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 DARBOUX TRANSFORMATIONS

 80. Introduction and basic definitions and notation. Problems connected

 with properties of Darboux functions were investigated in many papers. An

 important fact about the class of Darboux functions is that it contains many

 subclasses of functions, for example, the class of derivatives ([6]) as well as

 the class of approximately continuous functions ([7]).

 In many papers the notion of Darboux function has been generalized to

 transformations whose domain (and range) are topological spaces more general

 than the real line (see for example [1], [4], [8], [9], [25]). A detailed account

 of many generalizations of the notion of Darboux function can be found in

 article [17].

 It is reasonable to require any generalization of the notion of Darboux

 function to fulfill the following conditions:

 I. The fundamental theorems for real Darboux functions of one

 variable are also true for Darboux transformations in more

 general spaces.

 II. It is possible to consider new problems, which cannot be

 considered in the case of real functions of a real variable.

 III. If the domain of a real Darboux function is the Euclidean space

 Rn and L c Fn is an arbitrary line, then f|L : L -* R is
 a Darboux function.

 The various notions of a Darboux function all involve the image of certain

 "connected" sets being connected. In this article we study the following

 specific notion:

 We say that f : X •* Y, where X and Y are arbitrary topological

 spaces, is a Darboux transformation, if f(Ł) is a connected set, for

 every Eire Ł c X.
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 IŁ is easy to see that the above definition is "similar" to the definitions

 which are contained in [24], [25], [36].

 First we consider problems connected with the results of Z. Zahorski [37]

 and T. Mańk, T. Świątkowski [22]. Of course these results are connected with

 condition I. It is interesting to remark that our notion of Darboux trans-

 formation fulfills conditions II. and III. For example we may consider the

 properties of Darboux transformations f : F2 -» Fa of bounded variation (§2).

 In particular one can prove that in the space of all bounded Darboux

 functions f : Ia -» Fa of bounded variation, the set of all discontinuous

 functions is dense and has cardinality 2C. (Observe that if f : I •* F is a

 discontinuous Darboux function, then the variation of f is equal to ®.) We

 may also consider the problems connected with the extension of Darboux

 functions (§3). It is also possible to generalize the notion of a Darboux point

 (§4) in such a way that one can prove a local characterization of Darboux

 transformations in arbitrary topological spaces. Moreover we can consider

 different notions of a Darboux point [2]. One can also consider some

 interesting applications of these notions.

 We shall use the standard notions and notations. By F we denote the

 set of real numbers with the natural topology and by I. - an arbitrary closed

 nondegenerate segment. Let f be an arbitrary transformation. Denote by

 Cf(Df) the set of all continuity (discontinuity) points of f. The uniform

 convergence of a sequence of functions (fn) to f is denoted by 'n *
 The symbol m^ni]) denotes l-dimensional (2-dimensional) Lebesgue measure.

 The set of all continuous functions f : F2 •* F we denote by C(Fa). For

 a function F = (fi,f2) : F -» Fa we write

 if- i = /( f;) 2+ (f;) 2.

 If f : X •* F, then we let Ea(f) = f-1 ((-®, a)) and Ea(f) = f-1 ((a,+®)) for

 a € F. By Cl we understand the class of all functions h : F •* F which

 have a continuous derivative. If A c Fa, then the symbol projx(A) means

 the projection of the set A on the X-axis. The symbol dia A(card A, A)

 denotes the diameter of the set A (cardinality of A, closure of A). By

 p(a,b) we understand the distance between points a and b in the plane.

 A subset Ł c X, where X is an arbitrary topological space, is called an arc

 if there exists a homeomorphism h : [0,1] onto Ł. The elements h(0)
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 and h(l) we shall call the endpoints of Ł. The arc with the endpoints x

 and y we denote by L(x,y). If Ł is an arc and a,b e Ł, then the

 symbol Lfc(a,b) denotes the arc with the endpoints at a and b, which is

 contained in Ł.

 Let X be an arbitrary topological space. We say that a nonempty, closed

 set K cuts X into sets U and V (between nonempty sets A and B)

 if X ' K = U u v, where U and V are nonempty open sets such that

 U n v = 0 (and A c U, B c V). We say that the nonempty set K quasi-

 cuts a set M c X into sets U and V, between nonempty sets A and B,

 if M ' K = U u V, where U,V are nonempty separated sets such that

 A c U and B c V.

