Real Analysis Exchange Vol. 11 (1985-86)

Jack Ceder, Department of Mathematics, University of California, Santa Barbara CA 93106

ON COMPOSITIONS WITH CONNECTED FUNCTIONS

<u>Abstract</u>: The main results are: Firstly, for any two surjections, f and g, of a real interval there exist connected surjections α and β such that $\alpha(f(x)) = g(\beta(x))$ for all x. Secondly, there exists a pair of connected functions whose composition is not connected, mod the continuum hypothesis.

<u>Introduction</u>. It is well known that a Darboux Baire 1 function on R can be "stretched" into a derivative or an approximately continuous function, in the sense that there exists a homeomorphism h such that f h is a derivative or approximately continuous (see [1], page 36). In general, one can ask what possible effects can a composition with a homeomorphism, on the inside or outside, have on a given type of function?

In this paper we initiate a study of this question when the homeomorphism restriction is relaxed to be just a surjection. Specifically we pose two general queries relative to two fixed classes A and B of surjections of a given open interval I.

Question 1 If f,g $\in A$ do there exist $\alpha, \beta \in B$ such that $\alpha \circ f = g \circ \beta$?

Question 2 If $f,g \in A$, do there exist $\alpha,\beta \in B$ such that $f = \alpha \circ g \circ \beta$?

In other words, with respect to the second question, given f and g can we "scramble" up both the domain and range of g (using functions in B) to produce f?

In general, given a specified class A of surjections we would like to find a more restrictive, yet interesting, class B for which the above equations have solutions.

In this paper we focus our attention mostly on taking *B* to be the family of all connected surjections of I, and we are able to obtain some interesting results as well as pose some interesting unsolved problems.

Throughout the sequel I will be an unspecified open interval. By c we mean $2^{\aleph o}$. By |A| is meant the cardinality of A. We say a set A is c-<u>dense</u> in I if each open subset of I contains c members of A. We will make no distinction between a function and its graph.

A function f from I into R is <u>Darboux</u> if it maps intervals onto intervals. A function f from I into R is <u>connected</u> if f is a connected subset of I × R. We can characterize Darbouxness by the intermediate value property namely: for each a, b and λ the line segment [a,b] × { λ } hits f provided (a, f(a)) and (b, f(b)) lie on opposite sides. If we replace the "line segment" here by any continuum K with domain [a,b] and interpret "opposite" in terms of different components of ((dom K) × R) - K we arrive at a characterization for connected functions (see [2]). This will be useful in the sequel.

381

Lemma 1 Let $f : I \rightarrow I$. If |rng f| = c, then there exists $A \subseteq I$ such that $f(I-A) \cap f(A) = \emptyset$ and both A and I - f(A) are c-dense in I.

<u>Proof</u>: Let G consist of all those open intervals J such that |f(J)| < c. Put G = \cup G. Clearly (1) I - G $\neq \emptyset$, since |rng f| = c; (2) I - G is perfect; (3) |f(G)| < c; and (4) for any open subinterval J of I J - G $\neq \emptyset$ implies |f(J)| = c.

Let A (resp. B) be the family of all open subintervals of I which hit I - G (resp. G). Let $\{z_{\alpha}\}_{\alpha < c}$ be a well-ordering of $A \times c$ and $\{w_{\alpha}\}_{\alpha < c}$ be a well-ordering of $B \times c$. For an ordered pair $\langle a, b \rangle$ define $F(\langle a, b \rangle) = a$.

By induction on c we choose $b_0 \in F(w_0) - f(G)$ and $a_0 \in F(z_0) - G$ and, in general, having defined a_{ξ} an b_{ξ} for each $\xi < \alpha$ we choose

$$b_{\alpha} \in F(w_{\alpha}) - f(G) - \{b_{\xi} : \xi < \alpha\} - \{f(a_{\xi}) : \xi < \alpha\}$$
$$a_{\alpha} \in F(z_{\alpha}) - G - \{a_{\xi} : \xi < \alpha\} - f^{-1}(\{b_{\xi} : \xi \le \alpha\}).$$

Clearly a_{α} and b_{α} exist for all $\alpha < c$. Put $B = \{b_{\alpha} : \alpha < c\}$ and $A' = G \cup \{a_{\alpha} : \alpha < c\}$.

