RESEARCH ARTICLES Real Analysis Exchange Vol. 11 (1985-86)

F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

RINGS OF BAIRE FUNCTIONS ON REALCOMPACT SPACES

1. Introduction. Let $C(X)$ denote the ring of continuous real valued functions on a completely regular Hausdorff space X, let $E(X)$ denote the ring of Baire functions on X, and let $D(X)$ denote the ring of Baire class one functions on X. (Any function in $D(X)$ is the pointwise limit of a sequence of functions in $C(X)$.) Then $C(X) \subset D(X) \subset E(X)$. We let $C^{+}(X)$ (respectively $\mathrm{D}^{+}(\mathrm{X}), \mathrm{E}^{+}(\mathrm{X})$) denote the set of nonnegative functions in $\mathrm{C}(\mathrm{X})$ (respectively $\mathrm{D}(\mathrm{X}), \mathrm{E}(\mathrm{X})$). By a nonnegative linear functional (written nlf) F on $C(X)$ or $D(X)$ or $E(X)$, we mean a real valued linear function that takes nonnegative functions in its domain to nonnegative numbers and takes the function 1 to the number 1. (In our notation, functions in $E(X)$ will be lower case, the identity in the ring $E(X)$ is denoted 1 , and mappings defined on $E(X), D(X)$ and $C(X)$ are upper case. If $f, g \in E(X)$, then $f \vee g$ denotes the maximum of f and g, and $f \wedge g$ denotes the minimum of f and g.)

The sets $C(X), D(X)$ and $E(X)$ have some different properties. For example, $E(X)$ is closed under pointwise convergence of sequences, but $D(X)$ and $C(X)$ are not in general. On the other hand, they are all closed under uniform convergence ([2], p. 138). $E(X)$ contains the characteristic function of any Baire set, but $C(X)$ and $D(X)$ do not in general. $D(X)$ and $E(X)$ contain the characteristic function of any zero-set ([1], pp. 14-15), but $C(X)$ does not in general. (Note that if $f \in C(X)$, then $\lim _{n \rightarrow \infty}(1-(|f| \wedge 1))^{n}$ lies in $D(X)$ and $E(X)$.)

We are particularly interested in spaces that are realcompact [1]. The following result is well-known (see [3], Theorems 17 and 18).

Theorem 1. Let F be an nlf on $C(X)$ where X is realcompact. Then there exists a compact subset Y of X such that any $f \in C(X)$ with $f(Y)=0$ satisfies $F(f)=0$, and such that any $f \in C^{+}(X)$ with $f(Y) \neq 0$, satisfies $F(f)>0$. Moreover, there is a Baire measure m on X such that for all $g \in C(X)$,

$$
\int_{X} g d m=F(g) .
$$

We will give a different proof of Theorem 1 and prove analogues for $D(X)$ and $E(X)$ in which Y must be a finite set. We will find that every nlf on $D(X)$ or $E(X)$ is continuous in the topology of pointwise convergence, any nlf on $D(X)$ extends to an nlf on $E(X)$, and an nlf on $C(X)$ extends to an nlf on $E(X)$ if and only if it is continuous in the topology of pointwise convergence (Theorems 3 and 4).

Just as any ring isomorphism of $C\left(X_{1}\right)$ onto $C\left(X_{2}\right) \quad\left(X_{i}\right.$ realcompact) is implemented by a homeomorphism of X_{2} onto X_{1}, a ring isomorphism of $D\left(X_{1}\right)$ onto $D\left(X_{2}\right)$ or $E\left(X_{1}\right)$ onto $E\left(X_{2}\right)$ is implemented by a bijective mapping of X_{2} onto X_{1}. In the $E\left(X_{i}\right)$ case, under the bijection, Baire sets correspond to Baire sets, and in the $D\left(X_{i}\right)$ case, Baire class one F $\mathrm{F}_{\boldsymbol{\sigma}}$-sets correspond to Baire class one $\mathrm{F}_{\boldsymbol{\sigma}}$-sets. (By a Baire class one $\mathrm{F}_{\boldsymbol{\sigma}}$-set we mean the union of countably many zero-sets. By a Baire class one G_{δ}-set we mean the complement of a Baire class one $\mathrm{F}_{\boldsymbol{\sigma}}-\mathrm{set}$.) This is contained in Theorem 6.

We use the topology of pointwise convergence to determine when a ring homomorphism of $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$, or $D\left(X_{1}\right)$ to $D\left(X_{2}\right)$, or $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$ is an isomorphism onto the second ring (X_{i} realcompact). The necessary and sufficient condition is that closed subsets of the first ring map to closed subsets of the second ring (Theorem 7).

We do not determine if every metrizable space is realcompact. But we do provide another necessary and sufficient condition for a metrizable space to be realcompact (Theorem 11).
2. Realcompact spaces. Let F be a nonnegative linear functional on $C(X)$ where X is a realcompact space. Embed X in its Stone-čech
compactification S. Any function $f \in C^{+}(X)$ extends to a unique continuous nonnegative extended real valued function on S; to save notation, call the extension f also.

Now let $f \in C^{+}(X)$ such that $F(f)=0$. Then $A=f^{-1}(0) c S$ is nonvoid; for otherwise f is positive and bounded away from 0 on the compact space S, and for some positive number $c, f \geq c l$, and

$$
F(f) \geq F(c l)=c F(f)=c>0
$$

Let α be the family of all compact subsets of S of the form $f^{-1}(0)$ where $f \in C^{+}(X)$ and $F(f)=0$. For example $S \in \alpha$. Then every set in α is nonvoid, and α is closed under finite intersections. (The second statement follows from

$$
\left.F\left(f_{1}+f_{2}\right)=F\left(f_{1}\right)+F\left(f_{2}\right)=0 \quad \text { and } \quad\left(f_{1}+f_{2}\right)^{-1}(0)=f_{1}^{-1}(0) \cap f_{2}^{-1}(0) .\right)
$$

Then $Y=n \alpha$ is a nonvoid compact subset of S. Moreover, if $g \in C^{+}(X)$ and g is positive at some point in Y, then $F(g)>0$. We make the following observations about Y.

