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 ON SOME CLASSES OF CONTINUOUS FUNCTIONS

 In [3] J. Foran introduced conditions A(N) and B(N), and in [1] we

 defined condition E(N) for a function on a set E for dome positive

 integer N.

 In the present paper we construct a continuous function Gņ which

 satisfies E(N+1) on a perfect set and which is E(N) on no portion of this

 set. Given a natural number N, let ?(N) (respectively B(N), £(N)) be the

 class of all continuous functions F defined on a closed interval I for

 which there exist a sequence of sets {En} and natural numbers {Nn} such

 that 8up(Nn) = N, I : II En and F is A(Nn) (respectively B(Nn), E(Nn))

 on En. (If we drop the condition sup(Nn) < « we obtain the classes
 7, B, £, which were defined in the same articles.) Let us recall that ?(1) =

 ACG. By the Baire Category Theorem ([5], p. 54), our result means that the

 class £(N) is strictly contained in £(N+1). (We showed in [1] that ?(N) is

 strictly contained in ?(N+1).) Moreover the continuous function Gjļ,

 constructed for this purpose, has also the following properties: Gjj c

 jf(Na+2N+l) and GN i B(Na+2N).
 We construct also a continuous function F which satisfies Foran's

 condition N and F i £. (We showed in [2] that £ is strictly contained in

 N, but here we have ein explicit example.)

 Definition I. Given a positive integer N and a set E, a function F is

 said to be B(N) on E if there is a number M < » such that for any

 sequence Ii,...,Ik,... of nonoverlapping intervals with Ik fi E * 0, there

 exist intervals Jkn> n = 1»«"»N, such that

 N N

 B(F;E n U Ik) c u u (Ik X Jkn) and I I |Jkn| < M.
 k k n=l k n=l

 (Here B(F;X) is the graph of F on the set X.)

 452



 Definition 2. Given a positive integer N and a set E, a function F

 is said to be A(N) on E if for every e > 0 there is a 6 > 0 such that

 if Ii , . . . , Iķ, . . . are nonoverlapping intervals with E fi Ijj * 0 and

 I ļljtl < <5, then there exist intervals Jfcn» n = 1»2,...,N, such that
 k

 N

 B(F;E o U Iļ{) c U U ( Iļc * Jkn) Qnd Ü D l^knl ^
 k k n=l k n=l

 Definition 3. Given a positive integer N and a set E, a function F

 is said to be E(N) on E if for every subset S of E, |S| = 0, and for

 each e > 0 there exist rectangles Dķn = Ifc * Jjm, n = 1,2,...,N, where

 (Ih) is a sequence of nonoverlapping intervals, n S * 0 such that

 N N

 B(F;S) c U U Djfu and £ £ (diam Dj^) < e.
 k n=l k n=l

 Definition 4. [4] N denotes the class of real valued functions whose

 graph on any set of Lebesgue measure 0 is of linear measure 0.

 We need also the following preliminary facts:

 Let N be a positive integer and let us define on [0,1] the following

 perfect set:

 » ci

 Cfj = {x c [0,1] : X = I

 i=l (2N+l)i
 • Ci(x)

 i = 1,2,...}. Each x c Cfl is uniquely represented by X

 i=l (2N+l)i
 Clearly Cļ is identical to the Cantor ternary set C. Let

 : [0,1] - » [0,1] be defined as follows: For each x c Cjj, 9fl(x) =

 • ci(x)
 (1/2) I

 i=l (N+l)i

 linearity on each interval contiguous to Cfl, we have 9^ defined and

 continuous on [0,1]. Clearly is identical to the Cantor ternary
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 function V. But is also increasing on [0,1] and constant on each

 interval contiguous to Cjj. Indeed, let x,y € Cjj, x < y. Let n be the

 first positive integer such that cn(x) + 2 < cn(y) . Then cļ(x) = cļ(y),

 i = l,2,...,n-l. We have Vjļ(y) - fļļ(x) > (1/2) • (

 (N+l)n

 • cļ(y)-ci(x)
 I

 i=n+l (N+l)i

 œ 2N
 I

 i=k (2N+l)i

 Then there exist c¿ c {0,2, . . . ,2N}, i = 1,2,..., m cm > 2, such that

 m cj m- 1 c¿
 b = X

 i=l (2N+l)i i=l (2N+1)®

 Theorei 1. Given a positive integer N * 0, there exists a continuous

 function Gfl on [0,1] which is: a) E(N+1) oņ Cjj; b) E(N) on no

 portion of Cjj; d) A(Na+2N+l) oņ Cjj; d) B(N2+2N) oņ no portion of Cjj.

