Jack Ceder, Department of Mathematics, University of California, Santa Barbara CA 93106

ON COMPOSITIONS WITH CONNECTED FUNCTIONS

Abstract

The main results are: Firstly, for any two surjections, f and g, of a real interval there exist connected surjections α and β such that $\alpha(f(x))=g(\beta(x))$ for all x. Secondly, there exists a pair of connected functions whose composition is not connected, mod the continuum hypothesis.

Introduction. It is well known that a Darboux Baire 1 function on R can be "stretched" into a derivative or an approximately continuous function, in the sense that there exists a homeomorphism h such that $f \quad h$ is a derivative or approximately continuous (see [1], page 36). In general, one can ask what possible effects can a composition with a homeomorphism, on the inside or outside, have on a given type of function?

In this paper we initiate a study of this question when the homeomorphism restriction is relaxed to be just a surjection. Specifically we pose two general queries relative to two fixed classes A and B of surjections of a given open interval I.

Question 1 If $f, g \in A$ do there exist $\alpha, \beta \in B$ such that $\alpha \circ f=g \circ \beta$?

Question 2 If $f, g \in A$, do there exist $\alpha, \beta \in B$ such that $f=\alpha \circ g \circ \beta$?

In other words, with respect to the second question, given f and g can we "scramble" up both the domain and range of g (using functions in $B)$ to produce f ?

In general, given a specified class A of surjections we would like to find a more restrictive, yet interesting, class B for which the above equations have solutions.

In this paper we focus our attention mostly on taking B to be the family of all connected surjections of I, and we are able to obtain some interesting results as well as pose some interesting unsolved problems.

Throughout the sequel I will be an unspecified open interval. By c we mean $2^{\text {Nio }}$. By $|\mathrm{A}|$ is meant the cardinality of A. We say a set A is c-dense in I if each open subset of I contains c members of A. We will make no distinction between a function and its graph.

A function f from I into R is Darboux if it maps intervals onto intervals. A function f from I into R is connected if f is a connected subset of $I \times R$. We can characterize Darbouxness by the intermediate value property namely: for each a, b and λ the line segment $[a, b] \times\{\lambda\}$ hits f provided ($a, f(a)$) and (b, $f(b))$ lie on opposite sides. If we replace the "line segment" here by any continuum K with domain $[a, b]$ and interpret "opposite" in terms of different components of $((\operatorname{dom} K) \times R)-K$ we arrive at a characterization for connected functions (see [2]). This will be useful in the sequel.

Lemma 1 Let $f: I \rightarrow I$. If $|r n g|=c$, then there exists

 $A \subseteq I$ such that $f(I-A) \cap f(A)=\emptyset$ and both A and $I-f(A)$ are c-dense in I.Proof: Let G consist of all those open intervals J such that
$|f(J)|<c$. Put $G=U G$. Clearly (1) $I-G \neq \emptyset$, since
|rng $f \mid=c$; (2) $I-G$ is perfect; (3) $|f(G)|<c$; and (4) for any open subinterval J of $I \quad J-G \neq \emptyset$ implies $|f(J)|=c$.

Let A (resp. B) be the family of all open subintervals of I which hit I-G (resp. G). Let $\left\{z_{\alpha}\right\}_{\alpha<c}$ be a well-ordering of $A \times c$ and $\left\{w_{\alpha}\right\}_{\alpha<c}$ be a well-ordering of $B \times c$. For an ordered pair $\langle a, b\rangle$
define $F(\langle a, b\rangle)=a$.
By induction on c we choose $b_{0} \in F\left(w_{0}\right)-f(G)$ and $a_{0} \in F\left(z_{0}\right)-G$ and, in general, having defined a_{ξ} an b_{ξ} for each $\xi<\alpha$ we choose

$$
\begin{aligned}
& b_{\alpha} \in f\left(w_{\alpha}\right)-f(G)-\left\{b_{\xi}: \xi<\alpha\right\}-\left\{f\left(a_{\xi}\right): \xi<\alpha\right\} \\
& a_{\alpha} \in F\left(z_{\alpha}\right)-G-\left\{a_{\xi}: \xi<\alpha\right\}-f^{-1}\left(\left\{b_{\xi}: \xi \leqq \alpha\right\}\right) .
\end{aligned}
$$

Clearly a_{α} and b_{α} exist for all $\alpha<c$. Put $B=\left\{b_{\alpha}: \alpha<c\right\}$ and $A^{\prime}=G \cup\left\{a_{\alpha}: \alpha<c\right\}$.

