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 1. Introduction.

 In recent years a number of articles concerning the notion of

 porosity of a linear set have appeared in the literature. This is

 due, in part, to the many questions in which this notion arises

 naturally. The interested reader may consult several recent issues

 of The Real Analysis Exchange, in particular the comprehensive

 articles by Bullen [2] and Thomson [4].

 While 1 i near porosity has been studied extensively, porosity in

 spaces more general than the line seems to have been ignored. The

 purpose of this article is to present another application of porosity,

 but in settings more general than the line. We offer a generalization

 of unilateral linear porosity to metric spaces and show that when

 the metric space A is a convex subset of a separable Banach space,

 porosity is intimately related to local compactness. More specifically,

 we show that when A is locally compact, every sphere in A contains

 nowhere dense compact sets that are not a-porous, but when A is not

 locally compact, then every compact set is totally porous, that is,

 porous "in all directions." Thus, for such spaces, local compactness

 can be characterized in terms of the porosity of its compact subsets.

 ^The second author was supported in part by a grant from the NSF.
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 We choose convex sets for the spaces we study for two reasons:

 firstly, many subspaces that arise naturally are convex, and some

 infinite dimensional convex sets are locally compact (e.g. the

 lipschitz functions in C[a,b] having a fixed coefficient M);

 secondly, convex sets (with more than one member) have sufficient

 structure to avoid the nuisances one must deal with when a space

 has "extraneous" parts such as isolated points.

 In section 2 we provide the necessary definitions along with

 some discussion indicating why we chose those particular definitions.

 We also set forth some notation and some known results that we use

 repeatedly in the sequel.

 Our main results appear in section 3.

 2. Preliminaries.

 We shall be concerned with the notion of porosity in metric

 spaces more general than R-j . In writing this preliminary section,

 we have three objectives:

 i) to motivate the particular notion of porosity that we develop;

 ii) to provide the definitions needed in our development; and

 iii) to set forth the notation, conventions, and some known results

 that we shall use throughout the paper.

 When dealing with porosity in Rļ , one can deal with symmetric

 porosity or one can obtain a slightly more delicate development by

 distinguishing right porosity from left porosity. The latter may

 be more appropriate, for example, when one deals with unilateral

 generalized derivatives [1].
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 When one tries to generalize porosity even to Rg, one is

 immediately faced with some decisions: should one deal with symmetric

 porosity or should one try to obtain a more delicate version? If the

 latter, how does one do this? One can develop a notion of porosity

 "with respect to quadrants" or "with respect to spheres." The

 simplest and perhaps most flexible generalization of right or left

 porosity may be the following, which we give as a definition.

 Definition 1 . Let (X,p) be a metric space, B a subset of X and

 X e B. Let S be a sphere in X such that x is in the boundary

 of S, i.e. x € Š - S. Then B is said to be porous at x with

 respect to S if there exists a y > 0 such that for every e > 0

 there exist spheres c c S such that x e • S^, n B = 0

 and e > diameter S-j >_ y (diameter Sg).

 If each x e B is porous with respect to some sphere, we say B

 is a porous set.

 It is clear that a porous set must be nowhere dense. But even

 in 1*2» a set B can be porous at a point x with respect to
 some sphere and yet not give much of a sense of porosity (for example

 if B = S'S' where S and S' are spheres, S' c S, S' tangent to

 S at x ) . We obtain a much stronger sense of porosity if we require

 porosity with respect to all spheres.

 Definition 2. A set B that is porous at a point x e B with respect

 to every sphere containing x in its boundary is called totally
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 porous at x. If B is totally porous at all of its points, we

 say that B is totally porous.

 Thus, a totally porous set is very thin near its points.

 Definition 3. A set B is nonporous if there exists x e B such

 that B fails to be porous at x.

 Finally, a set B is called a-porous if it is a countable

 union of porous sets.

