Real Analysis Exchange Vol. 11 (1985-86)
Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109, Bucharest, Romania

ON SOME CLASSES OF CONTINUOUS FUNCTIONS

In [3] J. Foran introduced conditions $A(N)$ and $B(N)$, and in [1] we defined condition $E(N)$ for a function on a set E for some positive integer N .

In the present paper we construct a continuous function G_{N} which satisfies $E(N+1)$ on a perfect set and which is $E(N)$ on no portion of this set. Given a natural number N, let $\mathcal{F}(\mathrm{N})$ (respectively $g(N), \varepsilon(N)$) be the class of all continuous functions F defined on a closed interval I for which there exist a sequence of sets $\left\{\mathrm{E}_{\mathrm{n}}\right\}$ and natural numbers $\left\{\mathrm{N}_{\mathrm{n}}\right\}$ such that $\sup \left(N_{n}\right)=N, I=U E_{n}$ and F is $A\left(N_{n}\right)$ (respectively $B\left(N_{n}\right), E\left(N_{n}\right)$) on E_{n}. (If we drop the condition $\sup \left(N_{n}\right)<\infty \quad$ we obtain the classes $\mathcal{F}, \mathrm{B}, \varepsilon$, which were defined in the same articles.) Let us recall that $\mathcal{F}(1)=$ ACG. By the Baire Category Theorem ([5], p. 54), our result means that the class $\mathcal{E}(\mathrm{N})$ is strictly contained in $\mathcal{E}(\mathrm{N}+1)$. (We showed in [1] that $\mathcal{F}(\mathrm{N})$ is strictly contained in $f(N+1)$.) Moreover the continuous function G_{N}, constructed for this purpose, has also the following properties: $G_{N} \in$ $7\left(\mathrm{~N}^{2}+2 \mathrm{~N}+1\right)$ and $\mathrm{G}_{\mathrm{N}} \notin \mathrm{B}\left(\mathrm{N}^{2}+2 \mathrm{~N}\right)$.

We construct also a continuous function F which satisfies Foran's condition $\overline{\mathrm{N}}$ and $\mathrm{F} \notin \varepsilon$. (We showed in [2] that ε is strictly contained in $\overline{\mathrm{N}}$, but here we have an explicit example.)

Definition 1. Given a positive integer N and a set E, a function F is said to be $B(N)$ on E if there is a number $M<\infty$ such that for any sequence $I_{1}, \ldots, I_{k}, \ldots$ of nonoverlapping intervals with $I_{k} \cap E \neq \varnothing$, there exist intervals $\mathrm{J}_{\mathrm{kn}}, \mathrm{n}=1, \ldots, \mathrm{~N}$, such that

$$
B\left(F ; E \cap \quad U \quad I_{k}\right) \subset \underbrace{U}_{k}{\underset{n=1}{N}}_{U}^{U}\left(I_{k} \times J_{k n}\right) \text { and } \sum_{k} \sum_{n=1}^{N}\left|J_{k n}\right|<M .
$$

(Here $B(F ; X)$ is the graph of F on the set X.)

Definition 2. Given a positive integer N and a set E, a function F is said to be $A(N)$ on E if for every $\varepsilon>0$ there is a $\delta>0$ such that if $\quad I_{1}, \ldots, I_{k}, \ldots$ are nonoverlapping intervals with $E \cap I_{k} \neq \varnothing$ and $\sum\left|I_{k}\right|<\delta$, then there exist intervals $J_{k n}, \quad n=1,2, \ldots, N$, such that k

$$
B\left(F ; E \cap \underset{k}{U} I_{k}\right) c \quad \underset{k}{U} \underset{n=1}{U}\left(I_{k} \times J_{k n}\right) \quad \text { and } \quad \sum_{k} \sum_{n=1}^{N}\left|J_{k n}\right|<\varepsilon
$$

Definition 3. Given a positive integer N and a set E, a function F is said to be $E(N)$ on E if for every subset S of $E,|S|=0$, and for each $\varepsilon>0$ there exist rectangles $D_{k n}=I_{k} \times J_{k n}, n=1,2, \ldots, N$, where $\left\{I_{k}\right\}$ is a sequence of nonoverlapping intervals, $I_{k} \cap S \neq \varnothing$ such that

$$
B(F ; S) \subset \quad \begin{aligned}
& U \\
& k
\end{aligned} \quad \begin{aligned}
& U=1
\end{aligned} D_{k n} \quad \text { and } \quad \sum_{k} \sum_{n=1}^{N}\left(\operatorname{diam} D_{k n}\right)<\varepsilon
$$

Definition 4. [4] $\overline{\mathrm{N}}$ denotes the class of real valued functions whose graph on any set of Lebesgue measure 0 is of linear measure 0 .