 Let (Y,d) be a metric space, A c X and f : A ■» Y. Then we say that

 a transformation f* : X -» Y is an e-extension of f (over X) if f* is an

 extension of f (i.e. f*|A = f) and for each y e f*(X ) there exists
 y0 € f(A) such that d(y,y0) < «.

 il. On Zahorski classes of functions of two variables.

 In paper [7] A. Den joy defined approximately continuous functions

 f : R •* R. He proved that if f is an approximately continuous function, then

 it is a Darboux function in Baire class one. In many papers the notion of

 approximately continuous function has been generalized to a function

 f : R2 -» R. (See [18], [28], [30].) In this article we assume that the base for

 the definition of density points is the intervals. The set of all approximately

 continuous functions f : R2 -> R is denoted by a2. The results of this

 paper (except Theorem 1.10) are true also if the base for the definition of

 density points is the cubes. Moreover we give another generalization of the

 notion of approximately continuous function on R2 using the arcs as the

 base for the definition of density points. It is easy to see that our

 generalization fulfills the conditions I., II. and III. (if we put "approximately

 continuous functions" in place of "Darboux functions").

 Now we pass to the definitions of three classes of arcs in the plane. By

 Ł j we mean the class of all arcs Ł c R2 such that ma(Ł') > 0 for every arc

 Ł' c L. por any Ł e £¡ let:

 m2(Ł)
 ó(Ł) = sup{ - Tzrr : K is an interval such that Ł c K}.

 m3 (K;
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 For a set A c Ł c £j which is measurable relative to 2-dimensional Lebesgue

 measure we put mfc(A) = ma(A). Let £3 denote the class of arcs -Ł c R2

 such that either Ł is a segment parallel to the Y-axis (the family of all such

 segments we shall denote by I*) or Ł c {(p,9(p)) : a' < p < b' a V e Cj}
 for some a', b' c R.

 A set A c Ł € I* is called -fc-measurable if A is a measurable set

 relative to 1-dimensional Lebesgue measure (on Ł). A set A c Ł € £3 ' I*
 is called fc-measurable if projx(A) is a Lebesgue measurable set. We say
 that the set A is ¿-measurable if A is measurable relative to 2-dimensional

 Lebesgue measure and Ł n A is an Ł-measurable set for each Ł e £2.

 Now we define the function ł : R -* R2 in the following way:

 *(p) = (p,v(p))t

 where V € Cf Note that if Ł € £2 ' I*, then Ł c {(p,V(p)) : a' < p < b'}
 and 9 € Ci which means that we may define the measure on Ł by

 mt(A) = J I ♦ ' J dmi
 projx(A)

 for every set A c Ł such that projx(A) is a measurable set.
 If Le I*, then mt(A) denotes 1-dimensional Lebesgue measure. Denote

 by £ 3 the class of all arcs Ł c R2 such that Ł i £, u £2, For every

 A c Ra let

 0 if card A < x0>
 fflo(A) =

 . +m if card A > x0-

 For completeness let mfc(A) = m0(A) for every set A c Ł c £3.

 Definition 1.1: Let A c R2 be a Lebesgue measurable set. We say that

 p € R2 is a £ i -density point of A if

 m^(A n Ł)
 lim

 ( )
 dia(Ł) •* 0
 6(Ł) ■+ 1
 p € Ł € £ļ
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 Definition 1.2: Let A c F2 be an ¿-measurable set. We say that

 p c F2 is an ¿2-density point of A relative to the set B c F2 if for

 every arc Ł* € ¿2 such that p e Ł* c B

 mt(A n Ł)
 lim

 m. (Ł)
 dia(Ł) -*• 0
 p € Ł c Ł*

 In case B = Fa we say that p is an ¿2 -density point of A.

 Definition 1.3: Let A c F2 be an ¿-measurable set. We say that

 p € Fa is an ¿-density point of A if it is an ¿¿-density point of A (for
 i = 1,2) and moreover m0(A n Ł) = » for every arc Ł such that pet.