1. $\mathrm{Y} \subset \mathrm{X}$.

Proof. Suppose, to the contrary, $y \in Y \backslash X$. Since X is realcompact, there is an $f \in C^{+}(X)$ such that $f(y)=\infty$. For each positive integer n, put $g_{n}=\left(f v_{n}\right)-n l$. Then $g_{n} \in C^{+}(X)$ and $g_{n}(y)=\infty$ for all n.

Moreover, $F\left(g_{n}\right)>0$ and $g=\sum_{n=1}^{\infty} g_{n} / F\left(g_{n}\right) \in C^{+}(X)$. (Note that if $x \in X$ and $f(x)<k$, then $g n$ vanishes on the nbhd. $f^{-1}[0, k)$ of x for $n>k$.) Finally, $g \geqslant \sum_{n=1}^{N} g_{n} / F\left(g_{n}\right)$ and

$$
F(g) \geq F\left(\sum_{n=1}^{N} g_{n} / F\left(g_{n}\right)\right)=N
$$

for any integer $N>0$. But this is impossible, and assertion 1 is proved.

Definition. We call each point in Y a heavy point of F. All other points in X we call light points of F.
2. If $g \in C^{+}(X)$ and $g^{-1}(0, \infty)$ is separated from Y, then $F(g)=0$.

Proof. Suppose, to the contrary, that $F(g)>0$. For each $f \in C(X)$, define $F_{0}(f)=F(f g) / F(g)$. Then clearly F_{0} is a nonnegative linear functional on $C(X)$. By assertion $1, F_{o}$ has a heavy point $w \in X$.

Let $h \in C^{+}(X)$ such that $h(w)>0$. Let $h_{0} \in C^{+}(X)$ such that $h_{0}(w)>0, h_{0} \leqslant h$, and g is bounded on the set $h_{0}{ }^{-1}(0, \infty)$. Say $g<c$ on this set where c is constant. Then

$$
0<F_{0}\left(h_{0}\right)=F\left(h_{0} g\right) / F(g) \leqslant F\left(c h_{0}\right) / F(g)=c F\left(h_{0}\right) / F(g)
$$

and $0<F\left(h_{0}\right) \leqslant F(h)$. It follows that w is also a heavy point of F and $w \in Y$. But $g^{-1}(0, \infty)$ is separated from Y, so there is an $f \in C^{+}(X)$ with $f(w)>0$ and $f g=0$. So $F_{0}(f)=F(f g) / F(g)=0$ and w is a light point of F_{0}. This contradiction proves assertion 2.
3. If $g \in C(X)$ and g vanishes on Y, then $F(g)=0$.

Proof. It suffices to let $g \in C^{+}(X)$ because $g=(g \vee 0)+(g \wedge 0)$. Take any $\varepsilon>0$. Then $((g \vee \varepsilon)-\varepsilon 1)^{-1}(0, \infty)$ is separated from Y and by assertion 2,

$$
0=F((g \vee \varepsilon)-\varepsilon 1)=F(g \vee \varepsilon)-\varepsilon \searrow F(g)-\varepsilon
$$

Thus $F(g) \leqslant \varepsilon$, and because ε is arbitrary, $F(g)=0$. This proves assertion 3.
4. Thus if $f_{1}=f_{2}$ on Y, and $f_{1}, f_{2} \in C(X)$, we have $F\left(f_{1}\right)=F\left(f_{2}\right)$. Moreover, Y is a compact and closed subset of S, and by the Tietze extension theorem, any function in $C(Y)$ extends to bounded functions in $C(S)$ and $C(X)$. It follows that any zero-set with respect to Y is the intersection of Y with a zero-set with respect to X. Hence any Baire set with respect to Y is the intersection of $Y \quad$ with a Baire set with
respect to X. Conversely, any such intersection with Y is a Baire set with respect to Y.

Now F defines an obvious nonnegative linear functional F_{1} on $C(Y)$. To wit,

$$
F(h)=F_{1}\left(h_{1}\right)
$$

where h_{1} is the restriction of h to Y. By [4], there is a Baire measure m_{1} on Y such that $F_{1}\left(h_{1}\right)=\int_{Y} h_{1} d m_{1}$ for $h_{1} \in C(Y)$. But m_{1} defines an obvious Baire measure m on X. To wit, $m(B)=m_{1}(B \cap Y)$ for all Baire sets B in x. It follows from the definition of the integral that

$$
F(h)=F_{1}\left(h_{1}\right)=\int_{Y} h_{1} \mathrm{dm}_{1}=\int_{X} h \mathrm{dm},
$$

for all $h \in C(X)$.

This discussion provides an alternative proof to Theorem 1. Compare with Theorems 17 and 18 of [3].

We next observe that for nlfs F on $C(X), D(X)$ or $B(X)$, functions in the domain of F behave as if they are truncated.