We need also the following preliminary facts:
Let N be a positive integer and let us define on [0,1] the following perfect set:
$C_{N}=\left\{x \in[0,1]: x=\sum_{i=1}^{\infty} \frac{c_{i}}{(2 N+1)^{i}}, \quad c_{i} \in\{0,2, \ldots, 2 N\}\right.$, for each $i=1,2, \ldots\} . \quad$ Each $\quad x \in C_{N} \quad i s$ uniquely represented by $\sum_{i=1}^{\infty} \frac{c_{i}(x)}{(2 N+1)^{i}}$. Clearly C_{1} is identical to the Cantor ternary set C. Let
$\varphi_{N}:[0,1] \rightarrow[0,1]$ be defined as follows: For each $x \in C_{N}, \varphi_{N}(x)=$ $(1 / 2) \sum_{i=1}^{\infty} \frac{C_{i}(x)}{(N+1)^{i}}$. Then φ_{N} is continuous on C_{N}. Extending φ_{N} by linearity on each interval contiguous to C_{N}, we have φ_{N} defined and continuous on $[0,1]$. Clearly φ_{1} is identical to the Cantor ternary
function φ. But φ_{N} is also increasing on $[0,1]$ and constant on each interval contiguous to C_{N}. Indeed, let $x, y \in C_{N}$, $x<y$. Let n be the first positive integer such that $c_{n}(x)+2 \leqslant c_{n}(y)$. Then $c_{i}(x)=c_{i}(y)$, $i=1,2, \ldots, n-1$ We have $\varphi_{N}(y)-\varphi_{N}(x) \geqslant(1 / 2) \cdot\left(\frac{2}{(N+1)^{n}}+\right.$ $\left.\sum_{i=n+1}^{\infty} \frac{c_{i}(y)-c_{i}(x)}{(N+1)^{i}}\right) \geqslant 0$. For each natural number $k \quad$ let $R_{k}=$ $\sum_{i=k}^{\infty} \frac{2 N}{(2 N+1)^{i}}$, and let $J=(a, b)$ be an interval contiguous to C_{N}. Then there exist $c_{i} \in\{0,2, \ldots, 2 N\}, \quad i=1,2, \ldots, m \quad c_{m} \geqslant 2$, such that $b=\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}} \quad$ and $\quad a=\sum_{i=1}^{m-1} \frac{c_{i}}{(2 N+1)^{m}}+R_{m+1} . \quad$ Hence $\quad \varphi_{N}(a)=\varphi_{N}(b)$.

Theorem 1. Given a positive integer $N \neq 0$, there exists a continuous function G_{N} on $[0,1]$ which is: a) $B(N+1)$ on C_{N}; b) $E(N)$ on no portion of C_{N}; d) $A\left(N^{2}+2 N+1\right)$ on C_{N}; d) $B\left(N^{2}+2 N\right)$ on no portion of C_{N}.

Proof. Let $\left\{j_{n}\right\}$ be a strictly increasing sequence of positive integers, $j_{0}=0$. Let $\left\{a_{n}\right\}$ be a strictly decreasing sequence of positive real numbers, $\quad a_{0}=1, \quad \lim a_{n}=0 . \quad$ Let $G_{N}: C_{N} \rightarrow R, \quad G_{N}(x)=$
$(1 / 2 N) \cdot \sum_{k=0}^{\infty} c_{j_{k+2}}(x) \cdot\left(a_{k}-a_{k+1}\right)$. Then G_{N} is continuous on C_{N}. Extending G_{N} linearly on each interval contiguous to C_{N}, we get G_{N} defined and continuous on $[0,1]$.
a) We show that, if $a_{k} \leqslant 1 /(2 N+1)^{j_{k}}$, then G_{N} is $E(N+1)$ on C_{N}. Let p be a positive integer, $p \neq 0$ and
$a_{p}=\left\{x \in C_{N}: x=\sum_{i=1}^{j_{p}} \frac{c_{i}(x)}{(2 N+1)}\right\}$. For each $x \in C_{N}$, let $I_{x, p}=\left[x, x+R_{j p+1}\right]$.
Then α_{p} has $(N+1)^{j_{p}}$ elements and $\left|I_{x, p}\right|=1 /(2 N+1)^{j_{p}}=R_{j_{p}+1}$. Let $J_{x, p}^{j}=\left[G_{N}\left(x+\frac{2 j_{j}}{(2 N+1)^{j p+1}}\right), \quad G_{n}\left(x+\frac{2 j^{\prime}}{(2 N+1)^{j_{p+1}}}+R_{j_{p+1}+1}\right)\right], \quad j=0,1, \ldots, N$.
Then $\left|J_{x, p}^{j}\right|=(1 / 2 N) \sum_{k=p}^{\infty} 2 N\left(a_{k}-a_{k+1}\right)=a_{p} \leqslant l /(2 N+1) j_{p}=\left|I_{x, p}\right| \quad$ and
$B\left(G_{N} ; C_{N}\right) \subset \underset{X \in C_{p}}{u} \underset{j=0}{\mathcal{U}}\left(I_{\mathbf{x}, p} \times J_{\mathbf{X}, p}^{j}\right)$. Therefore $B\left(G_{N} ; C_{N}\right)$ is contained in $(N+1) \cdot(N+1)^{j_{p}}$ squares, each of them of dimension $l /(2 N+1)^{j_{p}}$. Hence G_{N} is $E(N+1)$ on C_{N}.
b) We show that for $a_{k}=1 /(2 N+1)^{j_{k}}$ and $j_{k}-2 \geqslant 2\left(j_{k-1}+1\right), G_{N}$ is $B(N)$ on no portion of C_{N}. Let K be a portion of C_{N} and let $n \geqslant 2$ be a positive integer such that, if
$I^{\prime}=\left[\sum_{i=1}^{j_{n}} \frac{c_{i}}{(2 N+1)^{i}}, \sum_{i=1}^{j_{n}} \frac{c_{i}}{(2 N+1)^{i}}+R_{j_{n}+1}\right]$, then $K \supset K^{\prime}=I^{\prime} \cap c_{N}$.
We have $\left|\Phi_{N}\left(K^{\prime}\right)\right|=1 /(2 N+1)^{j_{n}}$. We show that G_{N} is not $E(N)$ on K^{\prime}.
Let $I=[a, b]$ be a closed interval, $a, b \in K^{\prime}$. Then $I \cap C_{N}=I \cap K^{\prime}$. We claim that if $G_{N}\left(I \cap K^{\prime}\right) c \underset{i=1}{N} J_{i}$, then