 While the preceding definitions make sense in any-metric space,

 the theorems we obtain in section 3 below depend on avoiding certain

 nuisances. Since our objective is to relate porosity to local

 compactness, we week a setting that is reasonably general and at the

 same time avoids certain nuisances that would require many special

 considerations. We have chosen convex subsets of Banach spaces as our

 underlying metric spaces because such spaces seem to satisfy both

 requirements: convex subsets of Banach spaces are plentiful and, as

 we shall see, they provide enough structure to lead to our theorems

 without requiring many special assumptions.

 Throughout section 3 we will make use of a theorem of Banach

 and Mazur [1 sec. 26 th. 1]:
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 Theorem A: Let C = C[0,1] arid let X be any separable Banach

 space. Then there exists a linear isometry <ļ> of X onto a subspace

 of C.

 Theorem A allows us to state our theorems for convex subsets of

 separable Banach spaces while presenting our proofs for the specific

 space C. This is so because the linearity of <p implies that

 convexity is preserved by <f>. On the other hand, <p is an isometry

 so <f> maps porous sets onto porous sets and spheres onto spheres.

 Let A be a convex subset of C, let f e A and let e > 0.

 By the sphere S(f,e) we mean as usual the set {g e A : || g - f || < e}.

 We mention that there exist nowhere dense perfect subsets of R-j

 which are non a-porous. It sould be clear that such sets can be

 chosen of arbitrarily small diameter. (See Tkadlec [5] for a

 general method of constructing such sets.) .

 Throughout this paper Rn will denote Euclidean n-space, Iq
 will denote the unit interval [0,1], and C will be C[0,1].

 3. Porosity and local compactness.

 We turn now to a development of our main results. We first show

 that if some closed sphere in a convex subset of a separable Banach

 space is compact, then all such closed spheres are. We begin with a

 lemma that will be useful in the proof of this result.
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 Lemma 1 . Let A and B be subsets of C with B compact, f e A,

 g e B, 0 < a < 1, ha = af + (l-a)g, x,y e and w a modulus

 of continuity for B. Then

 |h0(y) - hQ(x)i > o|f(y) - f (x) I - ui( |y - x| ) (1)
 and

 II ha - 9ll = c||f-g||. (2)

 Proof. We have

 |h0(y) - h0(x)|

 = |af(y) + (l-a)g(y) - af(x) - (l-a)g(x)|

 = |o[f(y) - f(x)] + (l-a)[g(y) - g(x)]|

 >_a|f(y) - f (x) I - (l-a)w(|y - x| )

 > a|f(y) - f (x) I - w(|y-x|)

 establishing (1).

 Furthermore, | h^ ( x ) - g(x)| = |af(x) -ag(x)| = a|f(x) - g(x)|

 for all x, i.e. j|ha - g|| = ot || f - g || which is (2).
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 Proposition 1. Let A be a closed convex subset of a separable

 Banach space X. If A contains a compact sphere, then all closed

 spheres in A are compact.

 Proof. By the Banach-Mazur Theorem quoted in section 2, we may assume

 without loss of generality that X = C. Thus a sphere S(f,e) is a

 set of the form: {g € A : ||g-f|| < e) where f e A. Suppose that

 S is not compact. Let S-j be any sphere in A. We show S-j is not

 compact. Let g be the center of S-j , and N be so large that

 S(g,N) 3 Š. Let a = ^ where e is the radius of S-j . It follows

 from lemma 1 (2) that h^ = ak + (l-a)g e S-j for all k e S. Suppose

 Sļ is compact. Let u be a modulus of continuity for Šļ . From

 lemma 1 (1) we see that for f e S and h^ = af + (l-a)g,

 lha(y) " haW - f(x)l " w(|y-x|).

 But S is bounded and not compact. Therefore S is not equi-

 continuous. Thus there exists ß > 0 such that to every 6 > 0

 there corresponds an f e S and x,y e Ig ļ x-y | < <5, with

 I f (x ) - f(y)| >_ ß. By choosing 6 so that w(6) 1 we see

 that for some x,y e IQ with j x-y ļ <6, we have
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 |ha(y) - hQ(x) I >_ aß - = |aß > 1aß > u(6).

 Since ha e , this violates the assumption that u is a modulus

 of continuity for .

 We have shown that if A has a non-compact closed sphere,

 then all closed spheres in A are non-compact.

