Real Analysis Exchange Vol. 11 (1985-86)

Vasile Ene, Institute of Mathematics, str. Academiei 14, 70109, Bucharest, Romania

ON SOME CLASSES OF CONTINUOUS FUNCTIONS

In [3] J. Foran introduced conditions A(N) and B(N), and in [1] we defined condition E(N) for a function on a set E for some positive integer N.

In the present paper we construct a continuous function GN which satisfies E(N+1) on a perfect set and which is E(N) on no portion of this set. Given a natural number N, let $\mathcal{F}(N)$ (respectively $\mathcal{B}(N)$, $\mathcal{E}(N)$) be the class of all continuous functions F defined on a closed interval I for which there exist a sequence of sets $\{E_n\}$ and natural numbers $\{N_n\}$ such that $\sup(N_n) = N$, $I = \bigcup E_n$ and F is $A(N_n)$ (respectively $B(N_n)$, $E(N_n)$) (If we drop the condition $\sup(N_n) < \infty$ we obtain the classes on En. **F**, **B**, \mathcal{E} , which were defined in the same articles.) Let us recall that $\mathcal{F}(1) =$ ACG. By the Baire Category Theorem ([5], p. 54), our result means that the class $\mathcal{E}(N)$ is strictly contained in $\mathcal{E}(N+1)$. (We showed in [1] that $\mathcal{F}(N)$ is strictly contained in **𝔅**(N+1).) Moreover the continuous function G_N, constructed for this purpose, has also the following properties: GN E $\mathcal{F}(N^2+2N+1)$ and $G_N \notin \mathcal{B}(N^2+2N)$.

We construct also a continuous function F which satisfies Foran's condition \overline{N} and $F \notin \mathcal{E}$. (We showed in [2] that \mathcal{E} is strictly contained in \overline{N} , but here we have an explicit example.)

<u>Definition 1</u>. Given a positive integer N and a set E, a function F is said to be B(N) on E if there is a number $M < \infty$ such that for any sequence I_1, \dots, I_k, \dots of nonoverlapping intervals with $I_k \cap E \neq \emptyset$, there exist intervals J_{kn} , $n = 1, \dots, N$, such that

(Here B(F;X) is the graph of F on the set X.)

<u>Definition 2</u>. Given a positive integer N and a set E, a function F is said to be A(N) on E if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if I_1, \ldots, I_k, \ldots are nonoverlapping intervals with $E \cap I_k \neq \phi$ and $\sum |I_k| < \delta$, then there exist intervals J_{kn} , $n = 1, 2, \ldots, N$, such that k

$$\begin{array}{cccc} & & & & & & \\ B(F;E \cap \cup I_k) \subseteq & \cup & \cup & (I_k \times J_{kn}) & \text{and} & \sum & \sum |J_{kn}| < \varepsilon. \\ & & & & k & n=1 & & & k & n=1 \end{array}$$

<u>Definition 3</u>. Given a positive integer N and a set E, a function F is said to be E(N) on E if for every subset S of E, |S| = 0, and for each $\varepsilon > 0$ there exist rectangles $D_{kn} = I_k \times J_{kn}$, n = 1, 2, ..., N, where $\{I_k\}$ is a sequence of nonoverlapping intervals, $I_k \cap S \neq \emptyset$ such that

 $\begin{array}{ccccccc} N & N \\ B(F;S) & \subset & U & U & D_{kn} & \text{and} & \sum & \sum & (\text{diam } D_{kn}) < \varepsilon. \\ & & k & n=1 & & k & n=1 \end{array}$

<u>Definition 4.</u> [4] \overline{N} denotes the class of real valued functions whose graph on any set of Lebesgue measure 0 is of linear measure 0.

