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 Recent Developments in Fourier Analysis and Generalized Bounded Variation

 Bounded variation and its generalizations are associated with many

 aspects of Fourier series. Here we discuss three recent results dealing" with

 •these aspects. The first involves a new notion of summability which arises

 naturally from the consideration of Fourier series of functions of A -bounded

 variation. The second is concerned with functions whose Fourier series have

 small gaps and the significance of the assumption that such a function is of

 generalized bounded variation on a sub interval. The third result is an •

 *

 improvement of the Bohr-Pal theorem: we have shown that if f is continuous

 and 2tt - periodic, then there is a homeomorphism of [0, 2tt] onto itself such

 that f°g is the conjugate of a function of bounded variation.

 1. SUMMABILITY OF FOURIER SERIES.

 Let A = {Xk} be a nondecreasing sequence of real numbers with X = 1
 CO

 and 2 1/kX^ < 00 • For a given positive integer n, let 1^ n =

 ((k-l)n/n, krr/n] , k ~ 1, 2, ..., n. Set

 H_(t) 71 = I (k/X.) xr (t) D ( t )' 71 i K k,n n

 where Xg denotes the characteristic function of a set E and Dn(t)( is the
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 Dirichlet kernel,

 Dn(ť) =|+2 cos kt.

 Extend Hn(t) as an even, 2w - periodic function continuous at t = 0. There

 exist c and c ' so that

 s = f Vř> dt
 -TT

 satisfies

 0<c<cn<c/ < ».

 We set Kn(t) = Hn(t)/cn-

 If f is an integrable function on the circle group T, we say that the

 Fourier series of f, S(f) is (W, A) - summable to sum a at x, i.e. ,

 (W, A) S(f) (x) = <7, if

 <7n(f. x) = J f(x + t) Kn(t) dt - ► a as n - * ».
 -7T

 It is not difficult to show that replacing Dn(t) by (sin nt)/t in the

 definition of the kernel yields an equivalent summability method.

 The existence and properties of these methods were indicated briefly by

 Waterman [9]. Details will appear in a paper of D'Antonio and Waterman [2].

 CO

 If 2 l/' converges, we can show that Kn(t) has the properties

 (i) J Kn(ť) dt -
 -71

 fi"

 (ii) J I Kn C t ) J dt 1C independent of n,
 -rr

 (iii) sup { |Kn(t)| : 0<.ö<t^7r} - * 0 as n - > 00 for each <5.
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 The implications of these properties for a summability kernel are well-known

 [10, vol. I, chap. III]. For example, if f (x ± 0) are defined and finite,

 then

 "n V - " i + °» ł * "»■
 However, for this particular method, more can be shown, namely,

 tfn(f, :<) - * f(x) at every Lebesgue point of f.

 Let us now suppose that 2 1/^ = 10 • (In) will denote a collection of

 nonoverlapping intervals in T. If I = [a,b], then f(i) ~ f(b) - fa). We

 oo

 say that f is of A-bounded variation (ABV) if S ļ f ( I^) | /Xj. < » for every

 (In). This is known to imply that the collection of sums 2 l^^n''/Xn

 bounded [8] .

 It can be shown that if f 6 ABV on [0, 2tt] , then

 (W, A) S(f) (x) = f ( x)

 for every x; summability is uniform on closed intervals of points of

 continuity. Further, if rBV is defined by a sequence T = {r^} such that

 r*BV x ABV ž 0, then there is an f € ABV such that S(f) is not (W, A) -

 summable at some point.

 For the case A = {k} , (W, A) - summability is ordinary convergence and

 in that case we obtain a result of Waterman [7] .

 The results in the case 2 1/^ = 00 extend to a larger class of functions

 of generalized bounded variation, the class W^.

 Suppose {Iļ} is a finite collection of ordered contiguous intervals of

 length n/ n and (JI^ is a closed interval in either [x - <5, x) or (x,.x + <5],
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 where <5 > tt/ti. If I = [a, b] , let f ( I) = f(b) - f(a).

 Let

 AVn(f, X, <5) = sup Z

 the supremum being extended over all collections (1^} described above.

 Let A V(f, X, <î) = lim A V (f, x, <5). We say that f S WA if
 n->co ^

 AV(f, x, 5) - >0 as ô - >0 for all x.

 It may be shown that W^ D ABV properly.

 These spaces were first discussed by Isaza [3] in the case A = {k}.

 2. FOURIER SERIES WITH SMALL GAPS

 A trigonometric series 2an cos nx + bn sin nx = 2 An(x) is said to have

 "small gaps" if an = bR = 0 except for n 6 {n^} where - n^ ž q > 1.

 This subject is treated briefly in [40, chap. V, §9] and [1, chap. XI, §13].

 Let f be a real function defined on T. We have defined ABV in §1. We

 now define the classes cpBV and V[h].