 Definition 1.4: (a) We say that a function f : F2 ■+ F is

 ¿¡-approximately continuous (for i = 1,2) if for every a e F, Ea(f) and

 Ea(f) are ¿-measurable sets such that for each x0 e E"(f) (or Ea(f)) x0

 is an ¿¡-density point of Ea(f) (or Ea(f) respectively). The class of all

 ¿¡-approximately continuous functions we shall denote by ¿¡ a2 (for i = 1,2).
 (b) We say that a function of f : F2 ■+ F is ¿-approximately continuous

 if for every a € F Ea(f) and E«(f) are ¿-measurable sets such that for

 each x0 c Ea(f) (or Ea(f)) x0 is an ¿-density point of Eot(f) (or Ea(f)

 respectively). The class of all ¿-approximately continuous functions we shall

 denote by ¿ aa.

 (c) Assume that Ł ą ¿2 and f : Ł -» F. We say that a function f is

 ¿-approximately continuous if for every « c F, Ea(f) and E«(f) are

 ¿-measurable sets such that for each x0 e Ea(f) (or Ea(f)) x0 is an

 ¿2-density point of Ea(f) (or Ea(f) respectively) relative to Ł. The class

 of all functions f : Ł -» F which are ¿-approximately continuous we shall

 denote by ¿ 0!^.

 One can prove that if f € ¿ Q2, then f is a Darboux function in Baire

 class one. Z. Zahorski in [37] considered a hierarchy of classes of functions

 f : F •* F. The largest class was equal to the family of all Darboux functions

 of Baire class one, the smallest, the family of all approximately continuous

 functions. He also showed how the classes of all derivatives and bounded
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 derviatives fit into the scheme. In this paper we shall define similar classes

 for functions of two variables in such a way that the fundamental theorems

 connected with the Zahorski classes will also be true.

 Definition 1.5: We say that x0 € R2 is a point of multilateral

 accumulation (condensation) of a set P c R2 relative to a set B if for

 every arc Ł = LÍXqjXj ) c B x0 is an accumulation (condensation) point of

 P n Ł.

 In case B = R2 we say that x0 is a point of multilateral accumulation

 (condensation) of P.

 Definition 1.6: We say that the graph of function f : P ■* R is

 ¿-connected if the graph of the function fjt, is connected for each arc
 Ł c P.

 The class of all functions f : P -» R in Baire class one having connected

 graphs (¿-connected) is denoted by ( jP) .

 Definition 1.7: Let E be a nonempty set of type F<r and let P = R2

 or P e £3. We say that E belongs to class

 MP if every point of E is a point of multilateral accumulation
 of E relative to the set P;

 if every point of E is a point of multilateral condensation

 of E relative to the set P;

 if for every x c E and for every arc Ł = L(x,y) c P such

 that Ł c £3 mfc(E n Ł) > 0 and for every arc Ł = L(x,y) c P

 such that Ł e £¡ u £3 m0(E n Ł) > 0;

 if (Io): there exists a sequence of closed sets {Kn} which

 fulfills the following conditions: e = y Kn and for every
 Ł c P such that Ł n £2 and Ł n E * 0 there exists a

 sequence of numbers {rçn} c [0,1) such that for each

 x e Kn n Ł and each c > 0 there exists a positive number

 c(x,c,Ł) such that if h,h! are different elements of Ł

 which satisfy conditions: h c L^(x,hj),
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 mŁ(LŁ(x,h))
 m (Ł (h,h )) ° and mŁ^LŁ(x»h1^ < E(X.C»Ł)» then

 mŁ(E n L^Ch.h^)
 m^L^h.h^) > "n'

 and if (2°): for every e e E and every arc Ł c p such

 that X e Ł e u £3 m0(Ł n E) > 0;

 if E fulfills the above conditions (Io) and (2°) with the

 additional assumption that *jn > 0;

 MP if every point of E is a £2-density point of E relative to
 P if P e £2 or a ¿-density point of E if P = R2.

 Moreover we assume that the empty set belongs to each of these classes.

 Definition 1.8: We say that a function f : P -» R, where P = R2 or

 P € £2 is in Zahorski class JH? (for i = 0,1

 Ea(f) € M? and Ea(f) € M?. In case P = R2 we write fll?.

 The first theorem shows that the notions of £x-density and "standard"

 density are equivalent.

 Definition 1.9: A point p € R2 is a ¿i-density point of A if and

 only if it is a density point of A.

 The next theorem shows, among other things, that there exists an

 approximately continuous function f : R2 -» R which is not a Darboux

 function such that Df is a singleton.