 Proof. Let {jn} be a strictly increasing sequence of positive integers,

 jo = 0. Let {an} be a strictly decreasing sequence of positive real

 numbers, a0 = 1, lim an = 0. Let Gr : Cr - » R, Gfl(x) =
 00

 (1/2N) • I cj (x) • (ak-ak+!). Then Gjj is continuous on Cjj.
 k=0

 Extending Gjj linearly on each interval contiguous to Cjj, we get Gjj

 defined and continuous on [0,1].

 a) We show that, if a^ < l/(2N+l)^k, then Gjj is E(N+1) on Cfl. Let
 p be a positive integer, p * 0 and

 jp cj(x) Ì
 ap = x € Cn : x = I I i=l (2N+l)iJ ' p j,>+1

 Then dp has (N+1)^P elements and I Ix, pi = 1/(2N+1)^P = R^ +ļ. Let

 2j 2j
 n - [Gjj(x + )> Gjj(X + R. J»'+»+1 J - 0,1, ...,N. x,p n (2N+1) P+1 (2N+1) P+1 J»'+»+1

 co

 Then |J¿ J = (1/2N) I 2N(ak-ak+1) = ap < 1/(2N+1)JP = |Ix>p| and
 x'p k=p
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 N

 B(Gn;Cn) c U U (Ix,p * Jx,p) • Therefore B(Gn;Cn) is contained in
 X€Öp j=0

 (N+1)-(N+1)JP squares, each of them of dimension 1/(2N+1)^P. Hence Gjj is

 E(N+1) on CN.

 b) We show that for afc = 1/(2N+1)^^ and Jk~2 > 2(jk-1+l), Gfl is E(N)

 on no portion of Cfj. Let K be a portion of Cjļ and let n > 2 be a

 positive integer such that, if

 Jn ci Jn ci
 I' = [ £

 i=l (2N+l)i i=l (2N+l)i J"

 We have |Vjí(K')| = l/(2N+l),'n. We show that Gjj is not B(N) on K'.

 Let I = [a,b] be a closed interval, a,b € K'. Then I n Cjf = I n K'.
 N

 We claim that if Gn(I n K') c U J¿, then
 i=l

 N

 (1) |»N(I)| < I IJil.
 i=l

 Let {1^} be a sequence of nonover lapping closed intervals such that
 N

 K' c U Iķ. Then for Dki = Ik * ^ki» with B(Gjf;K') c U U Dki we
 N N k 1=1

 have by (1) that Z Z (diam Dki) > Z Z |Jki > Z I^NUk)! >
 k i=l k i=l k

 |9jļ(K')| = l/(2N+l)^n. Hence Gjj is not E(N) on K'. It remains
 to show (1).

 Let I = [a,b], a,b € K'. Then there exists a positive integer m

 such that l/(2N+l)m+1 < 1 1 1 < 1/2N+1)111. Since ļ If < 1/(2N+1)™, there
 exist C!,c2,...,cm € {0,2,...,2N} such that for each x € I n K',

 cļ(x) = čí, i = 1,2,..., m. Since |I| > l/(2N+l)m+1 we have four
 possible cases:

 1) cm+i (®) = Cm+i (b) = Cm+i ;

 2) cm+i (b) - Cik+i (a) > 4 ;
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 3) Cm+i (a) + 2 = Cm-f J (b) and b-a = l/(2N+l)m+1 ;

 4) CnH-jia) + 2 = Cjj+i (b) and b-a > l/(2N+l)m+1 .

 m+1 ci
 1) We have a = E

 i=l (2N+l)i
 to 2) .

 nH-1 ci
 2) Let Cm-!-] = Cn+i (a) +2, A = E ~~ and B = A +

 i=l (2N+l)i

 Then [a,b] 3 [A,B] and B(GN;I n K') 3 B(GN; [A,B] "K'). Let k

 be a positive integer such that jfc < m+2 < jk+i and let
 ^ j ^ j

 Dj = GN(A + (2N+1) (2N+1) Jk+1 k+1
 N

 Then Gjj([A,B] n K') c U [Dj,Ej] and Dj+i > Ej, j = 0,1,..., N-l
 j=0

 (This fact will be shown below.) If we cover the set Gn([A,B] n K')

 with N intervals Ji,J2

 an interval [E j , D j-i-i 3 for some j € {0, 1, . . . ,N-1} . Hence

 N ak- j- ak

 E I Jil > Dj+! - Ej = - aj{ =
 i=l N

 ak - j N*^l a^ - i 1 ^k*~i

 = - d N ( 2N+1 ) Jk_1 N 2N+1 2N+1

 Therefore we have

 N Sit - 1
 (2) Z I Jil >

 i=l 2N+1

 in m cļ
 Let Ii = [ I

 i=l (2N+l)i i=l (2N+l)i

 I VN(I) I < |Vn(Ii)I = 1/ (N+l)m < l/(N+l)ik"2 < 1/ (N2+2N+1) J k-I+1 < ak_1/(2N+l).