$$
\begin{equation*}
\left|\varphi_{N}(I)\right| \leqslant \sum_{i=1}^{N}\left|J_{i}\right| . \tag{1}
\end{equation*}
$$

Let $\left\{I_{k}\right\}$ be a sequence of nonoverlapping closed intervals such that K^{\prime} c $U I_{k}$. Then for $\dot{D}_{k i}=I_{k} \times J_{k i}$, with $B\left(G_{N} ; K^{\prime}\right) \subset \underset{i=1}{U} \underset{i=1}{N} D_{k i}$ we have by (1) that $\sum_{k} \sum_{i=1}^{N}\left(\operatorname{diam} D_{k i}\right) \geqslant \sum_{k} \sum_{i=1}^{N}\left|J_{k i} \geqslant \sum_{k}\right| \Phi_{N}\left(I_{k}\right) \mid \geqslant$ $\left|\varphi_{N}\left(K^{\prime}\right)\right|=1 /(2 N+1)^{j_{n}}$. Hence G_{N} is not $E(N)$ on K^{\prime}. It remains to show (1).

Let $I=[a, b], a, b \in K^{\prime}$. Then there exists a positive integer m such that $\left.1 /(2 N+1)^{m+1} \leqslant|I|<1 / 2 N+1\right)^{m}$. Since $|I|<1 /(2 N+1)^{m}$, there exist $c_{1}, c_{2}, \ldots, c_{m} \in\{0,2, \ldots, 2 N\} \quad$ such that for each $x \in I \cap K^{\prime}$, $c_{i}(x)=c_{i}, \quad i=1,2, \ldots, m$. Since $|I| \geqslant 1 /(2 N+1)^{m+1}$ we have four possible cases:

1) $c_{m+1}(a)=c_{m+1}(b)=c_{m+1}$;
2) $\mathrm{c}_{\mathrm{m}+1}(\mathrm{~b})-\mathrm{c}_{\mathrm{m}+1}(\mathrm{a}) \geq 4$;
3) $c_{m+1}(a)+2=c_{m+1}(b)$ and $b-a=1 /(2 N+1)^{m+1}$;
4) $c_{m+1}(a)+2=c_{m+1}(b)$ and $b-a>1 /(2 N+1)^{m+1}$.
5) We have $a=\sum_{i=1}^{m+1} \frac{c_{i}}{(2 N+1)^{i}}$ and $b=a+R_{m+2}$. Now the proof is similar to 2).
6) Let $c_{m+1}=c_{m+1}(a)+2, \quad A=\sum_{i=1}^{m+1} \frac{c_{i}}{(2 N+1)^{i}} \quad$ and $\quad B=A+R_{m+2}$.

Then $[a, b] \supset[A, B]$ and $B\left(G_{N} ; I \cap K^{\prime}\right) \supset B\left(G_{N} ;[A, B] \cap K^{*}\right)$. Let k be a positive integer such that $\quad j_{k}<m+2 \leqslant j_{k+1}$ and let $D_{j}=G_{N}\left(A+\frac{2 j}{(2 N+1)^{j_{k+1}}}\right)$ and $E_{j}=G_{N}\left(A+\frac{2 j}{(2 N+1)^{j_{k+1}}}+R_{j_{k+1}+1}\right)$.
Then $G_{N}\left([A, B] \cap K^{\prime}\right) \subset \mathrm{U}_{\mathrm{J}=0}^{\mathrm{N}}\left[\mathrm{D}_{\mathrm{j}}, \mathrm{E}_{\mathrm{j}}\right] \quad$ and $\quad \mathrm{D}_{\mathrm{j}+1}>\mathrm{E}_{\mathrm{j}}, \quad \mathrm{j}=0,1, \ldots, \mathrm{~N}-1$
(This fact will be shown below.) If we cover the set $G_{N}\left([A, B] \cap K^{\prime}\right)$ with N intervals $J_{1}, J_{2}, \ldots, J_{N}$ at least one of these intervals contains an interval $\left[B_{j}, D_{j+1}\right]$ for some $j \in\{0,1, \ldots, N-1\}$. Hence