 Theorea 1.10: An interval I = [a,b] is parallel either to the X-axis

 or to the Y-axis if and only if there does not exist an approximately con-

 tinuous function f : R2 -» R such that Df = {a} and

 0 if X = a,

 fH(x) =
 1 if X e I ' {a}.

 The following theorem shows that the classes of functions of two
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 variables under consideration possess properties analogous to the Zahorski

 classes of functions f : F -» F. Similar problems for the classes Dl0 and

 JJIt (for Darboux B function) were studied in [1, §4 Theorem 2]. Theorem

 1.11 presents some characterizations of the Darboux functions in Baire class

 one. These characterizations are connected with the notion of multilateral

 accumulation and condensation points and with ¿-connectedness of graphs of

 functions. Throughout this paper the symbol DBP denotes the class of all
 real Darboux functions in Baire class one which are defined on P.

 Theorea 1.11: Let P = Fa or P € ¿2. Then

 Jp a Jp = DBP = nf = ď Z ď Z ď I ď I ď = £ ď.
 O 1 O 1*2*3*4*5

 c(Ra) ļ i. a2 ļ a2 = £, a2.

 Before we formulate theorems applying the Zahorski classes we adopt the

 following definitions.

 Definition 1.12: Let X,Y be topological spaces.

 (a) We say that f : X -* Y possesses the property of Świątkowski if for

 every two points x,y such that f(x) * f(y) for any arcs L = L(x,y) and

 K = L(f(x),f(y)) and for any open sets U c X, V c Y for which

 L ' {x,y} c U and K ' {f(x),f(y)} c V there exists a point z £ U n Cf such

 that f(z) c V.

 (b) We say that f : X -* Y possesses the strong property of Świątkowski

 if for any two points x,y such that f(x) * f(y) and for any arcs

 L = L(x,y) and K = L(f(x),f(y)) there exists a point z € (L ' {x,y}) n Cf

 such that z e K ' {f(x),f(y)}.

 Remark: It is easy to see that when f : F ■* R the above definitions

 are equivalent to the Mańk-Swiatkowski definitions. (See [22].)

 Let Ł c £j ' I*. Then Ł c {(p,V(p)) : a' < p < b' and V c Cx). Let
 * be the function defined by ł(p) = (p,V(p)). For arbitrary elements

 x,y e Ł we write x < y if and only if *-1(x) < *_1(y)- Thus:

 p(x,y) if x > y,
 x - y =

 -p(x, y) if x < y.
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 In case Lei* we understand x < y in the usual sense (on Y).

 Definition 1.13: Let f : A -» R and let fc = L((at ,bi ) , (aa,ba) ) € £a

 be an arc such that fc c A and x0 = (x°,y°) € fc. By the fc-derivative

 f^Cxo) of f at x0 we mean the number

 f (f.ł)*(ł-*(x0))

 f^x.) = lja f((x°.y°+h)) - f((x°,y°)) ,f t e I,>
 h-K)

 (x°,y°+h)€fc

 (if such a number exists) where M = sup | f ' | . The function f^ will
 [altaa]

 be called the fc-derivative of f.

 Theore* 1.14: Let f : Ra ■* R be a Darboux function in Baire class one

 possessing the strong property of Świątkowski. Then f « Bļ.

 Theore* 1.15: Let f : Ra -» R be a bounded ¿-approximately continuous

 function. For every arc fc € £a, f|Ł is an fc-derivative.

 Theorem 1.16: For every segment I c R2 and every function f : I •* R

 the I-derivative f* is equal to the derivative, f ' , of the function f
 considered as a function of one variable.

 Theoren 1.17: Let fc c £a. If F : Ł -* R is an fc-derivative, then

 f c 1111.
 3

 Theorea 1.18: Let fc € If F : fc •* R is a bounded fc-derivative,

 then F « ïïfi.
 4

 It is well-known that if {fn} is a sequence of Darboux functions of one

 variable in Baire class one and fn 3 f, then f is a Darboux function in
 Baire class one. This theorem suggests the following question: Is the class

 DB^a "uniformly closed"? The answer to this question is contained in the next
 theorem.
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 Theorem 1.19: Let {fn)n=1 be a sequence of real functions defined on
 F2 such that fn is a Darboux function in Baire class one. If fn 3 f»
 then f is a Darboux function in Baire class one.