We need also the following preliminary facts:

Let N be a positive integer and let us define on [0,1] the following perfect set:

$$C_{N} = \{x \in [0,1] : x = \sum_{i=1}^{\infty} \frac{c_{i}}{(2N+1)^{i}}, c_{i} \in \{0,2,\ldots,2N\}, \text{ for each } i = 1,2,\ldots\}.$$
 Each $x \in C_{N}$ is uniquely represented by $\sum_{i=1}^{\infty} \frac{c_{i}(x)}{(2N+1)^{i}}$.
Clearly C_{1} is identical to the Cantor ternary set C . Let
 $\Psi_{N} : [0,1] \rightarrow [0,1]$ be defined as follows: For each $x \in C_{N}, \Psi_{N}(x) = (1/2) \sum_{i=1}^{\infty} \frac{c_{i}(x)}{(N+1)^{i}}$. Then Ψ_{N} is continuous on C_{N} . Extending Ψ_{N} by linearity on each interval contiguous to C_{N} , we have Ψ_{N} defined and continuous on $[0,1]$. Clearly Ψ_{1} is identical to the Cantor ternary

function Ψ . But Ψ_N is also increasing on [0,1] and constant on each interval contiguous to C_N . Indeed, let $x, y \in C_N$, x < y. Let n be the first positive integer such that $c_n(x) + 2 < c_n(y)$. Then $c_1(x) = c_1(y)$, i = 1, 2, ..., n-1. We have $\Psi_N(y) - \Psi_N(x) > (1/2) \cdot (\frac{2}{(N+1)^n} + \frac{c_1(y) - c_1(x)}{(N+1)^1}) > 0$. For each natural number k let $R_k =$ $\sum_{i=n+1}^{\infty} \frac{2N}{(2N+1)^i}$, and let J = (a,b) be an interval contiguous to C_N . Then there exist $c_i \in \{0, 2, ..., 2N\}$, i = 1, 2, ..., m $c_m > 2$, such that $b = \sum_{i=1}^{m} \frac{c_i}{(2N+1)^i}$ and $a = \sum_{i=1}^{m-1} \frac{c_i}{(2N+1)^m} + R_m+1$. Hence $\Psi_N(a) = \Psi_N(b)$.

Theorem 1. Given a positive integer $N \neq 0$, there exists a continuous function G_N on [0,1] which is: a) E(N+1) on C_N ; b) E(N) on no portion of C_N ; d) $A(N^2+2N+1)$ on C_N ; d) $B(N^2+2N)$ on no portion of C_N .

<u>Proof</u>. Let $\{j_n\}$ be a strictly increasing sequence of positive integers, $j_0 = 0$. Let $\{a_n\}$ be a strictly decreasing sequence of positive real numbers, $a_0 = 1$, $\lim a_n = 0$. Let $G_N : C_N \to R$, $G_N(x) =$ $(1/2N) \cdot \sum_{k=0}^{\infty} c_{j_{k+2}}(x) \cdot (a_k - a_{k+1})$. Then G_N is continuous on C_N . Extending G_N linearly on each interval contiguous to C_N , we get G_N defined and continuous on [0,1].

a) We show that, if $a_k \le 1/(2N+1)^{jk}$, then G_N is E(N+1) on C_N . Let p be a positive integer, $p \ne 0$ and

$$\begin{split} & \mathfrak{a}_{p} = \left\{ x \in C_{N} : \ x = \sum_{i=1}^{j_{p}} \frac{c_{i}(x)}{(2N+1)^{i}} \right\}. \quad \text{For each } x \in C_{N}, \text{ let } I_{x,p} = [x, x+R_{j_{p}+1}]. \end{split}$$
 $\begin{aligned} & \text{Then } \mathfrak{a}_{p} \text{ has } (N+1)^{j_{p}} \text{ elements and } |I_{x,p}| = 1/(2N+1)^{j_{p}} = R_{j_{p}+1}. \quad \text{Let} \\ & J_{x,p}^{j} = [G_{N}(x + \frac{2j}{(2N+1)^{j_{p+1}}}), \quad G_{n}(x + \frac{2j}{(2N+1)^{j_{p+1}}} + R_{j_{p+1}+1})], \quad j = 0, 1, \dots, N. \end{aligned}$ $\begin{aligned} & \text{Then } |J_{x,p}^{j}| = (1/2N) \sum_{k=p}^{\infty} 2N(a_{k}-a_{k+1}) = a_{p} \leq 1/(2N+1)^{j_{p}} = |I_{x,p}| \quad \text{and} \end{aligned}$