Lema 1. Let F be an nlf on $C(X)$ (respectively, $D(X), B(X)$) and let f lie in the domain of F. Then there is a positive number c such that

$$
F((f \vee c)-c l)=F((f \wedge(-c))+c l)=0 \quad \text { and } \quad F((f \wedge c) \vee(-c))=F(f) .
$$

Proof. Let $r_{n}=\tan \left(1 / 2 \pi-2^{-n}\right)$. Then $r_{n} \uparrow \omega$. Since $f=(f v 0)+(f \wedge 0)$, it suffices to let f be nonnegative. Suppose that $F((f v c)-c l)>0$ for all numbers c. For integers $n>0$, put $f_{n}=\left(f v r_{n}\right)-r_{n} l$. Put $h=f+\sum_{n=1}^{\infty} f_{n} / F\left(f_{n}\right)$. It follows that h is finite on x. Moreover, $h \in C(X)$ if $f \in C(X)$, and $h \in E(X)$ if $f \in E(X)$. Thus in cases $C(X)$ and $E(X)$ we have $h \geq \sum_{n=1}^{N} f_{n} / F\left(f_{n}\right)$ and $F(h) \geq F\left(\sum_{n=1}^{N} f_{n} / F\left(f_{n}\right)\right)=N$ for
all N, which is impossible. This proves Lemma 1 for $C(X)$ and $E(X)$.
Likewise, to prove Lemma l for $D(X)$, it suffices to prove that $h \in D(X)$ if $f \in D(X)$. For each positive integer N put

$$
g_{N}=\arctan \left(f+\sum_{n=1}^{N} f_{n} / F\left(f_{n}\right)\right) .
$$

Then arc $\tan h=\lim _{N \rightarrow \infty} g_{N}$ pointwise on X. At each $x \in X$ where $g_{N}(x)>g_{N-1}(x) \quad$ and $N>1$, we have $f_{N}(x)>0, \quad f(x)>r_{N}$, $\arctan f(x)>k_{2} \pi-2^{-N}, \quad k_{2} \pi>g_{N}(x)>g_{N-1}(x) \geq 1 / \pi-2^{-N}$, and $g_{N}(x)-g_{N-1}(x)<2^{-N}$. So $\left|g_{N}-g_{N-1}\right|<2^{-N}$. Each $g_{N} \in D(X)$, so let $p_{N j} \in C(X)$ such that $0 \leqslant p_{N j} \leqslant 2^{-N}$ and $\lim _{j \rightarrow \infty} p_{N j}=g_{N}-g_{N-1}$ pointwise on X for each N.

Put $q_{n}=p_{1, n-1}+p_{2, n-2}+p_{3, n-3}+\cdots+p_{n-1,1}$ for each integer $n>l$. For $t \in X$,

$$
\begin{aligned}
& g_{N}(t)-g_{1}(t)+2^{1-N}=\sum_{n=2}^{N}\left(g_{n}-g_{n-1}\right)(t)+2^{1-N} \geq \lim \sup _{n \rightarrow \infty} q_{n}(t), \\
& g_{N}(t)-g_{1}(t)-2^{l-N}=\sum_{n=2}^{N}\left(g_{n}-g_{n-1}\right)(t)-2^{1-N} \leq \lim \inf _{n \rightarrow \infty} q_{n}(t) .
\end{aligned}
$$

It follows that $-g_{1}(t)+\operatorname{arc} \tan h(t)=\lim _{n \rightarrow \infty} q_{n}(t)$ pointwise on x, and since each q_{n} is continuous, $-g_{1}+\operatorname{arc} \tan h \in D(X)$. But $\tan g_{1} \in D(X)$, and hence $g_{1} \in D(X)$. Finally arc $\tan h \in D(X)$; say $\lim h_{n}=\arctan h$ pointwise on X where each $h_{n} \in C^{+}(X)$. So $\lim _{n \rightarrow \infty} \tan \left(\left(\% \pi-n^{-1}\right) \wedge h_{n}\right)=h$ pointwise on x and $h \in D(X)$.

Next we show that if F is an nlf on $D(X)$ or $E(X)$, then F has at most a finite number of heavy points. (Recall that x is a heavy point of F if for each $f \in C^{+}(X)$ with $f(x)>0$, we have $F(f)>0$.) This is true for completely regular Hausdorff spaces, realcompact or not.

Lemma 2. Let F be an nlf on $D(X)$ or $E(X)$ where X is a completely regular Hausdorff space. Then F has at most finitely many heavy points.

Proof. Suppose, to the contrary, that there are infinitely many heavy points of F. Let x_{1} be a heavy point such that some nbhd. of x_{1} excludes infinitely many other heavy points. (If a heavy point has no such nbhd. then any other heavy point will have one.) Let U_{1} be an open nbhd. of x_{1} such that $X \backslash \bar{U}_{1}$ contains infinitely many heavy points. Likewise, choose a heavy point x_{2} and an open nbhd. U_{2} of x_{2} such that $\mathrm{U}_{1} \cap \mathrm{U}_{2}=\varnothing$ and $\mathrm{X} \backslash\left(\bar{U}_{1} \cup \bar{U}_{2}\right)$ contains infinitely many heavy points. We use induction on n to choose a heavy point x_{n} and an open nbhd.
U_{n} of x_{n} such that $U_{i} \cap U_{j}=\varnothing$ if $i \neq j$ and infinitely many heavy points of F lie in $X \backslash\left(\bar{U}_{1} \cup \cdots u \bar{U}_{n}\right)$. Now let $f_{n} \in C^{+}(X)$ such that $f_{n}\left(x_{n}\right)>0$ and f_{n} vanishes outside U_{n} for each n. Put $f=\sum_{n=1}^{\infty} f_{n} / F\left(f_{n}\right)$. Then $f \in D(X) \subset E(X)$ and for each N,

$$
f \gtrsim \sum_{n=1}^{N} f_{n} / F\left(f_{n}\right) \quad \text { and hence } \quad F(f) \geqq N
$$

which is impossible.

The next Lemma on uniqueness of measures is not very original, but we will need it. It does not require realcommpactness.

Lema 3. Let m_{1} and m_{2} be Baire measures on a space X such that $m_{1}(X)=m_{2}(X)=1$ and for each bounded function $f \in C(X)$,

$$
\int f \mathrm{dm}_{1}=\int f \mathrm{dm}_{2}
$$

Then $m_{1}=m_{2}$.