$$
\sum_{i=1}^{N}\left|J_{i}\right| \geqslant D_{j+1}-E_{j}=\frac{a_{k-1}-a_{k}}{N}-a_{k}=
$$

$$
=\frac{a_{k-1}}{N}\left(1-\frac{N+1}{(2 N+1)^{j_{k}-j_{k-1}}}\right)>\frac{a_{k-1}}{N}\left(1-\frac{N+1}{2 N+1}\right)=\frac{a_{k-1}}{2 N+1} .
$$

Therefore we have

$$
\begin{equation*}
\sum_{i=1}^{N}\left|J_{i}\right|>\frac{a_{k-1}}{2 N+1} \tag{2}
\end{equation*}
$$

Let $\quad I_{1}=\left[\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}}, \sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}}+R_{m+1}\right] . \quad$ Then $\quad I \subset I_{1} \quad$ and $\left|\varphi_{N}(I)\right| \leqslant\left|\varphi_{N}\left(I_{1}\right)\right|=1 /(N+1)^{m} \leqslant l /(N+1)^{j_{k}-2} \leqslant 1 /\left(N^{2}+2 N+1\right)^{j_{k-1}+1}<a_{k-1} /(2 N+1)$.

By (2) we easily have (1).
3) Let $c_{m+1}=c_{m+1}(a)$. Then $a=\sum_{i=1}^{m+1} \frac{c_{i}}{(2 N+1)^{i}}+R_{m+2} \quad$ and
$b=\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}}+\frac{c_{m+1}+2}{(2 N+1)^{m+1}}$. Hence $\varphi_{N}(a)=\varphi_{N}(b)$. Now (1) follows easily.
4) Let $c_{m+1}=c_{m+1}(a), A=\sum_{i=1}^{m+1} \frac{c_{i}}{(2 N+1)^{i}}+R_{m+2} \quad$ and
$B=\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}}+\frac{c_{m+1}+2}{(2 N+1)^{m+1}} . \quad$ Then $a=\sum_{i=1}^{m+1} \frac{c_{i}}{(2 N+1)^{i}}+\sum_{i=m+2}^{\infty} \frac{c_{i}(a)}{(2 N+1)^{i}}$ and $b=\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}}+\frac{c_{m+1}+2}{(2 N+1)^{m+1}}+\sum_{i=m+2}^{\infty} \frac{c_{i}(b)}{(2 N+1)^{i}}$. Now we have two possible situations:
(i) $A-a<b-B$ and $b \neq B$;
(ii) $A-a \geq b-B$ and $a \neq A$;
(i) Since $b \neq B$, there exists a positive integer p such that
$p=\inf \left\{i \in N: i \geqslant m+2, \quad c_{i}(b) \geqslant 2\right\} . \quad$ Then $p \geqslant m+2 \quad$ and $B\left(G_{N} ; I \cap K^{\prime}\right) \supset B\left(G_{N} ;\left[B, B+R_{p+1}\right] \cap K^{\prime}\right)$. Let k be a positive integer such that $j_{k}<p+1 \leqslant j_{k+1}$. By analogy with case 2), if we cover the set $G_{N}\left(\left[B, B+R_{p+1}\right) \cap K^{\prime}\right)$ with N intervals J_{1}, \ldots, J_{N}, then $\sum_{i=1}^{N}\left|J_{i}\right|>\frac{a_{k-1}}{2 N+1}$. We have $b-B \leqslant R_{p}=1 /(2 N+1)^{p-1}$. Let $A_{2}=$ $\left[A-R_{p}, B_{2}=B+R_{p}\right]$ and $I_{2}=\left[A_{2}, B_{2}\right]$. Then $I \subset I_{2}$ and $\left|\varphi_{N}\left(I_{2}\right)\right|=2 /(N+1)^{p-1} \leqslant 1 /(N+1)^{j_{k}-2}<a_{k-1} /(2 N+1)$. Hence we obtain (1).
(ii) Since $a \neq A$, there exists a positive integer p such that $p=\inf \left\{i \in N: i \geqslant m+2, \quad c_{i}(a) \leqslant 2 N-2\right\} . \quad$ Clearly $p \geqslant m+2$. Let $A_{3}=A-R_{p+1}=\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}}+\sum_{i=m+2}^{p} \frac{2 N}{(2 N+1)^{i}} . \quad$ Then $[a, A] \supset\left[A_{3}, A\right]$ and $A=A_{3}+R_{p+1}$. Therefore $B\left(G_{n} ; I \cap K^{\prime}\right) \supset B\left(G_{n} ;\left[A_{3}, A_{3}+R_{p+1}\right] \cap K^{\prime}\right)$. Now by analogy with (i) we obtain (1).