For any non-void open subinterval H of I $|\{\alpha : F^{-1}(w_{\alpha}) = H\}| = c$. Therefore $|H \cap B| = c$ and B is c-dense in I. Likewise A' is c-dense in I.

Now suppose $B \cap f(A') \neq \emptyset$. Then since $B \cap f(G) = \emptyset$ there exists α and γ such that $b_{\alpha} = f(a_{\gamma})$. Since $b_{\alpha} \notin \{f(a_{\xi}) : \xi < \alpha\}$ we must have $\alpha \leq \gamma$. Since $a_{\gamma} \notin f^{-1}(\{b_{\xi} : \xi \leq \gamma\})$ we must have $\gamma < \alpha$, a contradiction. Therefore, $B \cap f(A') = \emptyset$ and I - f(A') is c-dense in I.

Finally put $A = f^{-1}(f(A'))$, then clearly A and I - f(A) are c-dense in I and f(A) and f(I - A) are disjoint.

<u>Theorem 1</u> Let f,g : I \rightarrow I. <u>If</u> |rng f| = c and g(I) is an interval, there exist connected functions α and β taking on each value in g(I) on each subinterval such that

```
\alpha \circ f = g \circ \beta.
```

In particular, if f and g are surjections of I, there exist connected surjections α and β such that $\alpha \circ f = g \circ \beta$.

<u>Proof</u>: Let *C* consist of all closed sets in $I \times g(I)$ with domain a non-degenerate closed subinterval of I. Then if a function $G: I \rightarrow g(I)$ hits each member of *C* then G is connected and takes on each value in g(I) over each subinterval. Let us omit well-order *C* as $\{C_{\alpha} : \alpha < c\}$.

By Lemma 1 choose A such that $f(I - A) \cap f(A) = \emptyset$ and both A and I - f(A) are c-dense in I. Decompose A into c disjoint sets $\{A_{\alpha} : \alpha < c\}$ each c-dense in I. Decompose I - f(A) into c disjoint sets $\{B_{\alpha} : \alpha < c\}$ each c-dense in I. Let $\{r_{\alpha}\}_{\alpha < c}$ be a wellordering of g(I). Pick $y_{0} \in g(I)$.

Let $x \in A$. If $x \in A_{\alpha} \cap \text{dom } C_{\alpha}$ choose h(x) so that $(x,h(x)) \in C_{\alpha}$. If $x \in A_{\alpha} - \text{dom } C_{\alpha}$ put $h(x) = y_{0}$. In each case define k(f(x)) = g(h(x)).

Let $y \in I - f(A)$. If $y \in B_{\alpha} \cap \text{dom } C_{\alpha}$ choose k(y) so that $(y, k(y)) \in C_{\alpha}$. If $y \in B_{\alpha} - \text{dom } C_{\alpha}$ put $k(y) = y_{0}$. If $x \notin A$, then $f(x) \in B_{\alpha}$ for some α since $F(I - A) \cap f(A) = \emptyset$. Since K(I) \subseteq g(I) we may choose h(x) \in g⁻¹(K(f(x))).

Obviously $k \circ f = g \circ h$. Also clearly each C_{α} hits g and k so g and k are connected and take on each value in g(I) on each subinterval.

<u>Corollary</u> 1 If f is any surjection, then there exist connected surjections α and β such that $\alpha \circ f$ and $f \circ \beta$ are connected.

We can obtain the following variant of the above result.

<u>Theorem 2</u> If f is any surjection, then there exists a measurable, <u>Darboux surjection</u> β such that $f \circ \beta$ is measurable and Darboux.

