
 Ret'UÌ Analyò-íò Exchange. I lot. 11 { 1985-86)

 Jack Ceder, Department of Mathematics,

 University of California, Santa Barbara CA 93106

 ON COMPOSITIONS WITH CONNECTED FUNCTIONS

 Abstract: The main results are: Firstly, for any two sur-

 jections, f and g, of a real interval there exist con-

 nected surjections a and ß such that a(f(x)) = g(ß(x))

 for all X. Secondly, there exists a pair of connected

 functions whose composition is not connected, mod the con-

 tinuum hypothesis.

 Introduction. It is well known that a Darboux Bai re 1 function on

 R can be "stretched" into a derivative or an approximately continuous

 function, in the sense that there exists a homeomorphism h such that

 f h is a derivative or approximately continuous (see [1], page 36).

 In general, one can ask what possible effects can a composition with a

 homeomorphism, on the inside or outside, have on a given type of func-

 tion?

 In this paper we initiate a study of this question when the homeo-

 morphism restriction is relaxed to be just a surjection. Specifically

 we pose two general queries relative to two fixed classes A and B of

 surjections of a given open interval I.

 Questi on 1 If f ,g S A do there exi st a ,ß E ß such that

 a ° f = g ° ß?
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 Question 2 If f,gG A, do there exi st a,ße B such that

 f = a ° g 0 ß?

 In other words, with respect to the second question, given f and

 g can we "scramble" up both the domain and range of g (using functions

 in B) to produce f?

 In general, given a specified class A of surjections we would like

 to find a more restrictive, yet interesting, class B for which the

 above equations have solutions.

 In this paper we focus our attention mostly on taking B to be

 the family of all connected surjections of I, and we are able to

 obtain some interesting results as well as pose some interesting unsolved

 problems.

 Throughout the sequel I will be an unspecified open interval. By

 c we mean 2^°. By ' A I is meant the cardinality of A. We say a set

 A is c-dense in I if each open subset of I contains c members of

 A. We will make no distinction between a function and its graph.

 A function f from I into R is Darboux if it maps intervals

 onto intervals. A function f from I into R is connected if f is

 a connected subset of I x R. We can characterize Darbouxness by the

 intermediate value property namely: for each a, b and À the line

 segment [a,b] x {A} hits f provided (a, f(a)) and (b, f ( b ) ) lie

 on opposite sides. If we replace the "line segment" here by any con-

 tinuum K with domain [a,b] and interpret "opposite" in terms of dif-

 ferent components of ((dom K) x R) - K we arrive at a characterization

 for connected functions (see [2]). This will be useful in the sequel.
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 Lemma 1 Let f : I -> I . If | rng f| = c, then there exi sts

 AC I such that f(I-A) n f(A) = 0 and both A and I - f(A) are

 c-dense i n I.

 Proof: Let G consist of all those open intervals J such that

 |f(J)| < c. Put G = Ug. Clearly (1) I - G 0, since

 ¡rng f| = c; (2) I - G is perfect; (3) I f(G)i < c; and (4) for any

 open subinterval J of I J - G / 0 implies | f ( J ) | = c.

 Let A (resp. B) be the family of all open subintervals of I which

 hit I - G (resp. G). Let {za5a<c be a well-ordering of A x c and

 {wa}a<c be a well-ordering of B x c. For an ordered pair < a,b >
 define F(< a,b>) = a.

 By J induction on c we choose b S F(w ) - f(G) and a £ F(z ) - G J 0 0 0 0

 and, in general, having defined a^ an b^ for each 4 < or we choose

 ba € F(wa) - f (G) - {b£ : Ķ < a} - (f(a^) : 4 < a}

 aa G F(za) - G - {a^ : Ķ < a} - f 1({b^ : 4 š a}).

 Clearly J a and b exist for all a < c. Put B = { b : or < c} J or or or

 and A' = G U {a : of < c } ' . a '

 For any non-void open subinterval H of I j {a : F 'wa) = H}| = c.
 Therefore I H <"> B | = c and B is c-dense in I. Likewise A' is

 c-dense in I.

 Now suppose B n f(A') ¥■ 0. Then since B n f(G) = 0 there exists

 a and y such that b^ = f(ay)- Since b^ £ {f(a^) : Ķ < or} we must

 have a Ś y. Since a^ ^ f ^({b| : 4 = Y}) we must have y < a, a con-
 tradiction. Therefore, B n f(A') = 0 and I - f(A') is c-dense in I.
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 Finally put A = f *(f(A')), then clearly A and I - f(A) are

 c-dense in I and f(A) and f ( I - A) are disjoint.

 Theorem 1 Let f,g : I -» I. I_f j rng f ļ = c and g(I) i_s an

 interval , there exist connected functions or and ß taking on each

 value in g(I) on each subinterval such that

 a °f = g° ß.

 In particular, if f and g are surjections of I, there exist

 connected surjections a and ß such that or ° f = g° ß.