(c) We show that G_{N} is $A\left(N^{2}+2 N+1\right)$ on C_{N} for $a_{k} \leqslant 1 /(2 N+1)^{j_{k}}$. Let $I=[a, b]$ be an interval, $a, b \in C_{N}$, such that $I \cap C_{N} \neq \varnothing$ and $1 /(2 N+1)^{m+1} \leqslant|I|<1 /(2 N+l)^{m}$, for some positive integer m. Since $|I|<1 /(2 N+1)^{m}$, there exist $c_{i} \in\{0,2, \ldots, 2 N\}, i=1, \ldots, m$ such that, if $x \in I \cap C_{N}, c_{i}(x)=c_{i}, \quad i=1,2, \ldots, m$. We may suppose without loss of generality that $m \geqslant j_{2}$. Let $\quad A_{1}=\sum_{i=1}^{m} \frac{c_{i}}{(2 N+1)^{i}} \quad$ and $B_{1}=A_{1}+R_{m+1}$. Let k be the first positive integer such that $j_{k} \geqslant m+1$, and let $a=\left\{x \in C_{N}: x=\frac{c_{j_{k}}(x)}{(2 N+1)^{j_{k}}}+\frac{c_{j_{k+1}}(x)}{(2 N+1)^{j_{k+1}}}\right\}$. Then a has $\left(N^{2}+2 N+1\right)$ elements. For each $x \in \alpha$, let $J_{x}=\left[G_{N}\left(A_{1}+x\right)\right.$, $\left.G_{N}\left(A_{1}+x+R_{j_{k+1}+1}\right)\right]$. Then $G_{N}\left(I \cap C_{N}\right) \subset G_{N}\left(\left[A_{1}, B_{1}\right] \cap C_{N}\right) \subset \underset{x \in \mathbb{U}}{U} J_{x}$ and $\left|J_{\mathbf{k}}\right|=(1 / 2 N) \sum_{i=k}^{\infty} 2 N\left(a_{i}-a_{i+1}\right)=a_{k} \leqslant 1 /(2 N+1)^{j_{k}} \leqslant 1 /(2 N+1)^{m+1} \leqslant|I|$. Hence $\sum_{x \in Q}\left|J_{X}\right| \leqslant\left(N^{2}+2 N+1\right) \cdot|I|$ and G_{N} is $A\left(N^{2}+2 N+1\right)$ on C_{N}.
d) We show that G_{N} is $B\left(N^{2}+2 N\right)$ on no portion of C_{N}, for $a_{k}=1 /(2 N+1)^{j_{k}} \quad$ and $\quad j_{k+2}-j_{k} \geqslant 2 j_{k+1}+2, \quad k=0,1,2, \ldots$. Let
K be a portion of C_{N}. Then there exist $c_{i} \in\{0,2, \ldots, 2 N\}$,
$i=1,2, \ldots, j_{p}-1, \quad$ such that K contains the set
$K_{1}=C_{N} \cap\left[S_{p}, S_{p}+R_{j_{p}}\right]$, where $S_{p}=\sum_{i=1}^{j_{p}}{ }_{i=1} \frac{c_{i}}{(2 N+1)^{i}}$. We show that
G_{N} does not satisfy $B\left(N^{2}+2 N\right)$ on K_{1}. Let $p \in N, \quad p \geqslant 2$ and $a_{p}=\left\{x \in C_{N}: x=\sum_{i=p}^{j_{p+2}-1} \frac{c_{i}(x)}{(2 N+1)^{i}}\right\}$. For each $x \in a_{p} \quad$ let $I_{p, x}=\left[S_{p}+x, S_{p+x+} R_{j_{p+2}}\right]$. Clearly $I_{p, x} \cap K_{1} \neq \varnothing$ and a_{p} had $(N+1)^{j_{p+2}-j_{p}} \quad$ elements. Let
$B_{p}=\left\{y \in C_{N}: y=\frac{c j_{p+2}(y)}{(2 N+1) j_{p+2}}+\frac{c_{j_{p+3}}(x)}{(2 N+1) j_{p+3}}\right\} . \quad$ Clearly $\quad B_{p} \quad$ has $\left(N^{2}+2 N+1\right)$ elements, namely $y_{1}<y_{2}<\cdots<y_{N^{2}+2 N+1}$. For each $x \in a_{p}$
and $y \in B_{p}$ let $A_{x, y}=G_{N}\left(S_{p}+x+y\right)$ and $B_{x, y}=G_{N}\left(S_{p}+x+y+R_{j_{p+3}}+1\right)$.
We have

$$
\begin{equation*}
G_{N}\left(I_{p, x} \cap C_{N}\right) \subset \underset{y \in B_{p}}{u}\left[A_{x, y}, B_{x, y}\right] \tag{3}
\end{equation*}
$$