 $\begin{array}{rcl} B(G_N;C_N) & \subset & \bigcup_{\substack{X \in \mathbb{Q}_p \\ X \in \mathbb{Q}_p \\ j=0}}^N (I_{X,p} \times J_{X,p}^j). & \text{Therefore } B(G_N;C_N) \text{ is contained in} \\ (N+1) \cdot (N+1)^{jp} \text{ squares, each of them of dimension } 1/(2N+1)^{jp}. & \text{Hence } G_N \text{ is} \\ E(N+1) & \text{on } C_N. \end{array}$

b) We show that for $a_k = 1/(2N+1)^{jk}$ and $j_k-2 > 2(j_{k-1}+1)$, G_N is E(N) on no portion of C_N . Let K be a portion of C_N and let n > 2 be a positive integer such that, if

$$I' = \begin{bmatrix} \int_{1}^{j_{n}} \frac{c_{i}}{(2N+1)^{i}}, & \int_{1}^{j_{n}} \frac{c_{i}}{(2N+1)^{i}} + R_{j_{n}+1} \end{bmatrix}, \text{ then } K \supset K' = I' \cap C_{N}.$$

We have $|\Psi_{N}(K')| = 1/(2N+1)^{j_{n}}$. We show that G_{N} is not $E(N)$ on K' .
Let $I = [a,b]$ be a closed interval, $a,b \in K'$. Then $I \cap C_{N} = I \cap K'$.
We claim that if $G_{N}(I \cap K') \subset \bigcup_{i=1}^{N} J_{i}$, then
 $i=1$

(1)
$$|\varphi_{N}(I)| \leq \sum_{i=1}^{N} |J_{i}|.$$

Let $\{I_k\}$ be a sequence of nonoverlapping closed intervals such that $K' \in U I_k$. Then for $D_{ki} = I_k \times J_{ki}$, with $B(G_N; K') \in U$ U D_{ki} we have by (1) that $\sum_{k} \sum_{i=1}^{N} (\text{diam } D_{ki}) \gg \sum_{k} \sum_{i=1}^{N} |J_{ki}| \gg \sum_{k} |\Psi_N(I_k)| \gg k$ $|\Psi_N(K')| = 1/(2N+1)^{j_n}$. Hence G_N is not E(N) on K'. It remains to show (1).

Let I = [a,b], a,b ϵ K'. Then there exists a positive integer m such that $1/(2N+1)^{m+1} \leq |I| \leq 1/(2N+1)^m$. Since $|I| \leq 1/(2N+1)^m$, there exist $c_1, c_2, \ldots, c_m \in \{0, 2, \ldots, 2N\}$ such that for each $x \in I \cap K'$, $c_1(x) = c_1$, $i = 1, 2, \ldots, m$. Since $|I| \geq 1/(2N+1)^{m+1}$ we have four possible cases:

1) $c_{m+1}(a) = c_{m+1}(b) = c_{m+1}$;

2) $c_{m+1}(b) - c_{m+1}(a) \ge 4$;

3) $c_{m+1}(a) + 2 = c_{m+1}(b)$ and $b-a = 1/(2N+1)^{m+1}$; 4) $c_{m+1}(a) + 2 = c_{m+1}(b)$ and $b-a > 1/(2N+1)^{m+1}$. 1) We have $a = \sum_{i=1}^{m+1} \frac{c_i}{(2N+1)^i}$ and $b = a + R_{m+2}$. Now the proof is similar to 2).

2) Let
$$c_{m+1} = c_{m+1}(a) + 2$$
, $A = \sum_{i=1}^{m+1} \frac{c_i}{(2N+1)^i}$ and $B = A + R_{m+2}$.