 The proof of this theorem follows from Theorem 1.11 and a theorem of

 E. Kocela. (See [20].) Note that the above theorem is true even if the

 domain of f is an arbitrary metric space.

 In [22] it has been shown that if fn possesses the property of

 Świątkowski and fn is a Darboux function in Baire class one (for

 n = 1,2,...), and moreover fn 1$ f, then f possesses the property of
 Świątkowski. This theorem is the fundamental theorem of Mańk-Swiatkowski .

 The next theorem shows that the fundamental theorem of Mańk-Swiatkowski

 is true also for functions of two variables:

 Theorea 1.20: Let fn, f : F2 -* F and let fn (for n = 1,2,...) be

 a Darboux function in Baire class one possessing the property of Świątkowski.

 If fn 3 f » then f possesses the property of Świątkowski and, of course,
 f is a Darboux function in Baire class one.

 82. Darboux functions of bounded variation. It is well known that if f

 is a real, continuous function defined on the interval [a,b] and if Nf

 denotes the Banach indicatrix of f, then Nf is a function in the second

 b f+-
 Baire class and the variation of f, V (f), is equal to J Nf(y)dy.

 a -®

 The notion of Banach indicatrix can be generalized in the following natural

 way. (See [33, p. 217].)

 Definition 2.1: The Banach indicatrix of a function f : E -» Y with

 respect to a set D c E is a function N^l : Y -> F defined as follows:

 f card (f~1(p) n D) if f~1(p) n D is a finite set,

 Nj(p) =  I +® if f~ł(p) n D is an infinite set.
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 In [31, Theorem 2], T. Šalat has proved that if X is a locally
 connected Hausdorff space with a countable basis and if f : X -» F is a

 connected transformation (i.e. f preserves connectedness), then Nf is
 in the second Baire class. The next theorem shows that for Darboux functions

 f : F2 -» F2 Šalat 's theorem is false.

 Theore* 2.2: There exists a Darboux function f : Fa •* F2 for which the

 Banach indicatrix is a nonmeasurable function where I = [(0,0), (1,0)] .

 The above theorem suggests the following question: Under what additional

 assumptions is the Banach indicatrix a measurable function? Of course

 the answer is positive if ma(f(D)) = 0. The theorem below presents a more

 interesting, positive answer:

 Theoren 2.3: Let f : F2 -» F2 be a Darboux function, L-regular with

 respect to the closed and locally connected set D. Then the Banach

 indicatrix is a measurable function.

 Now we pass to the variation of a Darboux function. First we assume

 the following definition. (See [33, Definition 2, p. 217].)

 Definition 2.3: Let f : E -* F2 (E c F2) be a Darboux function such

 that the Banach indicatrix (D c E) is a measurable function. The

 function f is said to be of bounded variation in D (in the Banach sense)

 if

 f nD(p) dm2 < ®.
 F2 1

 As we know if f : I •* F is a Darboux function such that Df * 0, then
 b

 the variation V (f) = +®. Simple examples show that there exist discon-
 a

 *) We say that f : F2 •* F2 is L-regular with respect to a set A c F2

 if for every open (in A) set W and every component K of f(W) Fr K c L

 where Ł denotes the class of all sets A0 for which m2(A0) = 0).
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 tinuous Darboux functions f : I x I -» R2 for which the variation

 V (f) < +o>. Moreover, we can prove:
 lxi

 Theorem 2.4: In the space of bounded, Darboux functions of bounded

 variation f : I x I -* R2 (with the usual metric in the space of bounded

 functions) the set of discontinuous functions is a dense set of cardinality

 2C.

 §3. On acme extension of Darboux functions.

 In the theory of continuous functions many important theorems are

 concerned with extensions of functions. In this part we shall consider

 some problems relating to extending Darboux functions f : F -» R2 (F c R2).

 Theorem 3.1: Let F be an arbitrary closed convex subset of Ra and

 let f : F -» R2 be a Darboux function. Then for every c > 0 there exists

 a Darboux function f* : R2 -» R2 such that = C^. and f* is an
 c-extension of f.

 Observe that if c = 0, then the above theorem is false.

 Simple examples show that in the last theorem the assumption that F is

 a closed, convex subset of R2 cannot be replaced by the assumption that F

 is a continuum. Moreover, according to Mazurkiewicz' s theorem [23], we

 deduce:

 Theorea 3.2: The set of all continuums F for which there exists a

 Darboux function f : F •* R2 which does not possess a Darboux 1-extension

 is dense in the exponential space of I x I (with Hausdorff metric) . (See

 [8].)