 Theorem 1 below establishes our first connection between

 local compactness and porosity.

 Theorem 1 . Let X be a separable Banach space and A a closed

 non-locally compact convex subset of X, with more than one element.

 Let B be any compact subset of A. Then B is totally porous

 with respect to A.

 Proof. In view of the Banach-Mazur Theorem, we may assume X = C.

 Let g e B and we show B is totally porous at g. Let S be a

 sphere having g in its boundary and let u be the center of S.

 Without loss of generality, assume S has diameter less than 1.

 Let e > 0. By Proposition 1, is not compact. Using the

 notation of Proposition 1, we let ß > 0 be the constant used

 in the proof of Proposition 1. We construct spheres Sļ and

 meeting the requirements of porosity of B with respect to S.
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 From lemma 1 (2) we see that a suitable convex combination of u with

 g gives rise to a function v e S such that ||v-g|| < j. One

 easily verifies that the sphere S2 = S(v,||v-g||) is contained

 in S, g is in its boundary, and diameter S2 < e. (Note v is
 on the "line segment" determined by u and g.)

 We now find a sphere S-j c S2 such that S-j n B = 0, and

 diameter Sj > -jj (diameter S^). Let co be a modulus of continuity

 for B. As in the proof of Proposition 1 and using its notation,

 we find that for a = -- and 6 = (ļ£) , there exist points

 x,y e Iq and h e s2 such that |x-y| < 6, |h(x) - h(y)| > 5w(6)

 and II h-v|| < a.

 Let S-j = S(h,w(6)) . Then Sj c S2 since u(ô) = ^- < a. To

 see that S^ n B = 0, we need only observe that if f e A n S-j ,

 then |f(x) - f(y)| > 2 a>(6), so f i B. Finally, diameter Sļ = ^y-,

 diameter S2 = 2 1| v-g || = 4a. Thus, since || v-g || < |-, e > diameter Sļ
 ß

 = ļ2"(diameter ^2). ^ince & depended only on S (and not on or

 S2), we have shown that B is porous at g with respect to S. Since

 S is an arbitrary sphere containing g in its boundary, B is

 totally porous.
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 It is now natural to ask whether aVl_ nowhere dense subsets of A

 are totally porous if A is a convex non-1 ocally compact subset of a

 separable Banach space X. If so, then all first category convex subsets

 of X will be a-porous. In particular, subspaces of C[a,b] (such as the

 space of functions that satisfy a Lipschitz condition) that are first

 category would automatically be a-porous and cr-porosity would give no

 additional information about the size of a first category set. That is

 not the case, however, as Theorem 2, below, shows.

 The proof of Theorem 2 involves a step that needs explanation. In the

 setting of that theorem we must show that under certain conditions convex

 sets of functions from a set A intersect coordinate lines in full intervals.

 Without those conditions this property is not in general true. Consider for

 a moment the set A c C consisting of those functions f of the form

 f(x) = ax, -1 <_ a £ 1 . Let 0 < 6 < 1 , and consider V = {f e A : ||f || < 6}.

 This neighborhood of the zero function relative to the set A has radius 6,

 yet for y f 0, there is no v e V for which v(0) = y. A less extreme

 case would be one in which there is Xq e I, 6 > 0 and h e A such that

 the projection of S ( h ,6 ) onto the Xq coordinate did not fill up the

 interval centered at h(xg) and having length 26. To deal with the

 difficulty this type of situation may create in the proof of Theorem 2,

 we begin with a simple calculation.
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 Lemma 2. Let A be a convex subset of C, (v, h, g} c A, 6 > 0,

 e > 0. Suppose xQ g Iq, h(xQ) + e < g(xQ) and S(v ,6) c S(h,e)

 and let

 v = llg-hll + £
 1 g(x0) - h(xQ) - e •

 Jř

 Then for each y € [v(Xq), v(Xq) + - ] there exists a function

 w € S(v,<5) n A with w(Xq) = y.

 If the function g above is replaced by f € A with

 f (Xq) < h(Xg) - e, then there is a constant y 2 such that for each

 y e [v (xq) - v(x0)], there exists w g S(v,ô) n A with

 w(x0) = y.