Then
$$[a,b] \supset [A,B]$$
 and $B(G_N; I \cap K') \supset B(G_N; [A,B] \cap K')$. Let k
be a positive integer such that $j_k < m+2 < j_{k+1}$ and let
 $D_j = G_N(A + \frac{2j}{(2N+1)^{j_{k+1}}})$ and $E_j = G_N(A + \frac{2j}{(2N+1)^{j_{k+1}}} + R_{j_{k+1}+1})$.
Then $G_N([A,B] \cap K') \subset \bigcup_{j=0}^N [D_j, E_j]$ and $D_{j+1} > E_j$, $j = 0, 1, \dots, N-1$

(This fact will be shown below.) If we cover the set $G_N([A,B] \cap K')$ with N intervals J_1, J_2, \ldots, J_N at least one of these intervals contains an interval $[E_j, D_{j+1}]$ for some $j \in \{0, 1, \ldots, N-1\}$. Hence

$$\sum_{i=1}^{N} |J_{i}| \ge D_{j+1} - E_{j} = \frac{a_{k-1} - a_{k}}{N} - a_{k} =$$
$$= \frac{a_{k-1}}{N} (1 - \frac{N+1}{(2N+1)^{j_{k} - j_{k-1}}}) \ge \frac{a_{k-1}}{N} (1 - \frac{N+1}{2N+1}) = \frac{a_{k-1}}{2N+1}$$

Therefore we have

(2)
$$\sum_{i=1}^{N} |J_i| > \frac{a_{k-1}}{2N+1}.$$

Let $I_1 = \begin{bmatrix} \frac{m}{2} & \frac{c_1}{(2N+1)^i} \end{bmatrix}$, $\begin{bmatrix} \frac{m}{2} & \frac{c_1}{(2N+1)^i} \\ i=1 & (2N+1)^i \end{bmatrix}$, $\begin{bmatrix} \frac{m}{2} & \frac{c_1}{(2N+1)^i} \end{bmatrix}$. Then $I \in I_1$ and i=2

$$|\varphi_{N}(I)| \leq |\varphi_{N}(I_{1})| = 1/(N+1)^{m} \leq 1/(N+1)^{j_{k}-2} \leq 1/(N^{2}+2N+1)^{j_{k}-1+1} \leq a_{k-1}/(2N+1).$$

By (2) we easily have (1).

3) Let
$$c_{m+1} = c_{m+1}(a)$$
. Then $a = \sum_{i=1}^{m+1} \frac{c_i}{(2N+1)^i} + R_{m+2}$ and $i=1$ (2N+1)ⁱ

$$b = \sum_{i=1}^{m} \frac{c_i}{(2N+1)^i} + \frac{c_{m+1}+2}{(2N+1)^{m+1}}.$$
 Hence $\varphi_N(a) = \varphi_N(b).$ Now (1) follows

easily.

4) Let
$$c_{m+1} = c_{m+1}(a)$$
, $A = \sum_{i=1}^{m+1} \frac{c_i}{(2N+1)^i} + R_{m+2}$ and
 $B = \sum_{i=1}^{m} \frac{c_i}{(2N+1)^i} + \frac{c_{m+1}+2}{(2N+1)^{m+1}}$. Then $a = \sum_{i=1}^{m+1} \frac{c_i}{(2N+1)^i} + \sum_{i=m+2}^{\infty} \frac{c_i(a)}{(2N+1)^i}$
and $b = \sum_{i=1}^{m} \frac{c_i}{(2N+1)^i} + \frac{c_{m+1}+2}{(2N+1)^{m+1}} + \sum_{i=m+2}^{\infty} \frac{c_i(b)}{(2N+1)^i}$. Now we have two

possible situations:

(i) $A-a \leq b-B$ and $b \neq B$;

(ii) A-a > b-B and $a \neq A$;

(i) Since $b \neq B$, there exists a positive integer p such that $p = \inf\{i \in N : i > m+2, c_i(b) > 2\}$. Then p > m+2 and $B(G_N; I \cap K') = B(G_N; [B, B + R_{p+1}] \cap K')$. Let k be a positive integer such that $j_k < p+1 < j_{k+1}$. By analogy with case 2), if we cover the set $G_N([B, B + R_{p+1}) \cap K')$ with N intervals J_1, \ldots, J_N , then $\sum_{i=1}^{N} |J_i| > \frac{a_{k-1}}{2N+1}$. We have $b-B < R_p = 1/(2N+1)^{p-1}$. Let $A_2 = [A - R_p, B_2 = B + R_p]$ and $I_2 = [A_2, B_2]$. Then $I \in I_2$ and $|\Psi_N(I_2)| = 2/(N+1)^{p-1} < 1/(N+1)^{j_k-2} < a_{k-1}/(2N+1)$. Hence we obtain (1).

