 U4) I dy I = z|dx|, (b4) |dy|/|dx| 3 z dx-eyerywhere and (c) holds.

 PF. Given (aļ) choose a damper u with u|dx| integrable. Let S » u|ax|
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 and a = [S] 3 u|dx|. Giyen e in IR+ let R be the summant that indicates

 ļ I Ay - zAx| I ]_ > eS. Then 0 < eRS < ļ | Ay - zAx 1 1 1 . For p 3 [R] this is

 just 0 < epe < 1 1 dy - z dx||ļ 3 0 by (ai ) . So pa 3 0. By THEOREM 16

 R ( I , p ) 3 0 ultimately as I*p in K for a-all p. dx has the same null

 sets as a. So by the definition of R, ļ | Ay ( I ) - z ( p ) Ax (1)1 | 1 < eu(p)|Ax(I)|

 ultimately as I+p for dx-all p. This inequality is just | ¡ ( Ay /Ax ) ( I ) -

 z(p)| |i < eu(p). So dy/dx 3 z dx-everywhere. For A dx-null 1 a dy 3

 z 1 a dx 3 0 by (aļ) giving (c). So (ai ) implies ( bi ) . Conversely let

 (bļ)hold. Apply THEOREM 13 with R 3 | ļ Ay - zAx||i and P 3 | Ax | . Then

 p 3 1 1 dy - zdx 1 1 1 and ir 3 |dx|. The condition (dy/dx)(t) 3 z(t) implies

 (23). So (23) holds dx-everywhere by ( bi ) , hence zdx-everywhere. By (c)

 (23) holds dy-everywhere. So (23) holds (dy-zdx) -everywhere, hence p-every-

 where. That is, (iii) holds in THEOREM 13 which implies p 3 0. "So ( b 1 ) im-

 plies (aļ). Similar proofs hold for i 3 2,3,4 if we replace Ax by |ax|

 (dx by |dx|) and/or Ay by ļ Ay | ( dy by |dyj).

 Since |dx| is dampable the condition that it be balanced means just

 that at every interior point p of K x is left continuous at p if and

 only if x is right continuous at p. Our next result is similar to THEOREM

 15 but requires neither continuity of x nor explicit funtional dependence of

 y on x.

 THEOREM 18. Let x be a 1 -function on a 1-cell K with dx damper-

 summable. Let y be an m-f unction on K such that dy/dx exists dy-every-

 where. Define z(t) 3 (dy/dx) (t) wherever the derivative exists, and

 z(t) 3 0 elsewhere. Then dy 3 z dx.

 PF. Apply THEOREM 13 with R 3 | | Ay - zAx | | x a"d P 3 Ax. So p 3
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 ļ I dy - zdx||i and it = dx. (23) holds at all t where (dy/dx)(t) exists,

 hence dy -everywhere. Since z 38 0 where the derivative does not exist, dy/dx

 exists zdx-everywhere. So (23) holds zdx-everywhere, hence p-everywhere.

 Thus THEOREM 13 gives dy 3 zdx.

 As in THEOREM 17 there are variants of THEOREM 18 with dx replaced by

 I dx I and/or dy by |dy|.

 11. RADON-NIKODYM DIFFERENTIAL COEFFICIENTS. Let a be an integrable m-dif-

 ferential on an n-cell K. For each n-figure -F in K define the projection

 crp to be the integrable in-differential [Sp] where Sp is the additive m-

 summant defined by s íl(1F a f°r each "-cell I in K. The integral

 over degenerate figures is zero. Application of Bochner's Step Function Den-

 sity Theorem [2] to additive summants yields the differential formulation

 THEOREM 19. (See THEOREM 9 in [13] with p=l and THEOREM 1 and section 9 in

 [14] which give THEOREM 19 for a > 0. This special case easily extends to

 the case of absolutely integrable a.)