Proof. Consider the family \mathcal{F} of all functions $f \in E(X)$ for which

$$
\int((\operatorname{lnf}) \vee 0) d m_{1}=\int((\operatorname{lnf}) \vee 0) d m_{2}
$$

Clearly $C(X) \subset$. Moreover, if $g \in E(X)$ is the pointwise limit of a sequence of functions $\left(g_{n}\right) \subset \mathcal{F}$, then for each n,

$$
\int\left(\left(l \wedge g_{n}\right) \vee 0\right) \mathrm{dm}_{1}=\int\left(\left(l \wedge g_{n}\right) \vee 0\right) \mathrm{dm}_{2}
$$

and by the Lebesgue dominated convergence theorem,

$$
\int((1 \wedge g) \vee 0) \mathrm{dm}_{1}=\int((1 \wedge g) \vee 0) \mathrm{dm}_{2}
$$

Then \mathcal{F} is closed under pointwise limits of sequences, and hence $\mathcal{F}=\mathrm{E}(\mathrm{X})$.
Now let g be the characteristic function of any Baire set A. Then $g \in E(X)$ and

$$
\begin{equation*}
m_{1}(A)=\int g d m_{1}=\int g d m_{2}=m_{2}(A) . \tag{0}
\end{equation*}
$$

We show that any nlf on $E(X)$ is an integral. Again realcompactness is not needed here.

Leman 4. Let F be an nlf on $E(X)$. Then there is a unique Baire measure m on X such that for all $f \in E(X)$,

$$
\int f d m=F(f)
$$

Proof. For each Baire set A, put $m(A)=F\left(k_{A}\right)$ where k_{A} is the characteristic function of A. Then $m(\phi)=0, m(X)=1$, and m is obviously finitely additive. To prove that m is countably additive let $A_{1}, A_{2}, A_{3}, \ldots$ be a sequence of mutually disjoint Baire sets and suppose, to the contrary, that

$$
\sum_{j=1}^{\infty} m\left(A_{j}\right) \neq m\left(\bigcup_{j=1}^{U} A_{j}\right)
$$

For each N,

$$
\sum_{j=1}^{N} m\left(A_{j}\right) \neq m\left(\underset{j=1}{N} A_{j}\right) \in m\left({\left.\underset{j=1}{\infty} A_{j}\right), ~}_{\text {N }}^{N}\right.
$$

so $\sum_{j=1}^{\infty} m\left(A_{j}\right)<m\left({\underset{j}{U}=1}_{\infty}^{A_{j}}\right)$.
For each N, let $B_{N}=\left(\underset{j=N}{(U} A_{j}\right)$. Then $m\left(B_{N}\right)>0$ for all N, and
∞
$\prod_{N=1} B_{N}=\varnothing . \quad$ Finally

$$
g=\sum_{N=1}^{\infty} k_{B_{N}} / m\left(B_{N}\right) \in E(X),
$$

and for all $\mathbf{j}>0$,

$$
F(g) \geq F\left(\sum_{N=1}^{j} k_{B_{N}} / m\left(B_{N}\right)\right)=j,
$$

which is impossible. Thus m is a Baire measure on X.
If $f \in E(X)$, then $f=(f \vee 0)+(f \wedge 0)$. Thus it suffices to take $f \in E^{+}(X)$.

Fix $f \in E^{+}(X)$, and choose any $\varepsilon>0$. Then there is an index $N>0$ such that $F(f \wedge(N \varepsilon))=F(f)$ by Lemma 1 . Now let $B_{j}=p^{-1}[(j-1) \varepsilon, j \varepsilon)$ where $p=f_{\wedge}(N \varepsilon)$. We note that

$$
f_{\wedge}(N \varepsilon) \leqslant \sum_{j=1}^{N+1} j \varepsilon k_{B_{j}} \leqslant \sum_{j=1}^{N+1}(j-1) \varepsilon k_{B_{j}}+\varepsilon l
$$

and

$$
F(f)=F\left(f_{\wedge}(N \varepsilon)\right) \leqslant \sum_{j=1}^{N+1}(j-1) \varepsilon F\left(k_{B_{j}}\right)+\varepsilon=\sum_{j=1}^{N+1}(j-1) \varepsilon m\left(B_{j}\right)+\varepsilon \leqslant \int f d m+\varepsilon .
$$

Also

$$
f \gtrsim \sum_{j=1}^{\infty}(j-1) \varepsilon k_{B_{j}} \geq \sum_{j=1}^{\infty} j \varepsilon k_{B_{j}}-\varepsilon l
$$

and

$$
F(f) \geq \sum_{j=1}^{\infty} j \varepsilon F\left(k_{B_{j}}\right)-\varepsilon=\sum_{j=1}^{\infty} j \varepsilon m\left(B_{j}\right)-\varepsilon \geq \int f d m-\varepsilon .
$$

Since ε is arbitrary, $F(f)=\int f d m$ for $f \in E^{+}(X)$, and clearly for $f \in E(X)$. Uniqueness of the measure m follows from Lemma 3.

The next Lemma concerns only $D(X)$.

Lemm 5. Let $f \in C(X), 0 \leqslant f \leqslant 1$ and let $A=f^{-1}(1)$. Then

$$
\sum_{n=1}^{\infty}\left(f^{n}\right) \cdot\left(1-k_{A}\right) \in D(X)
$$

where k_{A} is the characteristic function of A.

Proof. Let $g=\sum_{n=1}^{\infty}\left(f^{n}\right) \cdot\left(1-k_{A}\right)$. If $x \in X$ and $0 \in f(x)<1$, then $\sum^{\infty} f(x)^{n}<\infty$ and $g(x)$ is real. If $x \in X$ and $f(x)=1$, then $\mathrm{n}=1$ $1-k_{A}(x)=0$ and $g(x)=0$. Thus $g<\infty$ on X. Also

$$
g(x)=\lim _{N \rightarrow \infty}\left(1-k_{A}(x)\right) \sum_{n=1}^{N} f(x)^{n}
$$

for each $x \in X$, and $f(x)=1$ if $k_{A}(x)=1$. It follows that

$$
g(x)=\lim _{N \rightarrow \infty}\left(1-f(x)^{N}\right) \sum_{n=1}^{N} f(x)^{n}
$$

and since each term on the right lies in $C(X), \quad g \in D(X)$.