(ii) Since $a \neq A$, there exists a positive integer p such that $p = \inf\{i \in N : i > m+2, c_i(a) \leq 2N-2\}$. Clearly p > m+2. Let $A_3 = A - R_{p+1} = \sum_{i=1}^{m} \frac{c_i}{(2N+1)^i} + \sum_{i=m+2}^{p} \frac{2N}{(2N+1)^i}$. Then $[a,A] \supset [A_3,A]$ and $A = A_3 + R_{p+1}$. Therefore $B(G_n; I \cap K') \supset B(G_n; [A_3, A_3 + R_{p+1}] \cap K')$.

 $A = A_3 + R_{p+1}$. Therefore $B(G_n; 1 \cap K) \stackrel{\circ}{\rightarrow} B(G_n; [A_3, A_3 + R_{p+1}] \cap K)$. Now by analogy with (i) we obtain (1). (c) We show that G_N is $A(N^2+2N+1)$ on C_N for $a_k \leq 1/(2N+1)^{j_k}$. Let I = [a,b] be an interval, a, b \in C_N, such that I \cap C_N $\neq \emptyset$ and $1/(2N+1)^{m+1} \leq |I| < 1/(2N+1)^m$, for some positive integer m. Since $|I| < 1/(2N+1)^{m}$, there exist $c_i \in \{0, 2, \dots, 2N\}$, $i = 1, \dots, m$ such that, if $x \in I \cap C_N$, $c_1(x) = c_1$, i = 1, 2, ..., m. We may suppose without loss of generality that $m \ge j_2$. Let $A_1 = \sum_{i=1}^{m} \frac{c_i}{(2N+1)i}$ and $B_1 = A_1 + R_{m+1}$. Let k be the first positive integer such that $j_k \ge m+1$, and let $a = \{x \in C_N : x = \frac{c_{j_k}(x)}{(2N+1)^{j_k}} + \frac{c_{j_{k+1}}(x)}{(2N+1)^{j_{k+1}}}\}$. Then ahas (N^2+2N+1) elements. For each $x \in \mathcal{Q}$, let $J_{X} = [G_{N}(A_{1}+x),$ $G_N(A_1+x+R_{j_{k+1}+1})$]. Then $G_N(I \cap C_N) \subset G_N([A_1,B_1] \cap C_N) \subset \bigcup_{X \in G} J_X$ and $|J_{\mathbf{X}}| = (1/2N) \sum_{i=k}^{n} 2N(\mathbf{a}_{i}-\mathbf{a}_{i+1}) = \mathbf{a}_{k} \leq 1/(2N+1)^{j_{k}} \leq 1/(2N+1)^{m+1} \leq |\mathbf{I}|.$ $\sum |J_X| \leq (N^2+2N+1) \cdot |I|$ and G_N is $A(N^2+2N+1)$ on C_N . xeQ Hence d) We show that G_N is $B(N^2+2N)$ on no portion of C_N , for $a_k = 1/(2N+1)^{j_k}$ and $j_{k+2} - j_k \ge 2j_{k+1} + 2$, k = 0, 1, 2, ...Let be a portion of C_N . Then there exist $c_i \in \{0, 2, \dots, 2N\}$, K $i = 1, 2, ..., j_p-1$, such that K contains the set $K_1 = C_N \cap [S_p, S_p + R_{j_p}],$ where $S_p = \sum_{i=1}^{j_p-1} \frac{c_i}{(2N+1)^i}$. We show that G_N does not satisfy $B(N^2+2N)$ on K_1 . Let $p \in N$, $p \ge 2$ and $a_{p} = \left\{ x \in C_{N} : x = \sum_{i=D}^{j_{p+2}-1} \frac{c_{i}(x)}{(2N+1)^{i}} \right\}.$ For each $x \in a_{p}$ let $I_{p,x} = [S_p+x, S_p+x+R_{j_{p+2}}].$ Clearly $I_{p,x} \cap K_1 \neq \emptyset$ and G_p had $(N+1)^{j_{P+2}-j_{P}}$ elements. $B_{p} = \left\{ y \in C_{N} : y = \frac{c_{j_{p+2}}(y)}{(2N+1) j_{p+2}} + \frac{c_{j_{p+3}}(x)}{(2N+1) j_{p+3}} \right\}.$ Clearly B_{p} has (N²+2N+1) elements, namely $y_1 < y_2 < \cdots < y_{N^2+2N+1}$. For each $x \in \mathbb{Q}_p$

