## ON PROJECTIONS OF PLANAR SETS

If $a \in R$ and $A \subseteq R^{2}$, we say that the projection of $A$ in direction $a$ is $\{c: \operatorname{gr}(y=a x+c) n A \neq \varnothing\}$. Here $\operatorname{gr}(y=a x+c)$ denotes the graph of the function $y=a x+c$. The $c-p r o j e c t i o n$ of $A$ in direction $a$ is $\left\{c: \operatorname{dom}[\operatorname{gr}(y=a x+c) \cap A]\right.$ is of second category\}. The m-projection ( $m^{*}$ projection) of $A$ in direction $a$ is $\{c: m(\operatorname{dom}[g r(y=a x+c) n A])>0\}$ (\{c:m*(dom[gr(y=ax+c)nA])>0\}). Here m denotes Lebesgue measure in $R$ and $m^{*}$ denotes outer Lebesgue measure in $R$. The following question was formulated in [1]: "Does there exist a linear set $A$ of second category such that the projection of $A \times A$ onto each line has empty interior?" The partial solution if Martin's Axiom is assumed was provided in [7]. The solution under $C H$ was given in [2] by Davies. Observe that the proof of the theorem of Davies does not really require CH (change " $<\omega_{1}$ " to " $\tau$ ", "only countable" to "fewer than $\tau$ " and recall that uncountable closed sets must have cardinality $\tau$ ). Thus we obtain Proposition 1.

Proposition 1. There exists a second category set A such that the projection of $A \times A$ in each direction does not contain an interval.

In Proposition 2 we construct a c-Lusin set $L$ for which every cprojection of $L \times L$ in direction $a \neq 0$ is equal to $R$ (under MA). If $L$ is of the first category, then, as is well known, any c-projection of $L \times L$ is empty. In Proposition 3 we construct a strong, first category set $S$ for which every $m^{*}$-projection of $S \times S$ in direction $a \neq 0$ is equal to $R$ (under MA). Let $C \subseteq R-\{0\}$ be a set of cardinality less than that of the continuum. In Proposition 4 we construct sets $A$ and $B$ of the second category such that every projection of $A \times B$ in direction $c \in C$ equals $R$ and every c-projection of $A \times B$ in direction $c \in C$ is empty (under MA). We use a technique due to Erdös, Kunen and Mauldin [3].

We use the following notation. If $A, B \subseteq R$, then $A+B=\{a+b: a \in A$, $b \in B\}, A \cdot B=\{a b: a \in A, b \in B\}, A-B=\{a-b: a \in A, b \in B\}$ and $A \backslash B=$
$\{x: x \in A$ and $x \notin B\}$. Let $A(m)$ stand for the proposition that the union of less than continuum many measure zero sets has measure zero. Let $U(m)$ mean that every set of reals of cardinality less than $\tau$ has measure zero. $A(c)$ and $U(c)$ are defined similarly with meager replacing measure zero [5]. ( $\mathrm{A}(\mathrm{c}$ ) is sometimes referred to as the Strong Baire Category Theorem (SBCT).)

Recall that the following implications hold:


A set $X \subseteq R$ is a c-Lusin (c-Sierpinski) set iff $|X \cap M|<\tau$ for each meager (measure zero) set $M \subseteq R$. (See [6].) Recall that under MA every $c$-Lusin set $X$ has measure zero. Indeed if $G$ is a comeager set of measure zero (see [8], Corollary 1.7) then $F=R \backslash G$ is meager and $X=(X \cap G) u$ ( $X \cap F$ ). Since $|X \cap F|<\tau$ and $U(m)$ holds we have $m(X \cap F)=0$. Thus $m(X)=m(X \cap G)+m(X \cap F)=0$. Similarly under $M A$ every c-Sierpinski set is meager. In Propositions 2 and 4 we assume $A(c)$. In Proposition 3 we assume $A(m)$.

Proposition 2. Assume $A(c)$. There is a c-Lusin set $L$ such that every $c$-projection of $L \times L$ in direction $a \neq 0$ is equal to $R$. If $M A$ holds, then the m-projection of $L \times L$ in each direction is empty. If $C H$ holds, then $L$ is a Lusin set.