 Proof: Let C consist of all closed sets in I x g(I) with domain

 a non-degenerate closed subinterval of I. Then if a function

 G : I -* g(I) hits each member of C then G is connected and takes on

 each value in g(I) over each subinterval. Let us omit well-order C

 as {c i : a < c} ' . i ot '

 By Lemma 1 choose A such that f(I - A) n f(A) = 0 and both A

 and I - f(A) are c-dense in I. Decompose A into c disjoint sets

 {Aff : or < c 5 each c-dense in I. Decompose I - f(A) into c dis-

 joint sets {B^ : a < c} each c-dense in I. Let {raJa<c 3 we^"
 ordering of g(I). Pick yQ G g(I).

 Let X G A. If X € A n dom C choose h(x) so that
 a a

 (x,h(x)) G Cg. If x G Aff - dom put h(x) = y^. In each case define
 k(f(x)) = g(h(x)).

 Let y G I - f(A). If y G fi dom choose k(y) so that

 (y, k(y)) € CQ. If y G Bg - dom Ca put k(y) = yQ.
 If xi A, » then f(x) G B for some a since F(I - A) n f(A) = 0. » a
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 Since K(I) Cg(I) we may choose h(x) G g ^(KífCx))).

 Obviously k°f = g ° h. Also clearly each Ca hits g and k
 so g and k are connected and take on each value in g(I) on each

 subinterval .

 Corol lary 1 If f j_s any surjection, then there exi st connected

 sur.ļ'ections a and ß such that a ° f and f ° ß are connected.

 We can obtain the following variant of the above result.

 Theorem 2 I_f f i_s any surjection, then there exists a measurable,

 Darboux sur.jection ß such that f ° ß i_s measurable and Darboux.

 00

 Proof: Let {Vn}n_ļ be an open basis for I. Choose sequences of
 non-void nowhere dense null perfect K sets {A ł }°° , and {B }°° , such K ł n n=l , irn=l ,

 that Ac V » B C V and A n B = 0 where A = U °° . A and n - n » n - n n=l n

 B = u * , B .
 n=l , n

 We can find a Bai re 2 function h on A such that h(An) = I f°r
 each n. Then define k(x) = f ( h ( x ) ) for each x S A. Likewise we can

 find a Bai re 2 function k on B such that k(Bn) = I f°r e30'1 n-
 For x € B select h(x) £ f ( k( x ) ) . For x e I - A - B define

 h(x) = 0 and k(x) = f(0). (Assume I contains 0)

 Clearly k = f ° h and h and k being constant except on the

 null set A U B must be measurable. Moreover, h and k are Darboux

 because they map each subinterval onto I.
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 Now we turn our attention to addressing Question 2. We will find

 that Theorem 1 has no direct analogue. Let us say that a surjection g

 can be scrambled via functions in a class C into f if f = a° g° ß

 has solutions in c. Then, we have the following characterization of

 scrambling.

 Theorem 3 A surjection g can be scrambled into a surjection f

 via surjections i f and only if there ex i sts a decomposition of I ,

 (A(y) : y e 1} , into disjoint non-empty sets such that for al 1 y e I

 I Ufg-^z) : 2 e A(y) } I ś| f~1(y)j .

 Moreover, g can be scrambled into f via permutations if and only i f

 there exists a permutation p of I such that for each y E I

 I g_1(y) I = I f_1(p(y))| .

 Proof: Suppose f = a « go ß. Define A(y) = or ^(y). Then

 ß(f 1(y)) = g 1(a 1(y)) = U{g 1(z) : z e A(y)}. Since

 |ß(f *(y))| Š |f 1(y)ļ the conditions holds.

 On the other hand suppose the condition holds. Define a by

 a(x) = y whenever x e A(y). Define ß on each f ^"(y) so that

 ß(f 1(y)) = u {g 1(z) : z £ A(y)} . Clearly f = a° g° ß.

 The additional assertion for permutation solutions follows similarly.

 Theorem 4 I_f a surjection f has al 1 its level sets of cardinality

 c, then each surjection can be scrambled i nto f. In particular, there

 i s a conti nuous function g such that each sur jection can be scrambled
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 via surjectťons into g. The identity function can be scrambled i nto

 any surjection.

 Proof : For such an f the criterion of Theorem 2 is easily

 established. The example of Foran of a continuous nowhere-differentiable

 function g from [0,1] onto [0,1] has all its level sets nonempty

 perfect sets (see page 223 [1]). It is easy to construct from this a

 continuous g from I onto I having all its level sets uncountable.

 For the last assertion apply Theorem 2 where A(y) = {y}.

 Any two surjections are not necessarily comparable by scrambling.

 For example, take f to be any continuous function having each level

 set countably infinite. Pick g to be any continuous function having

 one level set uncountable and all others finite. Then according to

 Theorem 3 neither of these functions can be scrambled into the other.

 In light of Theorem 2 Question 2 would have to be reduced to: i_f

 f = a ° g ° ß , can a and ß be selected to be connected surjections?

 The answer is no even for Darboux surjections because taking g to be

 the identity function and f to be any non-Darboux function we would

 have a composition of two Oarboux functions not being Darboux. This is

 a contradiction since Darbouxness is preserved by composition.