458

and $y \in B_p$ let $A_{x,y} = G_N(S_p + x + y)$ and $B_{x,y} = G_N(S_p + x + y + R_{j_{p+3}+1})$. We have

(3)
$$G_{N}(I_{p,X} \cap C_{N}) \subset \bigcup [A_{X,y}, B_{X,y}].$$
$$y \in B_{p}$$

Let $y, z \in B_p$, y < z. Then we have two possible situations:

1.
$$c_{j_{p+2}}(y) < c_{j_{p+2}}(z);$$

2. $c_{j_{p+2}}(y) = c_{j_{p+2}}(z)$ and $c_{j_{p+3}}(y) < c_{j_{p+3}}(z).$

1. We have
$$A_{X,Z} - B_{X,Y} \ge (2/2N) \cdot (a_p - a_{p+1}) - (1/2N) \cdot \sum_{i=p+1}^{\infty} 2N(a_i - a_{i+1}) \ge (1/N)(a_p - a_{p+1}) - a_{p+1} = T_p$$
, where
 $i=p+1$
 $T_p = \frac{a_p - (N+1)a_{p+1}}{N}$.

2. Analogously to 1., we obtain $A_{X,Z} - B_{X,Y} \ge T_{P+1}$.

Since $T_{p} > T_{p+1}$, we have in both cases

$$(4) \quad A_{X,Z} - B_{X,Y} \geq T_{P+1}$$

By (3) and (4), if we cover $G_N(I_{p,X} \cap C_N)$ with (N^2+2N) intervals $J_{X,i}$, $i = 1, 2, ..., N^2+2N$, then there exists at least one $y_i \in B_p$ such that at least one of the intervals $J_{X,i}$ contains the interval $[B_{X,y_i}, A_{X,y_{i+1}}]$. Hence

$$\sum_{\mathbf{x}\in \mathbf{G}_{\mathbf{p}}} \sum_{i=1}^{N^{2}+2N} |J_{\mathbf{x},i}| \geq (N+1)^{\mathbf{j}_{\mathbf{p}+2}-\mathbf{j}_{\mathbf{p}}} T_{\mathbf{p}+1} \geq (N^{2}+2N+1)^{\mathbf{j}_{\mathbf{p}+1}+1} \cdot (1/N) \cdot \frac{1}{(2N+1)^{\mathbf{j}_{\mathbf{p}+1}}} - \frac{N+1}{(2N+1)^{\mathbf{j}_{\mathbf{p}+1}+1}} = \left[\frac{N^{2}+2N+1}{2N+1}\right] \xrightarrow{\mathbf{j}_{\mathbf{p}+1}+1} \mathbf{p} \xrightarrow{\mathbf{w}} \cdot \mathbf{w}$$

Theorem 2. There exists a continuous function F on [0,1] such that: a) F is \overline{N} on C; b) for each positive integer N,F is E(N) on no portion of C. <u>Proof</u>. For each $x \in C$, let $F(x) = \sum_{i=1}^{\infty} \frac{c_{2i}(x)}{3^{i}}$. Then F is continuous on C. Extending F linearly on each interval contiguous to C we have F defined and continuous on [0,1].

