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 ITERATES FOR A RESIDUAL CLASS OF FUNCTIONS

 The talk was a report of joint work with A. M. Bruckner.

 A considerable amount of recent research has been devoted to studying

 the iterative behavior of continuous functions mapping an interval into

 itself. Much of this work focuses on well-behaved functions; that is

 functions that satisfy certain differentiability conditions, are piecewise

 monotonie, and possess other properties that help in classifying iterative

 behavior.

 These well-behaved functions have commonly been used as models for

 various physical, social and biological phenomena. In [P] (pg. 100,

 Theorem 5.2) one finds that all functions in a certain class that is

 sufficiently large to contain. many of the functions that appear in

 practice, are of one of three types: i) a single periodic orbit attracts

 the orbits of most points; ii) a Cantor set attracts the orbits of most

 points; iii) there is sensitive dependence on initial conditions, i.e.

 for each x in the interval there exists e > 0 such that for each

 6 > 0, there exists a* natural number n such that |f (x-<5,x+6)| > e

 for all k n. (|J| denotes the length of the interval J.) Possibility

 (iii) implies very little attraction of orbits, but does allow certain

 chaotic behavior such as the existence of points whose orbits are dense.

 One also finds in the recent literature constructions of continuous

 functions that exhibit various sorts of chaotic behavior. See, for

 example', [BH], [K], [S].
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 Now, in the sense of Baire category, "typical" continuous functions

 do not satisfy any of the properties often assumed for well-behaved

 functions. (A property of a continuous function is considered typical

 if the property is shared by all continuous functions in a residual subset

 of the Banach space of continuous functions on a compact interval, with

 the sup norm.) It is natural to ask what errors might result if a

 well-behaved function were used to model a phenomenon when the true

 function describing the phenomenon is more typical. One is then led to

 study the dynamical structure of the iterates of a typical continuous

 function.

 Our results use the following notation and terminology: Cg denotes

 the Banach space of continuous functions which map the interval [0,1]

 into itself (with the sup norm). For a given f e Cg, the orbit of a

 point X e [0,1], denoted 0(x), is the sequence x, f(x)» f 0 f(x), ... .

 We say that the orbit of x is attracted to a set H if H is

 the cluster set of 0(x).

 We were able to- obtain the following:

 Theorem: There exists a residual subset of Cg each of whose members f

 has the following properties:

 i) To each x in some residual subset of £*0,1 J corresponds a

 Cantor set H such that the orbit of x is attracted to H.

 ii) There are c pairwise disjoint such Cantor sets,

 iii) If H is such a Cantor set, then f maps H homeomorphically

 onto itself and each x in H has a dense orbit in H.

 iv) For each such attracting Cantor set H, the set H* =

 {x : the cluster set of the orbit of x is contained in H}

 is nowhere dense.
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 As consequences of this theorem Und its proof) we were able to show:

 1) The typical continuous function has no stable periodic point

 (a periodic point with an interval of points around it, all of

 whose orbits are attracted to the same period). However we were

 able to show that periodic points for typical functions do exhibit

 a type of stability: in any neighborhood of a periodic point of

 period n, there is an interval which is mapped into itself after

 n iterates.

 2) The typical continuous function has no points whose orbits are dense.

 These results contrast with the situation for the well-behaved

 functions, which can have stable periodic points or points with dense

 orbits.
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