We are now able to analyze the situation when F has exactly one heavy point. We assume realcompactness.

Lem 6. Let F be an nlf on $C(X)$ or $D(X)$ or $B(X)$ where X is realcompact. Suppose F has exactly one heavy point x_{0}. Then $F(f)=f\left(x_{0}\right)$ for any f in the domain of F.

Proof for $C(X)$. Let $f \in C(X)$. Then $f-f\left(x_{0}\right) l$ vanishes at all the heavy points of F and by Theorem $1,0=F\left(f-f\left(x_{0}\right) l\right)=F(f)-f\left(x_{0}\right)$.

Proof for $D(X)$. First let $f \in C(X)$ such that $0 \leqslant f \leqslant 1$ and $f\left(x_{0}\right)=1$. Let $A=f^{-1}(1)$. We claim that $F\left(k_{A}\right)=1$ where k_{A} is the characteristic function of A. Assume, to the contrary, that $F\left(\mathbf{k}_{\mathbf{A}}\right) \neq 1$. Then necessarily $F\left(k_{A}\right)=t<l$. By the preceding argument, $F\left(f^{n}\right)=$
$f\left(x_{0}\right)^{n}=1$ for all indices $n>0$ and $F\left(f^{n}-k_{A}\right)=1-t>0 . \quad$ Put

$$
g=\sum_{n=1}^{\infty}\left(f^{n}-k_{A}\right)
$$

By Lemma 5, $g \in D(X)$. But $g \geq \sum_{n=1}^{N}\left(f^{n}-k_{A}\right)$ for each N and

$$
F(g) \geq N(1-t)
$$

which is impossible. So $F\left(k_{A}\right)=1$.
Now let $h \in D(X)$ with $0 \leqslant h \leqslant l$, and let $h\left(x_{0}\right)>0$. Pick any $\varepsilon>0$, so small that $h\left(x_{0}\right)-\varepsilon>0$. The set $h^{-1}\left(h\left(x_{0}\right)-\varepsilon, \infty\right)$ is a class one F_{σ}-set containing x_{0}. Thus there is a zero-set A such that $A c$ $h^{-1}\left(h\left(x_{0}\right)-\varepsilon, \infty\right)$ and $x_{0} \in A$. Hence $h \geqslant\left(h\left(x_{0}\right)-\varepsilon\right) k_{A}$ and $F\left(k_{A}\right)=1$ by the preceding paragraph. It follows that $F(h) \geq h\left(x_{0}\right)-\varepsilon$. Since ε is arbitrary, we have $f(h) \geq h\left(x_{0}\right)$. On the other hand, if $h\left(x_{0}\right)$ were 0 , then we should have $F(h) \geqslant h\left(x_{0}\right)$ anyway. The same argument with $1-h$ in place of h shows that

$$
1-F(h)=F(1-h) \geqslant(1-h)\left(x_{0}\right)=1-h\left(x_{0}\right)
$$

and $\quad F(h) \leqslant h\left(x_{0}\right)$. Finally $F(h)=h\left(x_{0}\right)$.
It follows from the preceding paragraph that for any bounded function $h_{0} \in D(X), \quad F\left(h_{0}\right)=h_{0}\left(x_{0}\right)$. Now let q be any function in $D(X)$. By Lemma 1, there is a number $c>0$ such that $F((q \wedge c) v(-c))=F(q)$ and (by increasing c if necessary) $-c<q\left(x_{0}\right)<c$. It follows that

$$
F(q)=F((q \wedge c) v(-c))=((q \wedge c) v(-c))\left(x_{0}\right)=q\left(x_{0}\right)
$$

Proof for $E(X)$. Let m be the Baire measure on X found by setting $m(B)=1$ if $x_{0} \in B$ and $m(B)=0$ if $x_{0} \notin B$. Then

$$
\int f d m=f\left(x_{0}\right)
$$

for each $f \in E(X)$ because the set $f^{-1}\left(f\left(x_{0}\right)\right)$ has measure 1 and its complement has measure 0 . Moreover,

$$
f\left(x_{0}\right)=F(f)=\int f d m
$$

for $f \in C(X)$ by the proof for $C(X)$. It follows from Lemmas 3 and 4 that

$$
\int f d m=F(f)
$$

for all $f \in E(X)$.

Definition. We say that an nlf F is simple if there exist finitely many points $x_{1}, \ldots, x_{n} \in X$ and positive numbers a_{1}, \ldots, a_{n} such that $\sum_{j=1}^{n} a_{j}=1$ and $F(f)=\sum_{j=1}^{n} a_{j} f\left(x_{j}\right)$ for all f in the domain of F.

We are now able to characterize all nlfs on $D(X)$ and $E(X)$ when X is realcompact.

Theorem 2. Let F be an nlf on $D(X)$ or $E(X)$, where X is realcompact. Then F is simple.