 On the other hand we can prove:

 Theorem 3.3: Let F be such a subset of R2 for which there exists

 a homeomorphism h : R2 •* R2 such that h(F) is a closed, convex set and

 let f : F •* R2 be a Darboux function. Then there exists a Darboux
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 extension f* of f over F2 such that C^. = C^.

 Theorem 3.4: Let F=F1uFacI*I where FlfFa are disjoint,

 closed, convex sets and let f : F •* F2 be a Darboux function. Then there

 exists a Darboux extension f* of F over F2 such that = C^.

 We shall close this section with a theorem involving the extension of

 Darboux functions in Baire class a(0 ¿ a < Q) . The fact that f is in

 Baire class « is denoted by f c Ba.

 Theore« 3.5: Let F be a closed, convex subset of F2 and let

 f : F •* F2 be a Darboux function such that f€Ba (0 * a < Q). Then there

 exists a Darboux 0-extension f* of f over F2 such that f* € B0.

 §4. te local character izat ions of Darboux functions.

 In this paper published in 1965, ([2]), A.M. Bruckner and J. 6. Ceder

 introduced the notion of a Darboux point of a function f : F -» F. Basic

 properties of Darboux points were studied in papers [3], [11], [15], [16],

 [17], [21], [29] and [31]. In this part we study generalizations of the

 notion of a Darboux point in such a way that theorems about local characteri-

 zations of Darboux transformations in arbitrary topological spaces will hold.

 Let f : X -» Y where X and Y are arbitrary topological spaces.

 Definition 4.1: We say that a point x0 € X is a Darboux point of the

 first kind (of the function f) if for every arc Ł = L(x0,a) the following

 conditions are fulfilled:

 Io) if f(Lfc(x0,p)) = Y for every element p € Ł ' {x0}, then there

 exists a point p0 e Ł ' {x0} such that f(Lfc(x0,Po)) is a

 connected set;

 2°) if K is a set such that for some net {x<r}<r€£ c Ł for which

 x0 e lim Xff K quasi-cuts f(Ł) u acp f(xo-)*) between the sets
 <re E at E

 *) By acp f(x<iO we denote the set of all accumulation points of
 <T€E
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 (f(x0)} and (f(xa) : <r e E} u acp f(xa), then
 <rcE

 K n f(LŁ(x0,x<r)) * 0, for every <r e E;

 3°) if for some net {x^}«^ c Ł for which x0 € lim Y ' f(Ł)
 <rcE

 quasi-cuts f(Ł) into sets A and B between the sets {f(x0)}

 and {f(x<r) : <r e E} in such a way that A n B * 0, then An B

 is of type Gg in the subspace A u B of Y.

 Definition 4.2: We say that a point x0 e X is a Darboux point of the

 second kind (of the function f) if for every arc Ł = L(x0,a) conditions

 Io) and 2°) of Definition 4.1 are satisfied.

 Definition 4.3: We say that a point x0 € X is a Darboux point of the

 third kind (of the function f) if for every arc Ł = L(x0,a) the following

 condition is fulfilled:

 if K is a set such that for some net {x<r}ff€£ c Ł for which

 x0 e lim x<r K cuts Y between (f(x0)} and
 C€ E

 {f(xa) : <r € E} u acp f(xa), then
 ff€E

 K n f (LŁ(xo,xa) ) * 0 for every a € E.

 It is easy to see that if x0 is a Darboux point of the first (second)

 kind of f, then x0 is a Darboux point of the second (third) kind of f.

 Theorem 4.4: Let f : X -» Y where X and Y are arbitrary topological

 spaces. If x0 e Cf, then x0 is a Darboux point of the first kind of a

 function f. (Of course, then x0 is a Darboux point of the second and of

 the third kind of f . )

 The next theorem shows that in case f : R -» F the above definitions

 are equivalent to the usual definition of a Darboux point.

 Theorea 4.5: Let f : F -» R and let x0 c R. Then the following

 conditions are equivalent:
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 (i) x0 is a Darboux point of the first kind of f,

 (ii) Xo is a Darboux point of the second kind of f,

 (iii) Xo is a Darboux point of the third kind of f,

 (iv) x0 is a Darboux point (in the usual sense).