Proof. List all meager $F_{\sigma}$ sets: $F_{\alpha}, \alpha<\tau$. List all dense $G_{\delta}$ sets: $G_{\alpha}$, $\alpha<\tau$. List all (non-horizontal and non-vertical) lines in $R^{2}: k_{\alpha}, \alpha<\tau$, with the additional property that each line appears $\tau$-times. Let
$H_{\alpha}=\prod_{\beta \leqslant \alpha} G_{\beta} \backslash \underset{\beta \in \alpha}{U} F_{\beta}$ and $K_{\alpha}=\left\{y: 3 x \in H_{\alpha}(x, y) \in k_{\alpha}\right\}$ for each $\alpha<\tau$. Observe that the sets $H_{\alpha}, K_{\alpha}$ and $H_{\alpha} \cap K_{\alpha}$ are comeager. At level $\alpha$ choose $y_{\alpha} \in H_{\alpha} \cap K_{\alpha}$ and $x_{\alpha} \in H_{\alpha}$ such that $\left(x_{\alpha}, y_{\alpha}\right) \in k_{\alpha}$. Let $L=$ $\underset{\alpha<\tau}{U}\left\{\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha}\right\}$. Then $L$ has the desired properties. Clearly, $|L \cap M|<\tau$ for each meager $M \subseteq R$. Notice that $G_{\beta} n \operatorname{dom}\left(L \times L \cap k_{\alpha}\right) \neq \varnothing$ for each $\alpha, \beta<\tau$. Indeed since $\left|\left\{\gamma<\tau: \mathrm{k}_{\alpha}=\mathrm{k}_{\gamma}\right\}\right|=\tau$, we have $\gamma>\beta$ such that
$k_{\gamma}=k_{\alpha}$. Then $x_{\gamma} \in G_{\beta} \cap \operatorname{dom}\left(L \times L \cap k_{\gamma}\right)=G_{\beta} \cap \operatorname{dom}\left(L \times L \cap k_{\alpha}\right)$. Thus $\operatorname{dom}\left(\mathrm{L} \times \mathrm{L} \cap \mathrm{k}_{\alpha}\right)$ is of the second category. Hence the c-projection of $\mathrm{L} \times \mathrm{L}$ in the direction $k_{\alpha}$ is equal to $R$.

Assume that $M A$ holds. Then $m(L)=0$ and every m-projection of $\mathrm{L} \times \mathrm{L}$ is empty.

A set of reals $X$ has the strong first category property iff for every set $H$ of measure zero there exists a real $x$ such that $(x+X) n H=\varnothing$. (See [6].) The next proposition can be proved in a similar fashion to Proposition 2.

Proposition 3. Assume $A(m)$. There is a c-Sierpinski set $S$ which has the strong first category property and such that every $\mathrm{m}^{*}$-projection of $\mathrm{S} \times \mathrm{S}$ in direction $a \neq 0$ is equal to $R$. If $M A$ holds, then the c-projection of $S \times S$ in each direction is empty. If $C H$ holds, then $S$ is a Sierpinski set.

Proof. List all measure zero $G_{\delta}$ sets: $G_{\alpha}, \alpha<\tau$. List all full measure $F_{\sigma}$ sets: $F_{\alpha}, \alpha<\tau$. List all (non-horizontal and non-vertical) lines in $R^{2}$ : $k_{\alpha}$, $\alpha<\tau$, with the additional property that each line appears $\tau$-times. At level $\alpha$ choose $x_{\alpha}, y_{\alpha}$ and $z_{\alpha}$ such that $z_{\alpha} \in R \backslash U \quad\left[\left(G_{\alpha}-x_{\beta}\right) \cup\right.$ $\left.\left(\mathrm{G}_{\alpha}-\mathrm{y}_{\beta}\right)\right]$, and $\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha} \in \mathrm{n}_{\beta \leq \alpha} \mathrm{F}_{\beta} \backslash \underset{\beta \leq \alpha}{\cup}\left[\mathrm{G}_{\boldsymbol{\beta}} \cup\left(\mathrm{G}_{\beta}-\mathrm{z}_{\beta}\right)\right]$, and $\left(\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha}\right) \in \mathrm{k}_{\alpha}$. Let $\mathrm{S}=\underset{\alpha<\tau}{u}\left\{\mathrm{x}_{\alpha}, \mathrm{y}_{\alpha}\right\}$. Then S is a c-Sierpinski set.

Thus $\left(z_{\alpha}+S\right) \cap G_{\alpha}=\varnothing$ for each $\alpha<\tau$ and $S$ has the strong first category property. Similarly as in Proposition 2 we can show that every $\mathrm{m}^{*}$-projection of $\mathrm{S} \times \mathrm{S}$ in direction $a \neq 0$ equals $R$. If $M A$ holds, then $S$ is meager. Thus every c-projection of $S \times S$ is empty.

In [3] the following theorem is proved:
"Theorem 7. Suppose that the union of less than continuumly many meager subsets of $R$ is meager. There are subsets $G_{1}$ and $G_{2}$ of $R$ both of which are subspaces of $R$ over the field of rationals both of which meet every meager set in a set of cardinality less than $\tau$ and such that $G_{1} \cap G_{2}=\{0\}$ and $G_{1}+G_{2}=R$. (Of course, if every subset of $R$ with
cardinality less than $\tau$ has measure zero, then $G_{1}$ and $G_{2}$ both have measure zero. If $C H$ holds, then $G_{1}$ and $G_{2}$ are both Lusin sets.)"