 By (2) we easily have (1).

 m+1 ci
 3) Let CnH-j = cm+1(a). Then a = E

 i=l (2N+1)1

 456



 ID Cj Cļn+i+2
 b = I

 i=l (2N+l)i (2N+l)nr+1

 easily.

 m+1 cļ
 4) Let Cffl+i - Cm+i(a), A = £ . + Rm+a and

 i=l (2N+1)1
 m cļ cm+1+2 m+1 c± • c¿(a)

 B = I

 i=l (2N+l)i (2N+l)m+1 i=l (2N+l)i i=m+2 (2N+l)i

 ■ Cļ Cm+i+2 ® ci(b)
 and b = Ï

 i=l (2N+l)i (2N+l)m+1 i=m+2 (2N+1)*

 possible situations:

 (i) A-a < b-B and b * B;

 (ii) A-a > b-B and a * A;

 (i) Since b * B, there exists a positive integer p such that

 p = inf{i € N : i > m+2, ci(b) > 2}. Then p > m+2 and

 B(Gn;I n K') 3 B(Gjj; [B,B + RP+j] n K'). Let k be a positive integer

 such that < p+1 < jk+i- By analogy with case 2), if we cover the set

 Gn([B,B + Rp+i) n K') with N intervals Jj

 N ak-i

 I I Jil >
 i=l 2N+1

 [A - Rp, Ba = B + Rp] and Ia = [Aa,Ba]. Then I c Ia and

 f VnC la ) I = 2/(N+l)p_1 < l/(N+l)^lt 2 < ak_!/(2N+l). Hence we obtain (1).

 (ii) Since a * A, there exists a positive integer p such that

 p = inf{i c N : i > m+2, Ci(a) < 2N-2}. Clearly p > m+2. Let

 m Ci p 2N
 A3 = A - RP+1 = I

 i=l (2N+l)i i=m+2 (2N+l)i

 A = A3 + RP+i. Therefore B(Gn;I n K') 3 B(Gn; [A3, A3 + Rp+i] "K').

 Now by analogy with (i) we obtain (1).
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 (c) We show that Gjļ is A(N2+2N+1) on Cjj for aķ < l/(2N+l)^k.
 Let I = [a,b] be an interval, a,b € Cjj, such that I n Cjf * <t> and
 l/(2N+l)m+1 < 1 1 1 < l/(2N+l)m, for some positive integer m. Since

 1 1 1 < l/(2N+l)m, there exist cj c {0,2, . . . ,2N}, i = l,...,m such that,

 if X e I n Cjj, Cļ(x) = Cļ, i = 1,2,..., m. We may suppose without loss

 m Cļ
 of generality that m > j2. Let Aj = I

 i=l (2N+l)i
 Bi = Aj + Rffl+i* Let k be the first positive integer such that

 cJk(x) cJk+i(x)
 jjj > m+1, and let <3 = {x € Cjj : x =

 (2N+l)Jk (2N+l)Jk+1
 has (N2+2N+1) elements. For each x € a, let Jx = [GjjiAx+x),

 GN(Ai+x+Rjk+ļ+ļ) ] . Then Gn(I " Cfl) c Gjj( [ Ax , B ! ] n Cjj) c U Jx and
 X€d

 00

 |JX| = (1/2N) Z 2N(a,-ai+1) = ak < l/(2N+l)Jk < 1/(2N+1)"'+1 < |I|ģ
 i=k

 Hence I |JX| < (N2+2N+1) • 1 1 1 and Gn is A(N2+2N+1) on Cjf.
 xefl

 d) We show that Gjj is B(N2+2N) on no portion of Cjj, for

 ak = l/(2N+l)Jk and jk+2 - jk > 2jk+i +2, k = 0,1,2,... . Let

 K be a portion of Cjj. Then there exist c¿ € {0,2, . . . ,2N} ,

 i = 1,2, . . . , jp-1, such that K contains the set
 jp-1 Cļ

 Ki = CjY n [Sp, Sp+Rj ], where Sp = I
 P i=l (2N+l)i

 Gjj does not satisfy B(N2+2N) on Kł . Let p c N, p > 2 and

 jp+2-1 ci(x) Ì
 ap = x € Cjļ : x = £

 I i=p (2N+l)i J

 Ip,x = [Sp+x, Sp+x+Rjp+a]. Clearly IPjX n K, * 0 and ap had

 (N+l)^p+2 ^p elements. Let
 CJP+2(y) CJp+3(X)