For any non-void open subinterval H of $I \quad\left|\left\{\alpha: F^{-1}\left(w_{\alpha}\right)=H\right\}\right|=c$. Therefore $|H \cap B|=C$ and B is c-dense in I. Likewise A^{\prime} is c-dense in I .

Now suppose $B \cap f\left(A^{\prime}\right) \neq \emptyset$. Then since $B \cap f(G)=\emptyset$ there exists α and γ such that $b_{\alpha}=f\left(a_{\gamma}\right)$. Since $b_{\alpha} \notin\left\{f\left(a_{\xi}\right): \xi<\alpha\right\}$ we must have $\alpha \leqq \gamma$. Since $a_{\gamma} \notin f^{-1}\left(\left\{b_{\xi}: \xi \leqq \gamma\right\}\right)$ we must have $\gamma<\alpha$, a contradiction. Therefore, $B \cap f\left(A^{\prime}\right)=\emptyset$ and $I-f\left(A^{\prime}\right)$ is c-dense in I.

Finally put $A=f^{-1}\left(f\left(A^{\prime}\right)\right)$, then clearly A and $I-f(A)$ are c-dense in I and $f(A)$ and $f(I-A)$ are disjoint.

Theorem 1 Let $f, g: I \rightarrow I$. If $|r n g f|=c$ and $g(I)$ is an interval, there exist connected functions α and β taking on each value in $g(I)$ on each subinterval such that

$$
\alpha \circ f=g \circ \beta .
$$

In particular, if f and g are surjections of I, there exist connected surjections α and β such that $\alpha \circ f=g \circ \beta$.

Proof: Let C consist of all closed sets in $I \times g(I)$ with domain a non-degenerate closed subinterval of I. Then if a function $G: I \rightarrow g(I)$ hits each member of C then G is connected and takes on each value in $g(I)$ over each subinterval. Let us omit well-order C as $\left\{c_{\alpha}: \alpha<c\right\}$.

By Lemma 1 choose A such that $f(I-A) \cap f(A)=\emptyset$ and both A and $I-f(A)$ are c-dense in I. Decompose A into c disjoint sets $\left\{A_{\alpha}: \alpha<c\right\}$ each c-dense in I. Decompose $I-f(A)$ into c disjoint sets $\left\{B_{\alpha}: \alpha<c\right\}$ each c-dense in I. Let $\left\{r_{\alpha}\right\}_{\alpha<c}$ be a wellordering of $g(I)$. Pick $y_{0} \in g(I)$.

Let $x \in A$. If $x \in A_{\alpha} \cap \operatorname{dom} C_{\alpha}$ choose $h(x)$ so that $(x, h(x)) \in C_{\alpha}$. If $x \in A_{\alpha}-\operatorname{dom} C_{\alpha}$ put $h(x)=y_{0}$. In each case define $k(f(x))=g(h(x))$.

Let $y \in I-f(A)$. If $y \in B_{\alpha} \cap \operatorname{dom} C_{\alpha}$ choose $k(y)$ so that $(y, k(y)) \in C_{\alpha}$. If $y \in B_{\alpha}-\operatorname{dom} C_{\alpha}$ put $k(y)=y_{0}$.

If $x \notin A$, then $f(x) \in B_{\alpha}$ for some α since $F(I-A) \cap f(A)=\emptyset$.

Since $K(I) \subseteq g(I)$ we may choose $h(x) \in g^{-1}(K(f(x)))$.
Obviously $k \circ f=g \circ h$. Also clearly each C_{α} hits g and k so g and k are connected and take on each value in $g(I)$ on each subinterval.

Corollary 1 If f is any surjection, then there exist connected surjections α and β such that $\alpha \circ f$ and $f \circ \beta$ are connected.