 THEOREM 19. Let a be an absolutely Integrable 1 -differential on an n-

 cell K. Let V consist of all integrable 1-differentials x on K such

 that on n-figures F in K

 (32) /p T+0 as /p |a|-K>.

 Then each t in V is absolutely integrable, V is an (L)-space (a Banach

 lattice with norm additive on the positive cone [10]) under the norm r(x) =

 /« |t|. The linear subspace of V generated by the projections crj of a

 for all n-cell s J in K is dense in V under the norm topology.

 We use this result to prove a Radon-Nikodym theorem for 1-differentials on n-

 cells. ļ70



 THEOREM 20. Let t,a be dampable 1 -differential s on an n-cell K such

 that (i) every coordinate hyperplane that cuts K is a-null, and (ii) every

 a-null subset of K is x-null. Then x -za for some 1-function 2 on K.

 PF. We first treat the case where x,a are absolutely integrable. So weak

 absolute continuity (ii) implies strong absolute continuity on Bore! sets E

 in K,

 (33) / k 1e|t|-K) as / k IeM+O.

 Given an n-figure F in K let E be the interior of F relative to K.

 By (i), 1e ■ If ^-everywhere. So / p | ct ļ = /p lp|a| = fp l£|a| = /k 1e | <t| .

 A similar result holds for t by (i),(ii). So (33) gives (32). For every

 n-cell I in K, /1 lpa, = ¡¡ Igo » /inp Iça = /j^p lpa = /1 ^ P ° s Sf(I) =

 / J ap. So lpa = op by THEOREM 5. In particular cj = ljcr. So aj belongs

 to the closed subspace of W consisting of all absolutely integrable ya

 with y a 1-function on K. Thus THEOREM 19 gives THEOREM 20 for a,t abso-

 lutely integrable. For the more general case let u,v be dampers with ua.vx

 absolutely integrable. Apply the previous case to ua.vt. Since a damper is

 nowhere zero a and ua have the same null sets. Similarly so do t and

 vt. Thus the hypothesis (i), (ii) for o,x holds as well for ua.vx yield-

 ing the conclusion that vt = zua for some z. So t = ya for y » zu/v.

 THEOREM 21. Let x be a continuous m-f unction on an n-cell K with |dx|

 dampable. Then every coordinate hyperplane H is dx-null.

 PF. We may assume m » 1 since this case can be applied to each component of

 x. Let u be a damper with u|dx| integrable. Define v on K «■ [a,b] by
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 v(t) = /3 u ļ dx I . (See (8) and THEOREM 6.) Then dv = u|dx| so dv and dx

 have the same null sets. Let H consist of all t in K with tj = c. We

 contend H is dv-null . Since x is continuous so is v. Given e in IR+ •

 take h in IR+ so that the uniform continuity of v on K gives

 (34) I v( t) - v(s)| < e/2n for all s,t in K such that

 lit - s| |i < 2h.

 Let the n-cell J consist of all t in K with c-h < tj < c+h. Then

 Av(J) < 2n"l(e/2n) < e by (6), (34). Since H is interior to J relative to

 K, Ik ljļdv < /j dv =Av(J) < e. Thus since e is arbitrary we conclude that

 lHdv = 0.

 THEOREM 22. Let x,y be continuous 1 -functions on an n-cell K such that

 dx,dy are dampable and every dx-null set is dy-null. Then dy ■ z dx for

 some 1 -function z on K.

 PF. Apply THEOREM 21 and THEOREM 20.

 The Radon-Nikodym Theorem is related to the Hahn Decomposition Theorem.

 The connection here comes from THEOREM 23.

 THEOREM 23. Let p,ir > 0 be m-differentials on an n-cell K. Let

 x,y > 0 be 1-functions on K. Then (xp) a (yir) < (x Vy)(p a ir)¿

 PF. Let <ļ> = (xp) A (yir). Then 0 < $ < xp. So x > 0 «(»-everywhere and

 (l/x)tp < p. Similarly (l/y)<|> < ir. So (-¿j)<l» s s (j *)aCj 4>) < pa it.