<u>Proof</u>: Let $\{V_n\}_{n=1}^{\infty}$ be an open basis for I. Choose sequences of non-void nowhere dense null perfect sets $\{A_n\}_{n=1}^{\infty}$ and $\{B_n\}_{n=1}^{\infty}$ such that $A_n \subseteq V_n$, $B_n \subseteq V_n$ and $A \cap B = \emptyset$ where $A = \bigcup_{n=1}^{\infty} A_n$ and $B = \bigcup_{n=1}^{\infty} B_n$.

We can find a Baire 2 function h on A such that $h(A_n) = I$ for each n. Then define k(x) = f(h(x)) for each $x \in A$. Likewise we can find a Baire 2 function k on B such that $k(B_n) = I$ for each n. For $x \in B$ select $h(x) \in f^{-1}(k(x))$. For $x \in I - A - B$ define h(x) = 0 and k(x) = f(0). (Assume I contains 0)

Clearly $k = f \circ h$ and h and k being constant except on the null set $A \cup B$ must be measurable. Moreover, h and k are Darboux because they map each subinterval onto I.

Now we turn our attention to addressing Question 2. We will find that Theorem 1 has no direct analogue. Let us say that a surjection g<u>can be scrambled via functions in</u> a class C <u>into</u> f if $f = \alpha \circ g \circ \beta$ has solutions in C. Then, we have the following characterization of scrambling.

<u>Theorem 3 A surjection</u> g can be scrambled into a surjection f via surjections if and only if there exists a decomposition of I, $\{A(y) : y \in I\}, \text{ into disjoint non-empty sets such that for all } y \in I$

$$| \cup \{g^{-1}(z) : z \in A(y)\}| \leq |f^{-1}(y)|.$$

Moreover, g can be scrambled into f via permutations if and only if there exists a permutation p of I such that for each $y \in I$

$$|g^{-1}(y)| = |f^{-1}(p(y))|.$$

<u>Proof</u>: Suppose $f = \alpha \circ g \circ \beta$. Define $A(y) = \alpha^{-1}(y)$. Then $\beta(f^{-1}(y)) = g^{-1}(\alpha^{-1}(y)) = \bigcup \{g^{-1}(z) : z \in A(y)\}$. Since $|\beta(f^{-1}(y))| \leq |f^{-1}(y)|$ the conditions holds.

On the other hand suppose the condition holds. Define α by $\alpha(x) = y$ whenever $x \in A(y)$. Define β on each $f^{-1}(y)$ so that $\beta(f^{-1}(y)) = \bigcup \{g^{-1}(z) : z \in A(y)\}$. Clearly $f = \alpha \circ g \circ \beta$.

The additional assertion for permutation solutions follows similarly.

<u>Theorem 4 If a surjection f has all its level sets of cardinality</u> c, <u>then each surjection can be scrambled into</u> f. <u>In particular, there</u> <u>is a continuous function g such that each surjection can be scrambled</u> via surjections into g. The identity function can be scrambled into any surjection.

<u>Proof</u>: For such an f the criterion of Theorem 2 is easily established. The example of Foran of a continuous nowhere-differentiable function g from [0,1] onto [0,1] has all its level sets nonempty perfect sets (see page 223 [1]). It is easy to construct from this a continuous g from I onto I having all its level sets uncountable. For the last assertion apply Theorem 2 where $A(y) = \{y\}$.

Any two surjections are not necessarily comparable by scrambling. For example, take f to be any continuous function having each level set countably infinite. Pick g to be any continuous function having one level set uncountable and all others finite. Then according to Theorem 3 neither of these functions can be scrambled into the other.

In light of Theorem 2 Question 2 would have to be reduced to: if $f = \alpha \circ g \circ \beta$, can α and β be selected to be connected surjections? The answer is no even for Darboux surjections because taking g to be the identity function and f to be any non-Darboux function we would have a composition of two Darboux functions not being Darboux. This is a contradiction since Darbouxness is preserved by composition.