 {1^} once again will denote any collection of nonoverlapping intervals

 in T. Let <p(x) be a non-negative convex function defined on [0, »] such that

 <p(x)/x •» 0 as x ■* 0. We say that f is of (p-bounded variation (<pBV) if for

 some c > 0, s'up {2 <p(c| f ( Ik) ļ ) | (1^}} = Vc(f) < «.

 If h(n) is a positive nondecreasing concave downward function on the

 positive integers, we say that f € V[h] if there is a constant C such that

 n

 2 |f(Ik) I £ Ch(n), n = 1,2,..., for every collection {1^}-

 We suppose that f is a real function in L1 (T) with Fourier series
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 inkx*

 2 cnke > n-k = "nk>

 satisfying » Ç > 1> k = 1,2,.... Let I C T be a closed interval with

 length •

 I 1 1 = (1 + S) 2-n/q , <5 > 0.

 With P. Isaza we have obtained the following results [4] .

 Theorem 1. With f and T as above,

 (i) f S V[h] on I implies cn = 0(h(jnļ)/n).
 I n I

 (ii) f € ABV on I implies cn = 0(1/ Ē l/X^) .

 (iii) f 6 (pBV on I implies cn = 0(cp~^( 1/ 1 n | ) ) .

 Theorem 2. Let f and I be as above. Let «j(f,t) be the modulus of

 continuity of f restricted to I. If f 6 Vfn*] on I, 0 £ <* < 7 and

 S ì u2(I-«)(f)i) < 00)
 n=l n

 then the Fourier series of f converges absolutely.

 It is clear that if we make the assumption nj{+1 - n^ -» », then the

 conclusion holds for any nondegenerate interval I.

 3. CONJUGATE FUNCTIONS AND THE BOHR-PAL THEOREM

 Let us suppose that f is a real, continuous function on T. Although

 S(f), the Fourier series of f, may diverge on a nonempty set of measure zero,

 t

 the Bohr-Pal theorem asserts that, after a suitable change of variable has

 been made, the Fourier series of the new function will converge uniformly.

 In other words, there is a strictly increasing, continuous function g,
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 mapping [-w, n] onto itself, so that S [f°g] converges uniformly.

 The classical proof of this result is due to Salem [6, 10 vol. I, p.

 294] and uses complex methods. If f had the property that for only one a €

 ( - n,"n ) is f (-w) = f(a) = f(îT) and f(x) - f(a) has opposite signs in the

 intervals ( - rr , a) and (a, tt) , then a simple closed curve C may be defined by

 ft) + icp ( t ) for a suitable function ip and, by using a conformai map of

 I z J < 1 onto the interior of C, we find that we can also give C by an

 equation w = F(e ) where F(z) is regular on |z| < 1, continuous on |z| = 1,

 1 0 '
 and S[F(e 1 )] converges uniformly. The Bohr-Pal theorem is obtained by

 expressing the given function as the sum of a continuous function of bounded

 variation and a function of the type just described.

 With W. Jurkat [5] we have obtained the following improvement of the

 Bohr-Pal theorem.

 THEOREM. If f is a real, continuous function on T, there is a strictly

 increasing, continuous function g, mapping [-w, tt] onto itself, so that the

 conjugate of f°g is continuous and of bounded variation on [-rr, -n] .

 An immediate consequence of this is:

 COROLLARY. If f is a real, continuous function on T, there is a strictly

 increasing, continuous function g, mapping [-w, *•] onto itself, so that if

 a »

 S[f°g] = -J + S (a^cos kx + b^sin kx) ,

 then, as n -> »,

 (i) ndaj + |bn|) = 0(1)
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 i 1 n 9 9 1/9
 (ii) i 1 2 k(a£ 9 + b£) 9 1/9 ' ~ = o(l).

 k- 1

 Given the theorem, applying the usual estimate of the Fourier

 coefficients of a function of bounded variation to the conjugate f"g yields

 (i). Estimate (ii) is Wiener's necessary and sufficient condition for a

 function of bounded variation to be continuous applied to the conjugate fug

 [1 vol. I, p. 212; 10 vol. I, p. 108]. Note that the continuity of f-g

 implies that S[f°g] is uniformly (C, l)-summable and, by (ii), also uniformly

 convergent, which is the Bohr-Pal theorem.

 REMARK. From the fact that the conjugate of h = f°g is continuous and of

 bounded variation one can deduce that h and h belong to the Lipschitz classes

 for 1 < p < «o and also to (see [10, vol. I, p. 45] for the definitions

 of these classes).

 The proof of our theorem is based on the following result which is an

 analogous statement for R.

 LEMMA. If f is a real, continuous function on R with bounded support, there

 is a strictly increasing continuous function g, mapping R onto R, such that

 the Hilbert transform of f°g,

 (1) H[f»g](x) = i P.V. J R dt , x € R, R

 is continuous and of bounded variation on R.

 Our proof of this result, like Salem's proof of the Bohr-Pal theorem,

 relies on conformai mapping.
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