Proof. By Theorem 1, F has at least one heavy point, and by Lemma 2, F has only finitely many heavy points, $x_{1}, \ldots, x_{n} \in X$. First we construct a "resolution of the identity" for X. We claim that there exist functions $g_{1}, \ldots, g_{n} \in C^{+}(X), \quad 0 \in g_{i} \leq 1$, for $i=1, \ldots, n$, such that $g_{i}=1$ on a nbhd. of x_{i} and $g_{i}=0$ on a nbhd. of x_{j} for $i \neq j$, and $g_{1}+\cdots+g_{n}=1$. Let $h_{1}, \ldots, h_{n} \in C^{+}(X)$ such that $h_{i}=1$ on a nbhd. of x_{i} for each $i, h_{i}=0$ on a nbhd. of x_{j} for $j \neq i$, and $0 \leqslant h_{i} \in l$. (Use complete regularity to choose $h \in C(X)$ with $h\left(x_{i}\right)=2, h\left(x_{j}\right)=-1$ for $j \neq i ;$ put $\left.h_{i}=(h v 0) \wedge 1.\right)$

If $n=1$, put $g_{1}=1$. In general $n>1$ and we suppose that g_{1}, \ldots, g_{v-1} have been constructed such that $g_{i}=1$ on a nbhd. of x_{i} and $g_{i}=0$ on a nbhd. of each $x_{j}(j \neq i), 0 \leqslant g_{i} \leqslant 1$, and $g_{1}+\cdots+g_{v-1}=1$. Then the v functions

$$
g_{1}\left(1-h_{v}\right), \ldots, g_{v-1}\left(1-h_{v}\right), h_{v}
$$

satisfy the same properties. By induction on v, we obtain the desired functions g_{1}, \ldots, g_{n}.

Each $F\left(g_{i}\right)>0$ because x_{i} is a heavy point of F. For each $j=1, \ldots, n$ put $F_{j}(f)=F\left(f g_{j}\right) / F\left(g_{j}\right)$ for all f in the domain of F. Then each F_{j} is an nlf with the same domain as F. If $f \in C^{+}(X)$ and $f(w)>0$, and w is a heavy point of F_{j}, then

$$
F(f) \geq F\left(f_{j}\right)=F\left(g_{j}\right) \cdot F_{j}(f)>0
$$

and w is a heavy point of F. Since the points $x_{i}(i \neq j)$ cannot be heavy points of F_{j} (note that $F_{j}(f)=0$ for $f \in C^{+}(X)$ such that f vanishes outside of the nbhd. of x_{i} where g_{j} vanishes) it follows that x_{j} is the only heavy point of F_{j}. By Lemma $6, F_{j}(f)=f\left(x_{j}\right)$ for all $j=1, \ldots, n$, and all f in the domain of F. Moreover, $F\left(f g_{j}\right)=$ $F\left(g_{j}\right) f\left(x_{j}\right)$ and

$$
F(f)=F\left(f g_{1}+f g_{2}+\cdots+f g_{n}\right)=F\left(g_{1}\right) f\left(x_{1}\right)+F\left(g_{2}\right) f\left(x_{2}\right)+\cdots+F\left(g_{n}\right) f\left(x_{n}\right) .
$$

Finally, we put $f=1$ and find that $F\left(g_{1}\right)+F\left(g_{2}\right)+\cdots+F\left(g_{n}\right)=1$.

At this juncture we observe that if F is continuous in the topology of pointwise convergence on $\mathrm{C}(\mathrm{X})$, then F has at most finitely many heavy points. This is much like Theorem 20 of [3].

Lemma 7. Let F be an nlf on $C(X)$ and let X be realcompact. Then a necessary and sufficient condition that F be continuous on $C(X)$ in the topology of pointwise convergence is that F have only a finite number of heavy points. Moreover, if F is continuous on $C(X)$, then F must be simple on $\mathrm{C}(\mathrm{X})$.

Proof. If F has only a finite number of heavy points x_{1}, \ldots, x_{n}, then by the same proof used for Theorem 2, it follows that F is simple. Clearly F is continuous.

Let F be continuous and suppose that there are infinitely many heavy points of F. Let $\left\{u_{1}, \ldots, u_{t}\right\}$ be a (finite) subset of X and let d be a
positive number such that if $f \in C(X)$ and $\left|f\left(u_{j}\right)\right|<d \quad(j=1, \ldots, t)$, then $|F(f)|<1$. Take any heavy point w that is different from all the u_{j} $(j=1, \ldots, t)$. Let $f \in C^{+}(X)$ such that $f\left(u_{j}\right)=0(j=1, \ldots, t)$, and $f(w)>0$. Then $F(f)>0$ and $F(n f)=n F(f)$ for all integers $n>0$. Also $n f\left(u_{j}\right)=0$ for all $j=1, \ldots, t$ and $F(n f)<1$. But for some $n, n F(f)=F(n f)>1$ which is impossible.

We see that $C(X)$ is dense in $D(X)$ and $E(X)$, and $D(X)$ is dense in $\mathrm{E}(\mathrm{X})$ in the topology of pointwise convergence. By Theorem 2, any nlf on $D(X)$ or $E(X)$ is continuous. But an nlf F on $C(X)$ need not be continuous. Indeed by Theorem 2 and Lemma 7 it follows that F can be extended to an nlf on $E(X)$ if and only if F is continuous on $C(X)$.

We turn to nonnegative linear functions from $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$.
(We assume all linear functions map the function 1 to the function 1.)
Theorem 3. Let F be a nonnegative linear function mapping $D\left(X_{1}\right)$ into $D\left(X_{2}\right)$ and let X_{1} be realcompact. Then F can be extended to a unique nonnegative linear function from $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$.

Proof. For each $y \in X_{2}$, let F_{y} be the nlf on $D\left(X_{1}\right)$ defined $F_{y}(f)=F(f)(y)$ for $f \in D\left(X_{1}\right)$. By Theorem 2, F_{y} is simple. So there exist finitely many points $X_{y j} \in X_{1}$ and positive numbers $a_{y j}$ such that $\Sigma_{j} a_{y j}=1$ and $F_{y}(f)=\Sigma_{j} a_{y j} f\left(x_{y j}\right)$ for $f \in D\left(X_{1}\right)$.