Let $y, z \in B_{p}, y<z$. Then we have two possible situations:

1. $c_{j_{p+2}}(y)<c_{j_{p+2}}(z)$;
2. $c_{j_{p+2}}(y)=c_{j_{p+2}}(z)$ and $c_{j_{p+3}}(y)<c_{j_{p+3}}(z)$.
3. We have $A_{X, z}-B_{X, y} \geqslant(2 / 2 N) \cdot\left(a_{p}-a_{p+1}\right)-(1 / 2 N)$.
$\sum_{=p+1}^{\infty} 2 N\left(a_{i}-a_{i+1}\right) \geqslant(1 / N)\left(a_{p}-\dot{a}_{p+1}\right)-a_{p+1}=T p, \quad$ where $T_{p}=\frac{\mathbf{a}_{p}-(N+l) \mathbf{a}_{p+1}}{N}$.
4. Analogously to l., we obtain $A_{X, z}-B_{X, y} \geqslant T_{p+1}$.

Since $T_{p}>T_{p+1}$, we have in both cases
(4) $\quad A_{X, z}-B_{X, y} \geqslant T_{P+1}$.

By (3) and (4), if we cover $G_{N}\left(I_{p, x} \cap C_{N}\right)$ wtih ($\left.N^{2}+2 N\right)$ intervals $J_{x, i}, \quad i=1,2, \ldots, N^{2}+2 N$, then there exists at least one $y_{i} \in B_{p}$ such that at least one of the intervals $J_{x, i}$ contains the interval $\left[B_{X, Y_{1}}, A_{X, y_{1+1}}\right]$. Hence

$$
\begin{aligned}
& \sum_{x \in a_{p}} \sum_{i=1}^{N^{2}+2 N}\left|J_{X, i}\right| \geqslant(N+1)^{j_{P+2}-j_{p}} T_{P+1} \geqslant\left(N^{2}+2 N+1\right)^{j_{P+1}+1} \cdot(1 / N) \cdot \\
& \left.\left(\frac{1}{(2 N+1)^{j_{P+1}}}-\frac{N+1}{(2 N+1)^{j_{P+1}+1}}\right)=\left[\frac{N^{2}+2 N+1}{2 N+1}\right]{ }^{j_{P+1}+1}\right] \quad p \longrightarrow \infty
\end{aligned}
$$

Theorem 2. There exists a continuous function F on $[0,1]$ such that:
a) F is \bar{N} on C; b) for each positive integer N, F is $E(N)$ on no portion of C.

Proof. For each $x \in C$, let $F(x)=\sum_{i=1}^{\infty} \frac{c_{2 i}(x)}{3^{i}}$. Then F is continuous on C. Extending F linearly on each interval contiguous to C we have F defined and continuous on $[0,1]$.
a) Let $p \in N$ and $a_{p}=\left\{x \in C: x=\sum_{i=1}^{2 p} \frac{c_{i}(x)}{3^{i}}\right\}$. Then a_{p} has $2^{2 p}$ elements. For each $k=1,2,3, \ldots$ let $R_{k}^{\prime}=\sum_{i=k}^{\infty} 2 / 3^{i}$ and for $x \in a_{p}$ let $I_{p, x}=\left[x, x+R_{2 p+1}^{\prime}\right]$. Let $B_{p}=\left\{y \in C: y=\sum_{i=p+1}^{2 p} \frac{c_{2 i}(y)}{3^{2 i}}\right\}$. Then B_{p} has $2 p$ elements. For each $x \in a_{p}$ and $y \in B_{p}$ let $J_{p, x, y}=\left[F(x+y), F\left(x+y+R_{4 p+1}^{\prime}\right)\right]$. Then $\quad\left|I_{p, x}\right|=\left|J_{p, x, y}\right|=1 / 3^{2 p}=1 / 9^{p}$. Hence $B(F ; C) \subset \underset{x \in Q_{p}}{U} \underset{y \in B_{p}}{U} \quad\left(I_{p, x} \times J_{p, x, y}\right), \quad p \in N$. Therefore $B(F ; C)$ is contained in $2^{2 p} \cdot 2^{p}=8^{p}$ squares, each of them of dimension $1 / 9^{p}$. Now it follows easily that F is \bar{N} on C.
b) Let K be a portion of C and
$I^{\prime}=\left[\sum_{i=1}^{p} c_{i} / 3^{i}, \sum_{i=1}^{p} c_{i} / 3^{i}+R_{p+1}^{\prime}\right], \quad p \in N . \quad$ Then $\quad K \supset K^{\prime}=I^{\prime} \cap C$, for some $p \in N$. We show that F is not $E\left(2^{q}-1\right)$ on $K^{\prime}, q \in N$. We may suppose without loss of generality that $p \geqslant 8 q+13$. Let $I=[a, b]$, $a, b \in K^{\prime}$. Then $I \cap C=I \cap K^{\prime}$. We claim that if $F\left(I \cap K^{\prime}\right) c \underset{i=1}{\mathbf{2}^{a}-1} J_{i}$, then
(5) $\quad|\varphi(I)| \leqslant \sum_{i=1}^{2 q-1}\left|J_{i}\right|$.