a) Let
$$p \in N$$
 and $\mathbb{Q}_p = \left\{ x \in \mathbb{C} : x = \sum_{i=1}^{2p} \frac{c_i(x)}{3^i} \right\}$. Then \mathbb{Q}_p has 2^{2p}
elements. For each $k = 1, 2, 3, ...$ let $\mathbb{R}'_k = \sum_{i=k}^{\infty} 2/3^i$ and for $x \in \mathbb{Q}_p$
let $\mathbb{I}_{p,x} = [x, x + \mathbb{R}'_{2p+1}]$. Let $\mathbb{B}_p = \left\{ y \in \mathbb{C} : y = \sum_{i=p+1}^{2p} \frac{c_{2i}(y)}{3^{2i}} \right\}$.
Then \mathbb{B}_p has 2P elements. For each $x \in \mathbb{Q}_p$ and $y \in \mathbb{B}_p$ let
 $\mathbb{J}_{p,x,y} = [\mathbb{F}(x+y), \mathbb{F}(x+y+\mathbb{R}'_{4p+1})]$. Then $|\mathbb{I}_{p,x}| = |\mathbb{J}_{p,x,y}| = 1/3^{2p} = 1/9^p$.
Hence $\mathbb{B}(\mathbb{F};\mathbb{C}) \subset \mathbb{U} = \mathbb{U} = (\mathbb{I}_{p,x} \times \mathbb{J}_{p,x,y}), p \in \mathbb{N}$. Therefore $\mathbb{B}(\mathbb{F};\mathbb{C})$ is
 $x \in \mathbb{Q}_p = y \in \mathbb{B}_p$ squares, each of them of dimension $1/9^p$. Now it

follows easily that F is \overline{N} on C.

b) Let K be a portion of C and

$$I' = \begin{bmatrix} P \\ \sum \\ i=1 \end{bmatrix} c_{i}/3^{i}, \sum_{i=1}^{P} c_{i}/3^{i} + R'_{P+1} \end{bmatrix}, P \in N. \text{ Then } K \geq K' = I' \cap C,$$
for some $p \in N$. We show that F is not $E(2^{q}-1)$ on K', $q \in N$. We
may suppose without loss of generality that $p \geq 8q+13$. Let $I = [a,b],$
 $a,b \in K'$. Then $I \cap C = I \cap K'$. We claim that if $F(I \cap K') \stackrel{2^{q}-1}{=} U$

then

(5)
$$|\varphi(I)| \leq \sum_{i=1}^{2^{q}-1} |J_i|.$$

Let $\{I_k\}$ be a sequence of nonoverlapping closed intervals such $K' \in U I_k$. Then for $D_{ki} = I_k \times J_{ki}$ with $B(F;K') \subset \bigcup_{k \in I} \bigcup_{k \in I} D_{ki}$, we have by (5) that k = 1 Let n be the first positive integer such that m+2 < 2n, and let $\mathfrak{Q}_{nq} = \left\{ x \in \mathbb{C} : x = \sum_{i=1}^{q} \frac{C_{2n+2i}}{3^{2n+2i}} \right\}$. Then \mathfrak{Q}_{nq} has 2^q elements; namely $x_1 < x_2 < \cdots < x_{2^q}$. Let $A_X = F(a+x)$ and $B_X = F(a+x+R'_{2n+2q+1})$,

 $x \in Q_{nq}$. We have

(7)
$$F([a,b] \cap C) \subseteq \bigcup [A_X, B_X]$$
 and $x \in \mathcal{Q}_{nq}$

(8)
$$A_y - B_x \ge 1/3^{n+q}$$
, $x, y \in a_{nq}$, $x < y$.

Indeed, let $k \in \{1, 2, ..., q\}$ such that $c_{2n+2j}(x) = c_{2n+2j}(y)$, j = 1, 2, ..., k-1, $c_{2n+2k}(x) = 0$ and $c_{2n+2k}(y) = 2$. Then $A_y - B_x \ge 2/3^{n+k} - R'_{k+1} = 1/3^{n+k} \ge 1/3^{n+q}$ and we have (8). By (7) and (8), if we cover $F([a,b] \cap C)$ with $2^{q}-1$ intervals J_i , $i = 1, 2, ..., 2^{q}-1$, then at least one of them contains an interval $[B_{X_i}, A_{X_{i+1}}]$ for some $i \in \{1, 2, ..., 2^{q}-1\}$. Hence

(9)
$$\sum_{i=1}^{2^{q}-1} |J_{i}| \ge 1/3^{n+q}$$

Clearly 2n-2 < m+1 < 2n-1. Since m+1 > p > 8q+13, it follows that 2n > m+2 > p+1 > 8q+14. Hence n > 4q+7. We have

(10)
$$\frac{2^{m+1}}{3^{n+q}} \ge \frac{2^{2n-2}}{3^{n+q}} = (1/4) \cdot (4/3)^n \cdot (1/3)^q \ge (1/4) \cdot ((4/3)^n \cdot (1/3))^q \cdot (4/3)^7 > 1.$$

Then (5) follows by (6), (9) and (10).