We can obtain the following variant of the above result.

Theorem 2 If f is any surjection, then there exists a measurable, Darboux surjection β such that $f \circ \beta$ is measurable and Darboux.

Proof: Let $\left\{V_{n}\right\}_{n=1}^{\infty}$ be an open basis for I. Choose sequences of non-void nowhere dense null perfect sets $\left\{A_{n}\right\}_{n=1}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ such that $A_{n} \subseteq V_{n}, B_{n} \subseteq V_{n}$ and $A \cap B=\emptyset$ where $A=\cup_{n=1}^{\infty} A_{n}$ and $B=U_{n=1}^{\infty} B_{n}$.

We can find a Baire 2 function h on A such that $h\left(A_{n}\right)=I$ for each n. Then define $k(x)=f(h(x))$ for each $x \in A$. Likewise we can find a Baire 2 function k on B such that $k\left(B_{n}\right)=I$ for each n. For $x \in B$ select $h(x) \in f^{-1}(k(x))$. For $x \in I-A-B$ define $h(x)=0$ and $k(x)=f(0)$. (Assume I contains 0)

Clearly $k=f \circ h$ and h and k being constant except on the null set $A \cup B$ must be measurable. Moreover, h and k are Darboux because they map each subinterval onto I.

Now we turn our attention to addressing Question 2. We will find that Theorem 1 has no direct analogue. Let us say that a surjection g can be scrambled via functions in a class C into f if $f=\alpha \circ g \circ \beta$ has solutions in C. Then, we have the following characterization of scrambling.

Theorem 3 A surjection g can be scrambled into a surjection f via surjections if and only if there exists a decomposition of I, $\{A(y): y \in I\}$, into disjoint non-empty sets such that for all $y \in I$

$$
\left|U\left\{g^{-1}(z): z \in A(y)\right\}\right| \leqq\left|f^{-1}(y)\right|
$$

Moreover, g can be scrambled into f via permutations if and only if there exists a permutation p of I such that for each $y \in I$

$$
\left|g^{-1}(y)\right|=\left|f^{-1}(p(y))\right|
$$

Proof: Suppose $f=\alpha \circ g \circ \beta$. Define $A(y)=\alpha^{-1}(y)$. Then $\beta\left(f^{-1}(y)\right)=g^{-1}\left(\alpha^{-1}(y)\right)=U\left\{g^{-1}(z): z \in A(y)\right\}$. Since $\left|\beta\left(f^{-1}(y)\right)\right| \leqq\left|f^{-1}(y)\right|$ the conditions holds.

On the other hand suppose the condition holds. Define α by $\alpha(x)=y$ whenever $x \in A(y)$. Define β on each $f^{-1}(y)$ so that $\beta\left(f^{-1}(y)\right)=U\left\{g^{-1}(z): z \in A(y)\right\}$. Clearly $f=\alpha \circ g \circ \beta$.

The additional assertion for permutation solutions follows similarly.

Theorem 4 If a surjection f has all its level sets of cardinality c, then each surjection can be scrambled into f. In particular, there is a continuous function g such that each surjection can be scrambled
via surjections into g. The identity function can be scrambled into any surjection.

Proof: For such an f the criterion of Theorem 2 is easily established. The example of Foran of a continuous nowhere-differentiable function g from $[0,1]$ onto $[0,1]$ has all its level sets nonempty perfect sets (see page 223 [1]). It is easy to construct from this a continuous g from I onto I having all its level sets uncountable. For the last assertion apply Theorem 2 where $A(y)=\{y\}$.

Any two surjections are not necessarily comparable by scrambling. For example, take f to be any continuous function having each level set countably infinite. Pick g to be any continuous function having one level set uncountable and all others finite. Then according to Theorem 3 neither of these functions can be scrambled into the other.

In light of Theorem 2 Question 2 would have to be reduced to: if $f=\alpha \circ g \circ \beta$, can α and β be selected to be connected surjections? The answer is no even for Darboux surjections because taking g to be the identity function and f to be any non-Darboux function we would have a composition of two Darboux functions not being Darboux. This is a contradiction since Darbouxness is preserved by composition.