 Multiply through by x v y to get THEOREM 23.
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 THEOREM 24. Let a be a dampable 1-differential on- an n-cell K in -which

 every coordinate hyperplane is cr-null. Then there are complementary subsets

 A,B of K such that Iąc" s lgc+ = 0.

 PF. Apply THEOREM 20 with t = a+ to get a+ = za for some 1-function z

 on K. This implies (z^-z)a+ * z^a". Apply THEOREM 23 with p=a+, ir=a~,

 x=|z2-z|, y=z2 to conclude from a+Aa" = 0 that (z¿-z)a+ = z¿o~ = 0. Thus

 z = 0,1 a+-everywhere and z=0 a~-everywhere. Let A = z"^(l) and B = K'A.

 Apply THEOREM 9 to get THEOREM 24.

 THEOREM 25. Let x be a continuous 1-function on an n-cell K with dx

 dampable. Then there are complementary subsets A,B of K such that

 lA(dx)~ » lß(dx)+ s 0.

 PF. Apply THEOREM 21 and THEOREM 24.

 12. PRESERVING DAMPABILITY. Given an absolutely integrable in-differential it

 on an n-cell K call an m-f unction z on K ir-measurable if z~*(B) is a

 TT-measurable subset of K for every Bore! set B in Rm. Bore! measurable

 implies ir-measurable.

 THEOREM 26. Let a be a damper-summable m-differential on an n-cell K.

 Let z be a 1-function on K such that za is integrable. Then za is

 damper-summable. If moreover a is dampable by a damper u for which z is

 ua-measurable then za is dampable.

 PF. Given a damper u with in(ua) < « define the damper v on K by v =

 173



 u/ 1 z I if z ' O, v » 1 if z = 0. Then v ļ zer ļ < u|a|. So jn(vza) < m ( ua )

 < ». Thus za is damper-summable with damper v. Let ua be absolutely in-

 tegrable and z be ua-measurable. Then (vza)+ = (sgn z)+ua+ + (sgn z)~ua~

 and (vza)" * (sgn z)~ua+ + (sgn z)+ua~ are integrable since each of the four

 right-hand terms is integrable. So vza is absolutely integrable.

 THEOREM 27. Let x,y,z be 1-functions on a 1 -eel 1 K such that dy =

 z dx, I dx I is dampable with damper u, and |dx| is balanced. Then z is

 u ļ dx I -measurable. So |dy| is dampable and balanced. If moreover dx is

 dampable then so is dy.

 PF. Since dy ■ z dx we have lp|dy| = |z(p) | lp| dx ļ . So |dy| is balanced

 because |dxļ is balanced. Since |dx| is dampable x can have only count-

 ably many points of discontinuity. This conclusion- holds also for y since

 lpdy » 0 wherever lpdx = 0. Let In s [t,t + 1/n ] /ļ K for t in K, n in

 W. Define zn on K » [a,b] by zn(t) ■ (Ay/Ax ) C In ) if Ax(In) ' 0, zn ( t) =

 z(b) if Ax(In) » 0. The 1-functions Ax(In) and Ay ( I n ) of t have only

 countably many discontinuities. So zn is Bore! measurable, hence u|dx|-

 measurable. By THEOREM 17 there exist complementary subsets A,B of K such

 that zn*z on A, and B is dx-null. Since dx and u|dx| have the same

 null sets, B and A are u |dx| -measurable. So l^z and lgz are u|dx|-

 measurable. Hence so is z. So |dy| is dampable by THEOREM 26. Given that

 u dx is absolutely integrable then dy is dampable by THEOREM 26.

 THEOREM 28. Let y be a 1 -function on a 1 -eel 1 K such that dy/dx

 exists and is finite dy-everywhere for some continuous 1-f unction x on X

 whose differential dx is dampable. Then dy is dampable.

 PF. Apply THEOREM 18 and THEOREM 27.
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