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 INTEGRATION II." FUNCTION 3PACE3

 R. Henstock's general theory cf integration i.~ based on

 division spaces • rather than measure th.ory (1,2). 'Jiviz on

 spaces arise as follows« Given a space T and - f:..~ily of

 subsets or "intervals" I of T, a partition of T is a fin.ťi

 collection of disjoint intervals I whose union Lo I.

 Henstock defines collections 3 of interval-point pairs (I

 x€ T. A division <£of T from 3 is a finite sufccoil-sction _f

 (I,x) from 3 such that the intervals I forra a p~rti tier, of T.
 «

 The conditions satisfied by the collections 3 include the

 following.

 (i) There exists 3 containing a division of T. (For such S
 we say that S divides T.)

 (ii) If Sj and both divide T then there oxists 3^,

 dividing T, in the intersection of S( and 3^.

 If f is a real or complex valued function of points x in

 T and m is, similarly, a -function of the intervals I of T,

 then the integral over T of f with respect co m, which v;e

 denote by. ^*f(x)m(I) or^fdn, is z where z satisfis... oho
 following condition.

 Given £ > 0 there oxists S dividing T so that, for any

 division £of T from S, .
 55



 Z - $ZfCx)mCl) < £
 whsri (Č)Zf(x)E(I) represent- .-;um:..ation over th; (I,x) ir. "é

 and corresponds to the Riemann su~. of Riemann i-.te^r-'tior.. Ir.

 the latter case, each S is the collection of

 ([u,v),x), u, v real, x = u or v, v-u <^0 .

 Korę generally, if h(I,x) is a function :f

 interval-point pairs then the integral z of h .vor T, i-.r.ct.ť

 by [ h(I,x) or J dh, exists if z sati-fies the abov-
 JT JT

 condition with f(x)m(I) replaced by h(I,x).

 Given the real interval (0,t) let T bo the s ; of r ^.l

 valued functions x defined or. (0,t). Thus T i z the product

 of R by itself uncountably many ti:r,es. Given a finite sublet

 N " £t( , tz, . . . ,tn j of (0,t) and x ê T, let zQ - 0, tn+>) =

 and write x^ = x(t^), U j i n, xfl=0, ~ 7 whsre 7 i3
 a fixed real number, and let x(N) - (xj , x^) so x(N)

 is a point of R . An interval I of T is the set of x in T

 satisfying u^ < x^ < v^ , I £ j £ n, where u j and Vj ~.re real
 numbers.

 The division space structure for the function space T is

 produced as follows. Let A be a countable subset of (0,t).

 For each x in T let L(x) be a finite subset of A. For each

 finite subset N of (0,t) containing L(x), let^ = o ('N) be

 positive. Then (I,x) is in S provided Vj - u j <*b , l<j£n,
 with x(t-) = u i or v.. Thus the elements (I,x) of 3 are

 1 J J

 determined by the choice of A, L(x) and (N) for con v^i;**..^
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 Condition (i) above is '¿ati-fied an ev.ry ~uch 3

 contains divisions of T. The othor conditions ir. the

 definition of a division space are also sati-fied. Thus t'.'ï

 integral of any functional h(I,x) in the unrestricje-d

 function space is defined. To integrate a functional h over

 a proper subspace of T such a^ the -pace C of ccnti.-.u:- '3

 functions or paths, v/e multiply h by the char-ctorisv-c

 function of C and integrate ¿he resulting íunccic.-.al ovsr I,

 Let h(x, xfc) be a real or complex valued function.
 • n

 of X . = x(t.) and let h(I) denote the following fur.ctio. .f
 1 3

 intervals I of T:

 fvi fVn
 h(I) = f . . . J h(x( , . . . ,xł|)d::1 . . .d.;n

 '

 Theorem 1 : If h is integrable in T then j. * is fcn e limit of
 a sequence of terms

 r^i rK
 I ••• / h(x f « • 1 1 X )dXj • •

 - a, K
 in which n, a , b , ...,a b^ tend to infinity, taking

 il n fv

 successively larger positive values.

 If c is a complex number, c = a+ib, a £ 0, b >_ 0, c f 0,

 let

 w(I) =
 v _ w+i _ „ r* -v ,
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 We call w the generalised Wiener integrator.

 Theorem 2 : w(I) is integrable in T with

 JĻ*" .

 If c « -1/2 then the integral of Theorem 2 is the V/ion r

 integral and the function or. the right hand side is the

 diffusion function for a Brownian particle. If c = i/2 then

 we have the Feynman integral of quantum mechanics and the

 function is the propagator function for a single freo

 particle in one dimension.
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