Let $\left\{I_{k}\right\}$ be a sequence of nonoverlapping closed intervals such $K^{\prime} \subset \cup I_{k}$. $2^{9}-1$
Then for $D_{k i}=I_{k} \times J_{k i}$ with $B\left(F ; K^{\prime}\right) c \underset{k}{U} \underset{i=1}{U} D_{k i}$, we have by (5) that
$\sum_{k} \sum_{i=1}^{2^{q}-1}\left(\operatorname{diam} D_{k i}\right) \geqslant \sum_{k} \sum_{i=1}^{2 q-1}\left|J_{k i}\right| \geqslant \sum_{k}\left|\varphi\left(I_{k}\right)\right| \geqslant\left|\varphi\left(K^{\prime}\right)\right|=1 / 2^{p}$. Hence
F is not $E\left(2^{a}-1\right)$ on K^{\prime}. It remains to prove (5).
Let $I=[a, b], a, b \in K^{\prime}$. Then there exists a positive integer m such that $1 / 3^{m+1} \leqslant|I|<1 / 3^{m}$. Since $|I|<1 / 3^{m}$, it follows that there exist $c_{1}, c_{2}, \ldots, m \in\{0,2\} \quad$ such that for each $x \in I \cap C, c_{i}(x)=c_{i}$, $i=1,2, \ldots, m$. Since $|I| \geqslant 1 / 3^{m+1}$ we have three possible situations:

1. c_{m+1} (a) $=c_{m+1}$ (b) $=c_{m+1}$;
2. $c_{m+1}(a)=0, \quad c_{m+1}(b)=2$ and $b-a=1 / 3^{m+1}$;
3. $c_{m+1}(a)=0, \quad c_{m+1}(b)=2$ and $b-a>1 / 3^{m+1}$.
4. We have a $\sum_{i=1}^{m+1} c_{i} / 3^{i}, \quad b=a+R_{m+2}^{\prime} \quad$ and
(6) $\quad \varphi(b)-\varphi(a)=1 / 2^{m+1}$.

Let n be the first positive integer such that $m+2 \leqslant 2 n$, and let $a_{n q}=\left\{x \in C: x=\sum_{i=1}^{q} \frac{c_{2 n+2 i}}{3^{2 n+2 i}}\right\}$. Then $a_{n q}$ has 2^{q} elements; namely $x_{1}<x_{2}<\cdots<x_{2 q}$. Let $A_{x}=F(a+x)$ and $B_{x}=F\left(a+x+R_{2 n+2 q+1}^{\circ}\right)$, $x \in \alpha_{n q}$. We have

$$
\begin{equation*}
F([a, b] \cap C) \subset \underset{x \in \mathbb{Q}_{n q}}{U} \quad\left[A_{X}, B_{x}\right] \quad \text { and } \tag{7}
\end{equation*}
$$

(8) $\quad A_{y}-B_{x} \geqslant 1 / 3^{n+q}, \quad x, y \in a_{n q}, \quad x<y$.

Indeed, let $k \in\{1,2, \ldots, q\}$ such that $c_{2 n+2 j}(x)=c_{2 n+2 j}(y)$,
$j=1,2, \ldots, k-1, \quad c_{2 n+2 k}(x)=0 \quad$ and $\quad c_{2 n+2 k}(y)=2$. Then $A_{y}-B_{x} \geqslant 2 / 3^{n+k}-R_{k+1}^{\prime}=1 / 3^{n+k} \geqslant 1 / 3^{n+q} \quad$ and we have (8).

By (7) and (8), if we cover $F([a, b] \cap C)$ with $2^{a}-1$ intervals J_{i},
$i=1,2, \ldots, 2^{q}-1, \quad$ then at least one of them contains an interval
$\left[B_{X_{1}}, A_{X_{1+1}}\right]$ for some $i \in\left\{1,2, \ldots, 2^{q}-1\right\}$. Hence
(9) $\sum_{i=1}^{2^{q}-1}\left|J_{i}\right| \geqslant 1 / 3^{n+q}$.

Clearly $2 n-2 \leqslant m+1 \leqslant 2 n-1$. Since $m+1 \geqslant p>8 q+13$, it follows that $2 n \geqslant m+2 \geqslant p+1 \geqslant 8 q+14$. Hence $n \geqslant 4 q+7$. We have
(10) $\frac{2^{m+1}}{3^{n+q}} \geqslant \frac{2^{2 n-2}}{3^{n+q}}=(1 / 4) \cdot(4 / 3)^{n} \cdot(1 / 3)^{q} \geqslant(1 / 4) \cdot\left((4 / 3)^{n} \cdot(1 / 3)\right)^{q} \cdot(4 / 3)^{7}>1$.