 Proof. Since g(xQ) > h(xQ) + e > v(xQ) + 6, we have || g-v || > 6

 and so we may choose a such that 0 < a < 1 and ||a v + (l-a)g - v|| = 6.

 Now

 g(x0) - v(x0) Ih-vll
 g(x0) - h(x0) - e - -ļļg-hļl + e'

 Thus

 g(xQ) - v (xQ) > .

 So

 (l-a)[g(x0) - v(x0)J > (T-^HIg-vIl .

 But

 (l-a)[g(x0) - v(x0)] = av(xQ) + (l-a)g(x0) - v(xQ)
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 arid

 (1 ~a) Il g-v H = 6

 so we get

 g

 av(xQ) + ( 1 -ot)g (xQ) > v(xQ) + - .

 The result follows by taking convex combinations of v and

 av + (l-a)g.

 The existence of 1S obtained by an analogous argument.

 Theorem 2. Let X be a separable Banach space and A c X be convex

 with more than one element. If Se A is a sphere, then there exists

 B c S with B closed nowhere dense and non o-porous in A.

 Proof. Again because of the Banach-Mazur Theorem of section 2, we

 may assume X = C. Let f and g be in S with f f g and

 without loss of generality let Xq be a point where f(Xg) < g(xQ).

 By a theorem of Tkadlec [5] there is a set E c (f (XqJ^ÍXq)) with

 E closed, nowhere dense and non a-porous. Let B = {s e S:s(Xg) e E}.
 oo

 Then B is nowhere dense and closed in A. Now suppose B = u B. K . k=l K

 We must show some B^ is non-porous at some point h e B^.
 00

 Let Ek = {y e E:s(Xq) = y for some s € Bk>, Then E = k-1 u k-1

 since S is convex. Thus there exists k such that E^ is non-
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 porous at some point z e E^. By a suitable convex combination of

 f and g we obtain a function h e S with h(Xg) = z. We will

 show Bķ is non-porous at h. Choose e so that

 f(xQ) < h (xQ) - e < h(xQ) + e < g(xQ),

 Let and y ^ be as in Lemma 2 and set y = max {y-j^}.

 Suppose n > Ū is given. Since is non-porous at Ii(xq), we

 can find such that 0 < < e and I n t 0 for all intervals

 I c (h(xQ) - , h(xQ) + e.]) for which |I| > ne-j- Now suppose

 M c A is a sphere with h in the boundary of M and diam M < e-j

 and v e M. If S(v,ô) c M, then

 (v (Xq) - V (Xq) + ô) c (h(x) - E-j, h (x ) + Eļ).

 So if ô >.yn£ļ» then - >_ n so there exists y e Ek n
 r r

 (v(Xq) - -, v(Xq) + -). But then by lemma 2, there exists

 w € A n S(v,6) with w(Xg) = y. So w e B^ and S(v,6) n B^ f 0.

 Thus we see that if S is a sphere, S c M and diam S >_ 2yriEļ»

 then Sn B^ f 0. Theorem 2 now follows from the observation that

 M is an arbitrary sphere having h in its boundary and of diameter

 < e-j and that y depends on f, g, h and e, but not on e-j .
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 Corollary 1 . Let X be a separable Banach space and A c X be locally

 compact, convex with more than one element. Then every closed sphere in

 A contains a compact nowhere dense subset B that is non a-porous in A.

 Proof. Since A is locally compact, the closure of each sphere S

 is compact by Proposition 1. The set B in Theorem 2 is a closed

 subset of S and is therefore compact.

 We summarize the results of this section with Theorem 3.

 Its proof entails no more than piecing together Proposition 1,

 Theorem 1 and Corollary 1.

 Theorem 3. Let X be a separable Banach space. Let A be a

 convex subset of X having more than one element. There exists

 a nonporous compact subset B of A if and only if A is locally

 compact. When A is locally compact, we can choose B nowhere

 dense and non o-porous. When A is not locally compact, every

 compact subset of A is totally porous.
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