 A. Császár in paper [5] has shown that a real function f is Darboux on

 I if and only if for every xci x is a Darboux point of f. (Also see

 [2] and [9].) The next theorem shows that a similar result is also true for

 transformations in topological spaces.

 Theorea 4.6: Let f : X -> Y where X and Y are arbitrary topological

 spaces. Then f is a Darboux transformation if and only if every point

 x e X is a Darboux point of the first kind of f.

 One can show that in the previous theorem the necessary condition cannot

 be replaced by the condition "every point x € X is a Darboux point of the

 second kind of f".

 Theorea 4.7: There exist topological spaces X and Y and a trans-

 formation f : X ■+ Y such that Df = {x0}, x0 is a Darboux point of the

 second kind of f, and f is not a Darboux transformation.

 In paper [27], T. Radakovic has defined a new class of functions. The

 next definition presents the generalization of this notion to transformations

 whose domains and ranges are arbitrary topological spaces.

 Definition 4.8: Let X,Y be arbitrary topological spaces. We say that

 f : X -» Y is a Darboux transformation in the sense of Radakovic, if f(Ł)

 is a connected set for each arc Ł c X.

 Theorea 4.9: Let f : X •* Y where X and Y are arbitrary topological

 spaces. If every element x € X is a Darboux point of the second kind of f,

 then f is a Darboux transformation in the sense of Radakovic.

 It is easy to see that there exists a Darboux function in the sense of

 Radakovic f : R -* R for which any point of R is not a Darboux point of the
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 second kind of f.

 The next theorem can be interpreted as a local characterization of

 Darboux transformations in B1 where f e B1 means Cf j * <t> for every
 closed set F.

 Theorea 4.10: Let X be a Ta-space and Y be a Tj-space. Let

 f : X ■* Y be a transformation belonging to class B1 . Then f is a

 Darboux transformation if and only if every point x € X is a Darboux

 point (of the second kind) of f.

 One can show that in the above theorem the necessary condition cannot

 be replaced by the condition "every point x € X is a Darboux point of the

 third kind of f".

 Comments and Theorem 5.1 from paper [2] show that the notion of a Darboux

 point is presented in such a way that the local characterization of a Darboux

 function holds. The next definition presents the concept of a D-point which

 is not equivalent to the notion of a Darboux point in the sense of

 A. Bruckner and J. Ceder, but for which the local charcterization of a

 Darboux function does hold.

 Definition 4.11: Let f : X -» Y where X,Y are arbitrary topological

 spaces. We say that an element x0 € X is a D-point of f if x0 € Cf or

 the following conditions are fulfilled:

 1. If there exists a point p c X such that f(L(x0,p)) = Y, then

 Y is a connected space.

 2. For an arbitrary arc L(x0,a) there exists an element

 y e L(x0,a) ' {x0} such that for every z e LL(x0,a) (x0,y) if K
 cuts Y between {f(x0)} and (f(z)}, then

 K " f(LL(x0,a)(Xo,z)) * *.

 It is not hard to verify that if f is an arbitrary transformation and if

 x0 is an arbitrary element from the domain of f, then:
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 x0 is a Darboux point x0 is a point of continuity
 of the first kind of f of f

 I I
 v v

 x0 is a Darboux point x0 is a D-point of f
 of the second kind of f

 i i
 v v

 x0 is a Darboux point of the third kind of f.

 The reverse implications are not true.

 Theorem 4.12: Let f : X -> Y where X is an arbitrary topological

 space and Y is T5-space. (See [7].) Then f is a Darboux transformation

 if and only if every element x c X is a D-point of f.

 We shall close this paper with a theorem which presents an application

 of the notion of a Darboux point. This application is connected with results

 presented in papers [13], [14], [17], [19], [24], [35] and [34].

 Theorea 4.13: Let f : R11 •* R" be a closed function. Then x0 € Cf

 if and only if x0 is a Darboux point of the third kind of f.

 Note that in the preceding theorem the assumption that "f is a closed

 function" can be replaced by the assumption that "f is a closed function

 at x0". (See [26, Definition 3].) Of course the condition "x0 is a

 Darboux point of the third kind" can be replaced by "x0 is a Darboux

 point of the first kind", "x0 is a Darboux point of the second kind" or

 "x0 is a D-point of f".
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