Then (5) follows by (6), (9) and (10).
2. We have $a=\sum_{i=1}^{m} c_{i} / 3^{i}+R_{m+2}^{\prime}, \quad b=\sum_{i=1}^{m} c_{i} / 3^{i}+2 / 3^{m+1} \quad$ and $\varphi(\mathrm{a})=\varphi(\mathrm{b})$. Hence (5) follows.
3. Let $A=\sum_{i=1}^{m} c_{i} / 3^{i}+R_{m+2}^{\prime}$ and $B=\sum_{i=1}^{m} c_{i} / 3^{i}+2 / 3^{m+1}$. Then
$a=\sum_{i=1}^{m} c_{i} / 3^{i}+\sum_{i=m+2}^{\infty} c_{i}(a) / 3^{i} \quad$ and $\quad b=\sum_{i=1}^{m} c_{i} / 3^{i}+2 / 3^{m+1}+\sum_{i=m+2}^{\infty} c_{i}(b) / 3^{i}$.
Now we have two possibilities:
(i) $A-a<b-B \quad$ and $\quad b \neq B$;
(ii) $A-a \geqslant b-B \quad$ and $a \neq A$.
(i) Since $b \neq B$, there exists a positive integer s such that $s=\inf \left\{i \in N: i \geqslant m+2, \quad c_{i}(b)=2\right\}$. Then $s \geqslant m+2$ and $B\left(F ; I \cap K^{\prime}\right) \sim$ $B\left(F ;\left[B, B+R_{s+1}^{\cdot}\right] \cap K^{\prime}\right)$. Let n be a positive integer such that $2 n-1 \leqslant s+1 \leqslant 2 n$. Then $\varphi(I) \subset \varphi\left(\left[A-R_{s}^{\prime}, \quad B+R_{s}^{\prime}\right]\right)$ and

$$
\begin{equation*}
|\varphi(I)| \leqslant 2 / 2^{s-1} . \tag{11}
\end{equation*}
$$

If we cover the set $F\left(\left[B, B+R_{s+1}^{\prime}\right] \cap K^{\prime}\right)$ with $w^{9}-1$ intervals J_{i}, $\mathrm{i}=1,2, \ldots, 2^{\mathrm{q}}-1$, then

$$
\begin{equation*}
\sum_{i=1}^{2^{q}-1}\left|J_{i}\right| \geqslant 1 / 3^{n+q} . \tag{12}
\end{equation*}
$$

Clearly $2 n \geqslant s+1 \geqslant m+3 \geqslant p+2 \geqslant 8 q+15$. Hence $n>4 q+8$ and
(13) $\frac{2^{s-2}}{3^{n+q}} \geqslant \frac{2^{2 n-4}}{3^{n+q}}=(1 / 16) \cdot(4 / 3)^{n} \cdot(1 / 3)^{q} \geqslant(1 / 16) \cdot\left((4 / 3)^{4} \cdot(1 / 3)\right)^{q} \cdot(4 / 3)^{8}>1$.

By (11), (12) and (13) we have (5).
(ii) Since $a \neq A$, there exists a positive integer s such that $s=\inf \left\{i \in N: i \geqslant m+2, \quad c_{i}(a)=0\right\}$. Clearly $s \geqslant m+2$. Let $A_{1}=A-R_{s+1}^{\prime}=\sum_{i=1}^{m} c_{i}: 3^{i}+\sum_{i=m+2}^{S} 2 / 3^{i}$. Then $[a, A] \supset\left[A_{1}, A\right]$ and $A=A_{1}+R_{s+1}^{\prime} . \quad$ Therefore $B\left(F ; I \cap K^{\prime}\right) \supset B\left(F ;\left[A_{1}, A_{1}+R_{s+1}^{\prime}\right] \cap K^{\prime}\right) . \quad B y$ analogy with (i), (5) follows.

We are indebted to Professor Solomon Marcus for his help in preparing this article.

References

1. Ene, V.: A Study of Foran's Conditions $A(N), B(N)$ and his Class \mathcal{F}. Real Analysis Exchange, 10 (1985), 194-211.
2. Ene, G. and Ene, V.: Nonabsolutely Convergent Integrals. Real Analysis Exchange, 11 (1985-86), 121-133.
3. Foran, J.: An Extension of the Denjoy Integral. Proc. Amer. Math. Soc., 49 (1975), 359-365.
4. Foran, J.: On functions whose graph is of linear measure 0 on sets of measure 0. Fund. Math. XCVI (1977), 31-36.
5. Saks, S.: Theory of the Integral. 2nd, rev. ed. Mongrafie Matematyczne, vol. VII, PWN, Warsaw (1937).