The foregoing also suggests the following question: <u>is every Darboux</u> <u>function the composition of two connected functions</u>? Or in the light of the next theorem, <u>is f Darboux iff</u> f <u>is the composition of connected</u> <u>functions</u>? This problem seems exceedingly difficult to answer.

The set-theoretic assumption needed in the next result is also a consequence of the continuum hypothesis or Martin's Axiom.

386

<u>Theorem 5 Connectedness is not preserved under compositions,</u> provided the union of less than $2^{\aleph o}$ nowhere dense sets is meager.

<u>Proof</u>: Let I = [0,1]. Let $\{A_{\alpha} : \alpha < c\}$ be a decomposition of I into disjoint countable sets each dense in I. Let $\{r_{\alpha} : \alpha < c\}$ be a well-ordering of I, where $r_{0} \neq 0$. Define for $x \in A_{\alpha}$

$$f(x) = \begin{cases} r_{\alpha} & \text{if } x \neq r_{\alpha} \\ \frac{1}{2} r_{\alpha} & \text{if } x = r_{\alpha} \end{cases}$$

Then $f: I \rightarrow I$ fails to intersect the diagonal yet each level set of f is countable and dense in I. In particular, f is Darboux but not connected.

We will show that f is a composition of two connected functions. Let K be the set of all continua in $I \times I$ with an interval as a domain. By a result in [2] any function hitting all members of K will be connected. Let E and F denote the even and odd ordinals respectively less than c. Let K be well-ordered by $\{E_{\alpha} : \alpha \in E\}$ and also by $\{F_{\alpha} : \alpha \in F\}$ such that E_{0} and F_{1} are both $I \times \{0\}$.

By induction we will construct functions h_{α} and g_{α} for $\alpha < c$ as follows:

Let $\{s_n\}_{n=0}^{\infty}$ be a countably dense sequence in I with $s_o = 0$. Decompose $f^{-1}(0)$ into countably many disjoint sets $\{B_n\}_{n=0}^{\infty}$ each of which is dense in I. Define $g_0(x) = s_n$ if $x \in B_n$ and $h_0(s_n) = 0$. Put $g_1 = g_0$ and $h_0 = h_1$. Then, g_0 hits E_0 and h_1 hits F_1 . Moreover, $h_1 \circ g_1 = f|(f^{-1}(0))$. Now suppose for each $\alpha < \beta$ we have constructed functions $g_{\alpha}^{}$ and $h_{\alpha}^{}$ such that

- (1) $g_{\alpha} \subseteq g_{\gamma}$ and $h_{\alpha} \subseteq h_{\gamma}$ when $\alpha < \gamma$
- (2) $|\operatorname{dom} h_{\alpha}| \leq \aleph_{0} \cdot |\alpha + 1|$, $|\operatorname{dom} g_{\alpha}| \leq \aleph_{0} \cdot |\alpha + 1|$
- (3) g_{α} hits E_{α} when α is even and h_{α} hits F_{α} when α is odd
- (4) $h_{\alpha} \circ g_{\alpha} = f | (dom g_{\alpha}).$