For each $g \in E\left(X_{1}\right)$, let $F(g)$ be the real function on X_{2} defined by $F(g)(y)=\sum_{j} a_{y j} g\left(x_{y j}\right)$. It remains only to prove that $F(g) \in E\left(X_{2}\right)$; the linearity and nonnegativity of F are evident. Let \geqslant be the family of all functions $g \in E\left(X_{1}\right)$ such that $F(g) \in E\left(X_{2}\right)$. Then $*$ contains all functions in $C\left(X_{1}\right)$ and indeed in $D\left(X_{1}\right)$. If ($\left.g_{i}\right)$ is a sequence of functions in converging pointwise to a function $g \in E\left(X_{1}\right)$, then $\left(F\left(g_{i}\right)\right)$ is a sequence of functions in $E\left(X_{2}\right)$ converging pointwise to $F(g)$. So $F(g) \in E\left(X_{2}\right)$ and $g \in$. Finally contains $C\left(X_{1}\right)$ and the pointwise
limit of any sequence of functions in must be in so so $\& E\left(X_{1}\right)$. Uniqueness follows from the fact that $D\left(X_{1}\right)$ is dense in $E\left(X_{1}\right)$ and F is plainly continuous on $E\left(X_{1}\right)$.

Theore 4. Let F be a nonnegative linear function mapping $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$ and let X_{1} be realcompact. Then F can be extended to a nonnegative linear function from $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$ if and only if F is continuous on $C\left(X_{1}\right)$. There is at most one such extension of F.

Proof. Let F be continuous on $C\left(X_{1}\right)$. For each $y \in X_{2}$, the nlf $f \mapsto F(f)(y)$ is continuous on $C\left(X_{1}\right)$. So $F(f)(y)$ is simple by Lemma 7, and has the form $\sum_{j} a_{j} f\left(x_{j}\right)$ (finitely many terms). The proof that F can be extended uniquely to $B\left(X_{1}\right)$ is just like the proof of Theorem 3, so we leave it.

Now let F_{0} be an extension of F to $E\left(X_{1}\right)$. Then for each $y \in X_{2}$, the nlf $f \mapsto F_{0}(f)(y)$ on $E\left(X_{1}\right)$ must be simple by Theorem 2. It follows that F_{0} is continuous on $E\left(X_{1}\right)$, and hence F is continuous on $C\left(X_{1}\right)$. This completes the proof.

We note also that any nonnegative linear function mapping $D\left(X_{1}\right)$ to $D\left(X_{2}\right)$, or $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$ must be continuous if X_{1} is realcompact. Now we draw a conclusion about Baire measures.

Theore 5. Let m be a Baire measure on a realcompact space X such that $m(X)=1$ and $C(X) \subset L_{1}(m)$ (respectively, $\left.D(X) \subset L_{1}(m)\right)$. Then there is a compact subset Y of X (respectively, finite subset Y of X) such that $m(A)=0$ for any Baire set $A \subset X \backslash Y$.

Proof. $F(f)=\int_{X} f d m$ is an nlf on $C\left(X_{1}\right)$. By Theorem 1 and its proof, we see that there is a compact set Y composed of all the heavy points of F and a Baire measure m_{1} on X such that

$$
F(f)=\int_{X} f d m=\int_{X} f d_{1}
$$

for all $f \in C\left(X_{1}\right)$, and $m_{1}(A)=0$ for Baire sets $A \subset X \backslash Y$. By Lemma 3,
$m=m_{1}$. Finally, if $D(X) \subset L_{1}(m)$, then F is an $n l f$ on $D\left(X_{1}\right)$, and Y is a finite set by Lemma 2.
3. Ring homomorphisms. In this Section we consider nlfs on $C(X), D(X)$ and $E(X)$ that are multiplicative; $F\left(f_{1} f_{2}\right)=F\left(f_{1}\right) F\left(f_{2}\right)$. Such F are obviously ring homomorphisms. Observe that a ring homomorphism F is nonnegative and cannot have more than one heavy point. For if $x_{1} \neq x_{2}$, choose functions $f_{1}, f_{2} \in C^{+}(X)$ such that $f_{1}\left(x_{1}\right)>0, f_{2}\left(x_{2}\right)>0, f_{1} f_{2}=0$, and note that

$$
0=F\left(f_{1} f_{2}\right)=F\left(f_{1}\right) F\left(f_{2}\right)
$$

then one of the factors on the right must vanish. So if X is a realcompact space, there must be an $x \in X$ such that $F(f)=f(x)$ by Theorem 1 and Lemma 6. (See also [1, 10.5(c)] for $C(X)$.

Now let X_{2} be a completely regular space and X_{1} a realcompact space and let F be a ring homomorphism from $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$, or $D\left(X_{1}\right)$ to $D\left(X_{2}\right)$, or $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$. For each $y \in X_{2}$, there is a point $p(y) \in X_{1}$ such that the nlf $f \mapsto F(f)(y)$ satisfies $F(f)(y)=f(p(y))$ for all f in the domain of F. Indeed $p(y)$ is unique because $C\left(X_{1}\right)$ separates points in X_{1}. Moreover,

$$
\begin{equation*}
p^{-1}\left(f^{-1}(0, \infty)\right)=(f(p))^{-1}(0, \infty)=(F(f))^{-1}(0, \infty) . \tag{*}
\end{equation*}
$$

So if F maps $E\left(X_{1}\right)$ into $E\left(X_{2}\right)$ and A is a Baire set in X_{1}, let $f \in E\left(X_{1}\right)$ such that $A=f^{-1}(0, \infty)$. Then $p^{-1}(A)$ is a Baire set in X_{2} by (*). If F maps $D\left(X_{1}\right)$ into $D\left(X_{2}\right)$ and A is a class one F_{σ}-set in X_{1}, let $f \in D\left(X_{1}\right)$ such that $A=f^{-1}(0, \infty)$. Then $p^{-1}(A)$ is a class one F_{σ}-set in X_{2}. Finally, if F maps $C\left(X_{1}\right)$ into $C\left(X_{2}\right)$ and A is a cozero-set in X_{1}, it follows similarly that $p^{-1}(A)$ is a cozero-set in X_{2}; but the cozero-sets in a completely regular space form a base for the topology, so p is in fact continuous.