 Bp = y € Cu : y =

 I ( 2N+1 ) Jp+2 (2N+1) Jp+3J

 (N2+2N+1) elements, namely yļ < y2 < ••• < ^jja-i^N+l* ^or eac^ x € Gp
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 and y € Bp let AXjy = Gn(Sp+x+y) and Bx>y = GN(Sp+x+y+RJf+3+1 ) .
 We have

 (3) GN(Ip,x n CM) c u [*x,y» ®x,y]'
 ycBp

 Let y,z c Bp, y < z. Then we have two possible situations:

 !• cJp+a(y) < cW);

 2- CJp+a(y) = CJp+a(z) 01,(1 CJp+3(y) < CJp+3(z)-

 1. We have Ax,z - Bx,y > (2/2N) • (aP - aP+1 ) - (1/2N) •
 <D

 I 2N(a, - a,+i ) > (l/N)(aP - áp+1) - ar+1 = Tp, where
 i=p+l

 ap-(N+l)aP+1
 Tp =

 N

 2. Analogously to 1., we obtain AXļZ - BX|y > T,+i.

 Since Tp > Tp+lt we have in both cases

 (4) AX>Z - BXjy > Tp+i .

 By (3) and (4), if we cover Gj}(Ip>x n Cjļ) wtih (Na+2N) intervals

 Jx,i. i = 1,2, . . . ,Na+2N, then there exists at least one y¿ e Bp

 such that at least one of the intervals Jx,i contains the interval

 t®x,y,» Ax,yl+J- Hence

 N2+2N . _ . .
 I I I Jx, i I > (N+l)Jp+a _ Jp TP+1 > (Na+2N+l)Jp+1 • (1/N) •

 xeGp i=l
 1 N+l . Na+2N+1 . j|,+1+1

 (

 (2N+1) (2N+1) 2N+1 p

 Theorem 2. There exists a continuous function F oņ [0,1] such that :

 a) F is N oņ C; b) for each positive integer N,F is E(N) on no

 portion of C.
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 • cai(x)
 Proof. For each x e C, let F(x) = I

 i=l 31

 continuous on C. Extending F linearly on each interval contiguous to C

 we have F defined and continuous on [0,1].

 2p ci(x)
 a) Let p € N and dp = ' x € C : x = Ï

 I i=l 3i J
 CO

 elements. For each k = 1,2,3,... let R¿ = E 2/3* and for x e Op
 i=k

 ( 2p c3 ¡ (y)
 let In y = [x, x+R' ]. Let Bp = • y € C : y = I

 2p+1 I i=p+l 321 J

 Then Bp has 2P elements. For each x e dp and y € Bp let

 JP,x,y = [F(x+y), F(x+y+R;p+i ) ] . Then |Ip,x| = |Jp,x,yl = l/3ap = 1/9'.

 Hence B(F;C) c U U (*p,x * Jp,x,y)» P € N. Therefore B(F;C) is
 xedp ycBp

 contained in 22p-2' = 8' squares, each of them of dimension 1/9P. Now it

 follows easily that F is N on C.

 b) Let K be a portion of C and

 P P

 I' = [ I ci/31, I cļ/31 + R' ], p € N. Then K 3 K' =1' n C,
 i=l i=l

 for some p c N. We show that F is not E(2,-l) on K', q € N. We

 may suppose without loss of generality that p > 8q+13. Let I = [a,b],
 2*-l

 a,b e K'. Then I n c = I n K'. We claim that if F(I n K') c U Jļ,
 i=l

 then

 2,-l

 (5) i«p(i) i < r iJii.
 i=l

 Let { Ijc) be a sequence of nonover lapping closed intervals such K' c U Ifc.
 2ł-l

 Then for Dķj = Ik * ^ki with B(F;K') c U U Djti, we have by (5) that
 k i=l
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 2«-l 2*-l

 I £ (diam Dki) > I I |Jki| > I |»Uk)l > l»(K')| = 1/2'. Hence
 k i=l k i=l k

 F is not E(2ł-1) on K'. It remains to prove (5).