Suppose β is even. If E_{β} hits $\bigcup \{g_{\alpha} : \alpha < \beta\}$ at a point of some g_{γ} then define $g_{\beta} = g_{\gamma}$ and $h_{\beta} = h_{\gamma}$. If E_{β} misses $\bigcup \{g_{\alpha} : \alpha < \beta\}$, then for each $\lambda \in \operatorname{dom} \cup \{h_{\alpha} : \alpha < \beta\}$, $(I \times \{\lambda\}) \cap E_{\beta}$ is nowhere dense in $I \times \{\lambda\}$. Since $|\operatorname{dom} \cup \{h_{\alpha} : \alpha < \beta\}| \leq \Sigma \{|\operatorname{dom} h_{\alpha}|: \alpha < \beta\} \leq |\beta| |\alpha + 1| \cdot \aleph_{0} < c$ we may apply the set theoretic assumption to conclude that the set $\Gamma = \operatorname{dom}(E_{\beta} \cap \cup \{I \times \{\lambda\} : \lambda \in \operatorname{dom} \cup \{h_{\alpha} : \alpha < \beta\})$ is meager in $\operatorname{dom} E_{\beta}$. Also since $|\operatorname{dom} \cup \{g_{\alpha} : \alpha < \beta\}| < c$, $\operatorname{dom}(E_{\beta} \cap \cup \{g_{\alpha} : \alpha < \beta\})$ is also meager in $\operatorname{dom} E_{\beta}$. Since, for $k \in K$, dom k is a non-degenerate interval it is not meager so we can find $a \in \operatorname{dom} E_{\beta}$.

ρ

Let $\lambda = f(a)$ and decompose $f^{-1}(\lambda)$ into countably many disjoint sets $\{\beta_n\}_{n=0}^{\infty}$ each dense in I. Let $\{\lambda_n\}_{n=0}^{\infty}$ be a dense sequence in I - dom $\cup \{h_{\alpha} : \alpha < \beta\}$ where $\lambda_0 = b$. Put

$$g_{\beta}(x) = \begin{cases} g_{\alpha}(x) & \text{if } x \in \text{dom } g_{\alpha} \\\\ \lambda_{n} & \text{if } x \in A_{n} \\\\ h_{\beta}(y) = \begin{cases} h_{\alpha}(y) & \text{if } y \in \text{dom } h_{\alpha} \\\\ \lambda_{0} & \text{if } y = \lambda_{n}. \end{cases}$$

and put

Now suppose β is odd. If F_{β} hits $\cup \{h_{\alpha} : \alpha < \beta\}$ at a point of some h_{γ} put $h_{\beta} = h_{\gamma}$ and $g_{\beta} = g_{\gamma}$. If F_{β} misses $\cup \{h_{\alpha} : \alpha < \beta\}$, then using the same argument in the case where β is even there exists $(a,b) \in F_{\beta}$ such that $b \notin rng \{h_{\alpha} : \alpha < \beta\}$ and $a \notin dom \cup \{h_{\alpha} : \alpha < \beta\}$. Let $\{s_n\}_{n=0}^{\infty}$ be a sequence in $I - dom \cup \{h_{\alpha} : \alpha < \beta\}$ such that $s_0 = a$. Decompose $f^{-1}(b)$ into countably many disjoint sets $\{B_n\}_{n=0}^{\infty}$ each dense in I. Define

$$g_{\beta}(x) = \begin{cases} g_{\alpha}(x) & \text{if } x \in \text{dom } g_{\alpha} \\ \\ s_{n} & \text{if } x \in \beta_{n} \end{cases}$$

and

$$h_{\beta}(y) = \begin{cases} h_{\alpha}(y) & \text{if } x \in \text{dom } h_{\alpha} \\ \\ b & \text{if } y = s_{n} \end{cases}$$

It is easily checked that the inductive hypotheses (1) through (4) are satisfied.

Now define $g = \bigcup \{g_{\alpha} : \alpha < c\}$ and $h = \bigcup \{h_{\alpha} : \alpha < c\}$. Since each member of K is some E_{ξ} and some F_{μ} it follows that dom h = dom g = rng h = rng g = I. Then (1) and (4) imply that $f = h^{\circ}g$. Moreover, by (3) both g and h are connected.

Bibliography

- Bruckner A.M., Differentiation of Real Functions, Springer-Verlag, Berlin-New York, 1978.
- Garrett B.D., Nelms D., and Kellum K.R., Characterizations of connected real functions, Jber. Deutsch. Math. Verein. 73 (1971-72), 131-137.

389 Received November 5, 1985