The foregoing also suggests the following question: is every Darboux function the composition of two connected functions? Or in the light of the next theorem, is f Darboux iff f is the composition of connected functions? This problem seems exceedingly difficult to answer.

The set-theoretic assumption needed in the next result is also a consequence of the continuum hypothesis or Martin's Axiom.

Theorem 5 Connectedness is not preserved under compositions, provided the union of less than $2^{\text {No }}$ nowhere dense sets is meager.

Proof: Let $I=[0,1]$. Let $\left\{A_{\alpha}: \alpha<c\right\}$ be a decomposition of I into disjoint countable sets each dense in I. Let $\left\{r_{\alpha}: \alpha<c\right\}$ be a well-ordering of I, where $r_{0} \neq 0$. Define for $x \in A_{\alpha}$

$$
f(x)=\left\{\begin{array}{lll}
r_{\alpha} & \text { if } & x \neq r_{\alpha} \\
\frac{1}{2} r_{\alpha} & \text { if } & x=r_{\alpha}
\end{array}\right.
$$

Then $f: I \rightarrow I$ fails to intersect the diagonal yet each level set of f is countable and dense in I. In particular, f is Darboux but not connected.

We will show that f is a composition of two connected functions.
Let K be the set of all continua in $I \times I$ with an interval as a domain. By a result in [2] any function hitting all members of K will be connected. Let E and F denote the even and odd ordinals respectively less than c. Let K be well-ordered by $\left\{E_{\alpha}: \alpha \in E\right\}$ and also by $\left\{F_{\alpha}: \alpha \in F\right\}$ such that E_{0} and F_{1} are both $I \times\{0\}$.

By induction we will construct functions h_{α} and g_{α} for $\alpha<c$ as follows:

Let $\left\{s_{n}\right\}_{n=0}^{\infty}$ be a countably dense sequence in I with $s_{o}=0$. Decompose $f^{-1}(0)$ into countably many disjoint sets $\left\{B_{n}\right\}_{n=0}^{\infty}$ each of which is dense in I. Define $g_{0}(x)=s_{n}$ if $x \in B_{n}$ and $h_{0}\left(s_{n}\right)=0$. Put $g_{1}=g_{0}$ and $h_{0}=h_{1}$. Then, g_{0} hits E_{0} and h_{1} hits F_{1}. Moreover, $h_{1} \circ g_{1}=f \mid\left(f^{-1}(0)\right)$.

Now suppose for each $\alpha<\beta$ we have constructed functions g_{α} and h_{α} such that
(1) $g_{\alpha} \subseteq g_{\gamma}$ and $h_{\alpha} \subseteq h_{\gamma}$ when $\alpha<\gamma$
(2) $\left|\operatorname{dom} h_{\alpha}\right| \leqq \aleph_{0} \cdot|\alpha+1|, \quad\left|\operatorname{dom} g_{\alpha}\right| \leqq \aleph_{0} \cdot|\alpha+1|$
(3) g_{α} hits E_{α} when α is even and h_{α} hits F_{α} when α is odd
(4) $h_{\alpha} \circ g_{\alpha}=f \mid\left(\operatorname{dom} g_{\alpha}\right)$.