 The foregoing also suggests the following question: i_s every Darboux

 function the composition of two connected functions? Or in the light of

 the next theorem, i_s f Darboux i ff f j_s the composition of connected

 functions? This problem seems exceedingly difficult to answer.

 The set-theoretic assumption needed in the next result is also a con-

 sequence of the continuum hypothesis or Martin's Axiom.
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 Theorem 5 Connectedness i s not preserved under compositions ,

 provided the union of less than 2^° nowhere dense sets i_s meager-

 Proof: Let I = [0,1]. Let {Aq : a < c} be a decomposition of I
 into disjoint countable sets each dense in I. Let {r : o < c} be a

 well-ordering a of I, ' where r î 0. Define for x£ A a ' o a

 r if X T r
 a or

 f(x) = ,
 4 r if X = r ,2a a

 Then f : I -» I fails to intersect the diagonal yet each level set of

 f is countable and dense in I. In particular, f is Darboux but not

 connected.

 We will show that f is a composition of two connected functions.

 Let K be the set of all continua in lxi with an interval as a domain.

 By a result in [2] any function hitting all members of K will be con-

 nected. Let E and F denote the even and odd ordinals respectively

 less than c. Let K be well-ordered by {Ea : a € E} and also by
 {F 1 : a G F} 1 such that E and F, are both I x {0}. 1 a 1 o 1

 By J induction we will construct functions h and g for a < c J a a

 as follows:

 Co

 Let {sn}n_Q be a countably dense sequence in I with sq = 0.
 _i a>

 Decompose f (0) into countably many disjoint sets {Bn}n_g each of

 which is dense in I. Define 90(x) = sn if x G B^ and h0(sn) = 0-

 Put g, = g and h = h,. Then, g hits E and h. 1 hits F.. 1 al g ao ol g ao o 1 1

 Moreover, h^ ° g^ = fļ (f "*"(0)).
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 Now suppose for each a < ß we have constructed functions gQ and
 h such that

 a

 (1) ' g C g and h C h when a < y
 ' 3a - y a - y

 (2) v/i I dom h ai I š K qI • |a + lļ i,i , | dom g aQt | ž H Qi • |a + l| v/i ai qI i,i , aQt Qi

 (3) g hits E when a is even and h hits F when a is g aa a a a
 odd

 (4) ha° 9a = f|(dom ga).
 Suppose ß is even. If E_ hits u{g : a < ß} at a point of some

 P o

 g then define g0 = g and h0 = h . If E„ misses U{g 1 : a < ß},
 ay ß y ß y . ß 1 acł

 then for each A G domU{hQ : a < ß}, (Ix {A}) n E^ is nowhere dense in

 I X {A}. Since ļdom Ufh^ : a < ß} ¡ ů I {ļdom hj: a < ß} Ś |ß| |a + l| »N
 < c we may apply the set theoretic assumption to conclude that the set

 r = dom(Eß HU {I X {A} : a G domU{hQ : a < ß}}) is meager in dom E^.

 Also since |domu{g Of : a < ß}| < c, dom(Eß p n U{g Of : or < ß}) is also Of p Of

 meager in dom E^. Since, for k G K, dom k is a non-degenerate interval

 it is not meager so we can find a S dom E^ - dom u {9a • o < ß} and

 a,b (ß. dom U {hß : a < ß} such that (a,b) G E^.
 P

 Let À = f(a) and decompose f 'a) into countably many disjoint

 sets {ß třnJn=0 }°° ~ each dense in I. Let {A 1 nJn=0 J00 be a dense sequence ^ in třnJn=0 ~ 1 nJn=0 ^

 I - dom U {h 1 : a < ß} where A = b. Put 1 a o

 g (x) if X G dom g , g aa g aa
 gR(x) , =
 p A if x G A

 and put n n
 ( h (y) if y G dom h

 hR(y) =
 A» if y J = A . ' 0 y J n
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 Now suppose ß is odd. If hits U {h^ : a < ß} at a point of
 some h put hD = h and g0 = g . If F_ misses u (h 1 : a < ß}, Y ß Y g0 aßyy g . ß 1 a
 then using the same argument in the case where ß is even there exists

 (a,b) e Fß such that b £ rng {ha : a < ß} and a f- dom U {h^ : a < ß}.
 00

 Let {sn}n_Q be a sequence in I - dom U {h^ : a < ß} such that Sg = a.
 -1 oo

 Decompose f (b) into countably many disjoint sets { B^} n_Q each dense
 in I. Define

 ig s aa n (x) i if f x X G G ß 'n dom g

 aa g aa

 s i f x G ß n 'n

 and

 Íh b a (y) J if if y x = € sn dom h

 a J a

 b if y = sn

 It is easily checked that the inductive hypotheses (1) through (4)

 are satisfied.

 Now define g = U{ga : a < c} and h = u {ha : or < c}. Since each
 member of K is some Eř and some F it follows that dom h = dom q =

 Í M

 rng h = rng g = I. Then (1) and (4) imply that f = h ° g. Moreover, by

 (3) both g and h are connected.
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