Notice that every projection of $G_{1} \times G_{2}$ in direction $q \in Q-\{0\}$ is equal to $R$ and every c-projection of $G_{1} \times G_{2}$ in direction $q \in Q-\{0\}$ is empty. Indeed $R=G_{1}+G_{2}=G_{2}-q G_{1}$ for each $q \in Q-\{0\}$. Suppose that $c=y-q x=y_{1}-q x_{1}$ for $q \in G-\{0\}, x, x_{1} \in G_{1}$ and $y, y_{1} \in G_{2}$. Since $G_{1} \cap G_{2}=\{0\}, x=x_{1}$ and $y=y_{1}$. Hence $\operatorname{dom}\left[g r(y=q x+c) \cap G_{1} \times G_{2}\right]$ is of the first category and the c-projection of $G_{1} \times G_{2}$ in direction $q$ is empty.

The next proposition can be verified in a similar fashion.

Proposition 4. Let $C$ be a subset of $R-\{0\}$ of cardinality less than that of the continuum. There are c-Lusin sets $A, B \subseteq R$ both of which are subspaces of $R$ over the field $Q(C)$ (here $Q(C)$ is the extension of $Q$ by elements of $C$ ) and such that $A \cap B=\{0\}$, every projection of $A \times B$ in direction $a \in C$ is equal to $R$ and every c-projection of $A \times B$ in direction $a \in C$ is empty. (If $C H$ holds, then $A$ and $B$ are both Lusin sets.)

Observe that if $C$ is the projection of $A \times B$ in direction $a$, then $\mathrm{C}=\mathrm{B}-\mathrm{aA}$. Thus by Proposition 1 we have that there exists a set A of second category such that $A-a A$ has empty interior. Let $A-B=\{c:\{a \in A:$ $\exists \mathrm{b} \in \mathrm{B} \quad \mathrm{c}=\mathrm{a}-\mathrm{b}\}$ is of second category). From Proposition 2 it follows that there exists (under CH ) a Lusin set L such that $\mathrm{L}-\mathrm{L}=\mathrm{R}$. The first
result in the spirit of this proposition was given by Sierpinski in [10] where he showed (under CH ) that there is a Lusin set $L$ such that $L-L=r$. In a similar spirit E. Grzegorek has recently shown in ZFC that there exists an universal measure zero (always of the first category) set $A$ such that $m^{*}(A+A)>0 \quad$ (A+A is second category) [4]. If ZFC is consistent, then $Z F C$ $+\quad " c=2^{\omega_{1} "}+$ "every universal measure zero set has cardinality at most $\omega_{1} "+U(c)$ is consistent. (See [5] and [6].) Hence it is unprovable in ZFC that there exists an universal measure zero set $A$ such that $A+A \neq 0$.

Observe that $A-B=R$ for every comeager set $A$ and second category set $B$. Indeed $\{a \in A: 3 b \in B \quad x=a-b\}$ is equal to $A \cap(x+B)$ for each $\mathrm{x} \in \mathrm{R}$.

I would like to thank the referee for very helpful suggestions concerning the contents of this paper. (The proofs of Propositions 1 and 2 were originally more complicated.)

## References.

[1] J. Ceder and D.K. Ganguly, On projections of big planar sets, Real Anal. Exchange, 9, No. 1, 1983-84, 206-214.
[2] R.O. Davies, Second category $E$ with each $\operatorname{proj}\left(R^{1} \backslash E^{2}\right)$ dense, ibid. 10, No. 1, 1984-85, 231-232.
[3] P. Erdös, K. Kunen and R.D. Mauldin, Some additive properties of sets of real numbers, Fund. Math. CXIII, 1981, 187-199.
[4] E. Grzegorek, Always of the first category sets, Proc. of 12th Winter School on Abstract Analysis, Supp. Rend. Cir. Mat. Palermo, 6, 1984, 139-147.
[5] A.W. Miller, Additivity of measure implies dominating reals, Proc. Amer. Math. Soc. 91, 1984, 111-117.
[6] A.W. Miller, Special subsets of the real line, Handbook of Set Theoretic Topology, North Holland, Amsterdam, 1984, 203-233.
[7] T. Natkaniec, On category projections of cartesian product A A, Real Anal. Exchange 10, No. 1, 1984-85, 233-234.
[8] J.C. Oxtoby, Measure and category, Springer-Verlag, Amsterdam, 1971.
[9] M.E. Rudin, Martin's Axiom, Handbook of Mathematical Logic, North Holland, Amsterdam, 1977, 419-502.
[10] W. Sierpinski, Sur la product combinatoire de deux ensembles jouissant de la propriété $C$ (Solution d'un problème de M. Szpilrajn), Fund. Math. 24, 1935, 48-50.