Suppose β is even. If E_{β} hits $U\left\{g_{\alpha}: \alpha<\beta\right\}$ at a point of some g_{γ} then define $g_{\beta}=g_{\gamma}$ and $h_{\beta}=h_{\gamma}$. If E_{β} misses $U\left\{g_{\alpha}: \alpha<\beta\right\}$, then for each $\lambda \in \operatorname{dom} \cup\left\{h_{\alpha}: \alpha<\beta\right\}$, $(I \times\{\lambda\}) \cap E_{\beta}$ is nowhere dense in $I \times\{\lambda\}$. Since $\left|\operatorname{dom} U\left\{h_{\alpha}: \alpha<\beta\right\}\right| \leqq \Sigma\left\{\left|\operatorname{dom} h_{\alpha}\right|: \alpha<\beta\right\} \leqq|\beta||\alpha+1| \cdot \aleph_{0}$ < c we may apply the set theoretic assumption to conclude that the set $\Gamma=\operatorname{dom}\left(E_{\beta} \cap \cup\left\{I \times\{\lambda\}: \lambda \in \operatorname{dom} \cup\left\{h_{\alpha}: \alpha<\beta\right\}\right\}\right)$ is meager in $\operatorname{dom} E_{\beta}$. Also since $\left|\operatorname{dom} \cup\left\{g_{\alpha}: \alpha<\beta\right\}\right|<c, \operatorname{dom}\left(E_{\beta} \cap \cup\left\{g_{\alpha}: \alpha<\beta\right\}\right)$ is also meager in $\operatorname{dom} E_{\beta}$. Since, for $k \in K$, dom k is a non-degenerate interval it is not meager so we can find $a \in \operatorname{dom} E_{\beta}-\operatorname{dom} U\left\{g_{\alpha}: \alpha<\beta\right\}$ and $a, b \notin \operatorname{dom} \cup\left\{h_{\alpha}: \alpha<\beta\right\}$ such that $(a, b) \in E_{\beta}$.
ρ
Let $\lambda=f(a)$ and decompose $f^{-1}(\lambda)$ into countably many disjoint sets $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ each dense in I. Let $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be a dense sequence in $I-\operatorname{dom} \cup\left\{h_{\alpha}: \alpha<\beta\right\}$ where $\lambda_{0}=b$. Put
and put

$$
g_{\beta}(x)= \begin{cases}g_{\alpha}(x) & \text { if } x \in \operatorname{dom} g_{\alpha} \\ \lambda_{n} & \text { if } x \in A_{n}\end{cases}
$$

$$
h_{\beta}(y)=\left\{\begin{array}{ccl}
h_{\alpha}(y) & \text { if } & y \in \operatorname{dom} h_{\alpha} \\
\lambda_{0} & \text { if } & y=\lambda_{n}
\end{array}\right.
$$

Now suppose β is odd. If F_{β} hits $\cup\left\{h_{\alpha}: \alpha<\beta\right\}$ at a point of some h_{γ} put $h_{\beta}=h_{\gamma}$ and $g_{\beta}=g_{\gamma}$. If F_{β} misses $U\left\{h_{\alpha}: \alpha<\beta\right\}$, then using the same argument in the case where β is even there exists $(a, b) \in F_{\beta}$ such that $b \notin \operatorname{rng}\left\{h_{\alpha}: \alpha<\beta\right\}$ and $a \notin \operatorname{dom} \cup\left\{h_{\alpha}: \alpha<\beta\right\}$. Let $\left\{s_{n}\right\}_{n=0}^{\infty}$ be a sequence in $I-\operatorname{dom} \cup\left\{h_{\alpha}: \alpha<\beta\right\}$ such that $s_{0}=a$. Decompose $f^{-1}(b)$ into countably many disjoint sets $\left\{B_{n}\right\}_{n=0}^{\infty}$ each dense in I. Define

$$
g_{\beta}(x)= \begin{cases}g_{\alpha}(x) & \text { if } x \in \operatorname{dom} g_{\alpha} \\ s_{n} & \text { if } x \in \beta_{n}\end{cases}
$$

and

$$
h_{\beta}(y)= \begin{cases}h_{\alpha}(y) & \text { if } x \in \operatorname{dom} h_{\alpha} \\ b & \text { if } y=s_{n}\end{cases}
$$

It is easily checked that the inductive hypotheses (1) through (4) are satisfied.

Now define $g=U\left\{g_{\alpha}: \alpha<c\right\}$ and $h=U\left\{h_{\alpha}: \alpha<c\right\}$. Since each member of K is some E_{ξ} and some F_{μ} it follows that $\operatorname{dom} h=\operatorname{dom} g=$ $r n g h=r n g g=I$. Then (1) and (4) imply that $f=h{ }^{\circ} g$. Moreover, by (3) both g and h are connected.

Bibliography

1. Bruckner A.M., Differentiation of Real Functions, Springer-Verlag, Berlin-New York, 1978.
2. Garrett B.D., Nelms D., and Kellum K.R., Characterizations of connected real functions, Jber. Deutsch. Math. Verein. 73 (1971-72), 131-137.