 Let I = [a,b], a,b € K'. Then there exists a positive integer œ such

 that l/3m+1 < 1 1 1 < l/3m. Since |I| < l/^™, it follows that there exist

 ci ,ca, . . . ,m € {0,2} such that for each xc I n c, Cļ(x) = cj,

 i = 1,2,..., m. Since |I| > 1/3"*1 we have three possible situations:

 1* cm+i (®) = cm+i (t') = cm+i >

 2. Cm+jía) = 0, c^iO») = 2 and b-a = 1/3**1;

 3. CflH-tia) = 0, Cnrt-j (b) = 2 and b-a > 1/3"*1.

 BH-1

 1. We have a £ cí/3Í, b = a + R' , and
 . i flH-2 ,
 1=1 . i

 (6) V(b) - 9(a) = 1/2"*-1.

 Let n be the first positive integer such that m+2 < 2n, and let

 9 can+ai

 Qnq = X € C : x = I
 I i=l 32n+a 1 J

 x, < xa < ••• < xa, . Let Ax = F(a+x) and Bx = F(a+x+R^n+a^+i ) ,

 x € Gnq* We have

 (7) F([a,b] n C) c U [Ax, Bx] and
 xcdjjq

 (8) Ay - Bx > l/3n+<l , x,y e dnq, x < y.

 Indeed, let k € {l,2,...,q} such that can+a,j(x) = can+aj(y),

 j = l,2,...,k-l, can+ak(x) = 0 and can+ait(y) = 2. Then

 Ay - Bx > 2/3n+k - R*+j = l/3»+k > l/3n+<l and we have (8) .

 By (7) and (8), if we cover F([a,b] n c) with 2*-l intervals Jj,

 i = 1,2, . . . ,2*-l, then at least one of them contains an interval

 [Bx , AXļ+ļ] for some i € {1,2, . . . ,2ł-l}. Hence
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 2*-l

 (9) i i JÍ i > i/3«+q .
 i=l

 Clearly 2n-2 < m+1 < 2n-l. Since m+1 > p > 8q+13, it follows that

 2n > m+2 > p+1 > 8q+14. Hence n > 4q+7. We have

 2m-f i 22n~2

 (10)

 3n+q 3"+q

 Then (5) follows by (6), (9) and (10).

 m m

 2. We have a = I CÍ/3Í + R' . , b = I cí/3Í + 2/3m+1 and
 . i m-r2 . 1 i=l . i x=i . 1

 V(a) = V(b). Hence (5) follows.

 m m

 3. Let A = I C1/3Í + R' and B = I c±/3^ + 2/3m+1. Then
 1 ITH" 2 _ 1=1 1 i=l _

 TTÌ 00 m ID

 a = Z ci/31 + I ci(a)/3i and b = I ci/3* + 2/3ro+ł + I cļ(b)/3i.
 i=l i=m+2 i=l i=m+2

 Now we have two possibilities:

 (i) A-a < b-B and b * B;

 (11) A-a > b-B and a * A.

 (i) Since b * B, there exists a positive integer s such that

 s = inf{i € N: i > m+2, cļ(b) = 2}. Then s > m+2 and B(F;I n K') 3
 B(F; [B, B + R' ] "K'). Let n be a positive integer such that

 S » 1

 2n-l < s+1 < 2n. Then V(I) c V([A-R', B+R']) and
 s s

 (11) |V(I) I < 2/2s_1 .

 If we cover the set F([B, B+R' ] n K') with w'-l intervals Jļ,
 S* 1

 i = 1,2, . . . ,2*-l, then

 2,-l

 (12) I I Ji I > l/3n+q
 i=l

 Clearly 2n > s+1 > m+3 > p+2 > 8q+15. Hence n > 4q+8 and
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 2S-2 22n"~4

 (13)

 3n+q 3n+q

 By (11), (12) and (13) we have (5).

 (ii) Since a * A, there exists a positive integer s such that

 s = inf{i € N:i > bH-2, cļ(a) = 0}. Clearly s > m+2. Let
 m s

 Ai = A - H' = Z cj.:3Í + Z 2/3*. Then [a, A] 3 [Ai,A] and
 81 i=l i- m+2

 A = At + r+i. Therefore B(F;I n K') 3 B(F;[Ai, A,+Rģ+i] n K'). By

 analogy with (i), (5) follows.

 We are indebted to Professor Solomon Marcus for his help in preparing

 this article.
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