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 CHARACTERISTIC FUNCTIONS THAT ARE PRODUCTS OF DERIVATIVES

 Let D be the system of all (finite) derivatives on the real line R.

 For each set A c R let Ca be its characteristic function. Let a be the

 system of all sets A c R such that Ca = fg for some f,g e D. (It is not

 difficult to prove that every closed set belongs to (3. ) Since each derivative

 is a Baire 1 function and since A = {x; C^(x) > 1} = {x; Ca(x) >0}, we see
 that every set in 0 is ambiguous (i.e. at the same time an F^-set and a

 Ga-set). Now let A c R, f,g € D, Ca = fg, P,xn,yn e R, p < xn < yn
 y -x

 (n = 1,2,...) and lim inf ° > 0. Let f = F', g = G'. It is easy to
 F(y_)-F(x ) n

 prove that

 yn _ xn

 (xn,yn) and suppose that Jn c A for each n. Using the Cauchy inequality

 and the Darboux property of derivatives we get (yn - xn)2 = (J*T Vfg) 2 = < Jn =

 /jn f ' /jn g = (F(yn) - F(xn)) • (G(yn) - G(xn)) for each n. Dividing by
 (yn - xn)a and passing to the limit we obtain 1 < f(p) • g(p) = Ca(p) so

 that p € A. Hence: If A € d, B = R'A and p e B, then such intervals ^n

 do not exist. (Intuitively: There are no essential holes in B close to. p.)

 This (and a "symmetrical" argument) shows that B is nonporous (i.e. nonporous

 at p for each p e B). Since A is ambiguous if and only if B is, we

 have the following simple result: If A e a, then B is ambiguous and non-

 porous .

 It can be proved that these two properties of B imply that A € a.

 Actually, we have a more precise statement:

 Theorem 1. Let. A c R, B = R'A. Then the following three conditions 1),

 2) and 3) are equivalent to each other:

 1) There is a natural number m and functions e D such that

 CA = 'i "* 'm* ¿7



 2) B is ambiguous and nonporous.

 3) There are functions f ,g € D such that f = g = 1 on A and

 tg ~ 0 on B.

 Let us compare Theorem 1 with an earlier result (see [1], pp. 33-34):

 Theorem 2. Let A c R, B = R'A. Then the following three conditions 4),

 5) and 6) are equivalent to each other:

 4) There is a natural number m and nonnegative functions fi,...,fm « D

 such that Ca = fi "* fm*

 5) B is ambiguous and each point of B is a point of density of B.

 6) There are functions f,g e D such that f = g = 1 on A, 0 < f < 2,

 0 < g < 2 on R and fg = 0 on B.

 Theorem 2 suggests that it is probably possible to improve or modify

 Theorem 1 in various ways. (Can we require f to be bounded [nonnegative]

 in 3)? Can we say more about f and g, if we drop the requirement

 f = g = 1 on A? I was not able to find any reasonable answers to similar

 questions.)

 Reference

 [1] Baire one, null functions, A.M. Bruckner, J. Mařík, and C.E. Weil,
 Contemporary Mathematics, Vol. 42, 1985, 29-41.
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