2. We have
$$a = \sum_{i=1}^{m} c_i/3^i + R'_{m+2}$$
, $b = \sum_{i=1}^{m} c_i/3^i + 2/3^{m+1}$ and $i=1$

 $\varphi(a) = \varphi(b)$. Hence (5) follows.

3. Let
$$A = \sum_{i=1}^{m} c_i/3^i + R'_{m+2}$$
 and $B = \sum_{i=1}^{m} c_i/3^i + 2/3^{m+1}$. Then
 $a = \sum_{i=1}^{m} c_i/3^i + \sum_{i=m+2}^{\infty} c_i(a)/3^i$ and $b = \sum_{i=1}^{m} c_i/3^i + 2/3^{m+1} + \sum_{i=m+2}^{\infty} c_i(b)/3^i$.

Now we have two possibilities:

(i)
$$A-a \leq b-B$$
 and $b \neq B$;

(ii) $A-a \ge b-B$ and $a \ne A$.

(i) Since $b \neq B$, there exists a positive integer s such that $s = \inf\{i \in N: i \ge m+2, c_i(b) = 2\}$. Then $s \ge m+2$ and $B(F; I \cap K') \ge B(F; [B, B + R'_{S+1}] \cap K')$. Let n be a positive integer such that $2n-1 \le s+1 \le 2n$. Then $\Psi(I) \subseteq \Psi([A-R'_{S}, B+R'_{S}])$ and

(11)
$$|\varphi(I)| \leq 2/2^{S^{-1}}$$
.

If we cover the set $F([B, B+R'_{S+1}] \cap K')$ with w^q-l intervals J_i , i = 1,2,...,2^q-l, then

(12)
$$\begin{array}{c} 2^{q}-1\\ \Sigma\\ i=1 \end{array}$$
 $|J_{1}| > 1/3^{n+q}.$

Clearly $2n \ge s+1 \ge m+3 \ge p+2 \ge 8q+15$. Hence $n \ge 4q+8$ and

(13)
$$\frac{2^{n-2}}{3^{n+q}} > \frac{2^{2n-4}}{3^{n+q}} = (1/16) \cdot (4/3)^n \cdot (1/3)^q > (1/16) \cdot ((4/3)^4 \cdot (1/3))^q \cdot (4/3)^8 > 1.$$

By (11), (12) and (13) we have (5).

(ii) Since $a \neq A$, there exists a positive integer s such that $s = \inf\{i \in N: i \ge m+2, c_i(a) = 0\}$. Clearly $s \ge m+2$. Let $A_1 = A - R'_{s+1} = \sum_{i=1}^{m} c_i: 3^i + \sum_{i=m+2}^{s} 2/3^i$. Then $[a, A] \supseteq [A_1, A]$ and $A = A_1 + R'_{s+1}$. Therefore $B(F; I \cap K') \supseteq B(F; [A_1, A_1 + R'_{s+1}] \cap K')$. By analogy with (i), (5) follows.

We are indebted to Professor Solomon Marcus for his help in preparing this article.

References

- Ene, V.: A Study of Foran's Conditions A(N), B(N) and his Class J. Real Analysis Exchange, 10 (1985), 194-211.
- Ene, G. and Ene, V.: Nonabsolutely Convergent Integrals. Real Analysis Exchange, 11 (1985-86), 121-133.
- Foran, J.: An Extension of the Denjoy Integral. Proc. Amer. Math. Soc., 49 (1975), 359-365.
- Foran, J.: On functions whose graph is of linear measure 0 on sets of measure 0. Fund. Math. XCVI (1977), 31-36.
- Saks, S.: Theory of the Integral. 2nd, rev. ed. Mongrafie Matematyczne, vol. VII, PWN, Warsaw (1937).

Received December 30, 1985.

463