Conversely, if p maps X_{2} to X_{1} such that $p^{-1}(A)$ is a Baire set in X_{2} whenever A is a Baire set in X_{1}, then the mapping $f \rightarrow f(p(y))$ ($y \in X_{2}$) is a ring homomorphism of $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$. If p maps X_{2} to
X_{1} such that $p^{-1}(A)$ is a class one $F_{\sigma^{-s e t}}$ in X_{2} whenever A is a class one $F_{\sigma}-8 e t$ in X_{1}, then the mapping $f \mapsto f(p(y))\left(y \in X_{2}\right)$ is a ring homomorphism of $D\left(X_{1}\right)$ to $D\left(X_{2}\right)$. (See [2], Theorem 6, p. 143; the arguments there are for the real line, but they also work for general completely regular spaces.) Finally, if p is continuous, then the mapping $f \mapsto f(p(y))\left(y \in X_{2}\right)$ is a ring homomorphism of $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$.

To sum up:

Theorem 6. Let X_{2} be a completely regular space and X_{1} be a realcompact space. Let F be a ring homomorphism of $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$ (respectively, $D\left(X_{1}\right)$ to $D\left(X_{2}\right), E\left(X_{1}\right)$ to $E\left(X_{2}\right)$). Then there is a function p from X_{2} to X_{1} such that $F(f)(y)=f(p(y))$ for all $y \in X_{2}$ and such that $p^{-1}(A)$ is an open set (respectively, class one $F_{\sigma}-8 e t$, Baire set) in X_{2} if A is an open set (respectively, class one $F_{\sigma-s e t, ~ B a i r e ~ s e t) ~ i n ~} X_{1}$. Conversely, if p is such a function from X_{2} to X_{1}, then the mapping F defined by $F(f)(y)=f(p(y))$ for all $y \in X_{2}$, is such a ring homomorphism. (See also $[1,10.6]$ for $C\left(X_{i}\right)$.)

In particular, let X_{1} and X_{2} be realcompact. Then F in Theorem 6 is an isomorphism of $C\left(X_{1}\right)$ onto $C\left(X_{2}\right)$ (respectively, $D\left(X_{1}\right)$ onto $D\left(X_{2}\right)$, $E\left(X_{1}\right)$ onto $E\left(X_{2}\right)$) if and only if p is a one-to-one mapping of X_{2} onto X_{1} such that p and p^{-1} map open sets to open sets (respectively, class one F_{σ}-sets to class one F_{σ}-sets, Baire sets to Baire sets). In this sense, for realcompact X the ring $C(X)$ identifies the open and closed sets in X, the ring $D(X)$ identifies the class one $F_{\sigma-s e t s}$ and $G_{\delta-s e t s}$ in X, and the ring $\mathrm{E}(\mathrm{X})$ identifies the Baire sets in X. The smaller rings contain more information than the larger rings in the sense that the smaller rings identify the more restricted types of sets in X.

On the other hand, an isomorphism between $E\left(X_{1}\right)$ and $E\left(X_{2}\right)$ or $D\left(X_{1}\right)$ and $D\left(X_{2}\right)$, need not map $C\left(X_{1}\right)$ onto $C\left(X_{2}\right)$. Let X_{1} be the integers, X_{2} the rational numbers, and let p be any bijection of X_{2} onto X_{1}.

We can now use the topology of pointwise convergence on $E(X)$ to determine when ring homomorphisms of $C(X)$ or $D(X)$ or $E(X)$ are isomorphisms.

Theorem 7. Let X_{1} and X_{2} be realcompact spaces, and let F be a ring homomorphism from $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$ (respectively, $D\left(X_{1}\right)$ to $D\left(X_{2}\right)$, $E\left(X_{1}\right)$ to $E\left(X_{2}\right)$) such that the functions in the image of F separate points in X_{2}. Then the following are equivalent.
(1) F is a homeomorphism of $C\left(X_{1}\right)$ onto $C\left(X_{2}\right)$ (respectively, $D\left(X_{1}\right)$ onto $D\left(X_{2}\right), E\left(X_{1}\right)$ onto $\left.E\left(X_{2}\right)\right)$,
(2) F maps closed subsets of $C\left(X_{1}\right)$ to closed subsets of $C\left(X_{2}\right)$ (respectively, of $D\left(X_{1}\right)$ to closed subsets of $D\left(X_{2}\right)$, of $E\left(X_{1}\right)$ to closed subsets of $E\left(X_{2}\right)$),
(3) F is a ring isomorphism of $C\left(X_{1}\right)$ onto $C\left(X_{2}\right)$ (respectively, $D\left(X_{1}\right)$ onto $D\left(X_{2}\right), E\left(X_{1}\right)$ onto $\left.E\left(X_{2}\right)\right)$.

Proof. We will give the proof only for $C(X)$. The proofs for $D(X)$ and $E(X)$ are analogous.
(1) \Rightarrow (2). Clear.
$(2) \Rightarrow$ (3). We must prove that F is a bijective mapping. Suppose, to the contrary, there is a nonzero $f \in C^{+}(X)$ such that $F(f)=0$ in $C\left(X_{2}\right)$. For each integer n, let $f_{n}=n f+\left(n^{-1}\right) 1$. Then $F\left(f_{n}\right)=n^{-1} 1 \in C\left(X_{2}\right)$ and the set $F\left\{f_{n}\right\}$ is not a closed subset of $C\left(X_{2}\right)$. But for some $x \in X_{1}$, $f(x)>0$ and $f_{n}(x) \rightarrow \infty$ and this implies that the set $\left\{f_{n}\right\}$ has no accumulation point in $C\left(X_{1}\right)$. Thus $\left\{f_{n}\right\}$ is a closed subset of $C\left(X_{1}\right)$ that does not map to a closed subset of $C\left(X_{2}\right)$. This contradiction proves that F is one-to-one.

Now suppose $y_{1}, \ldots, y_{j} \in X_{2}$. Let p be the function in Theorem 6. The points $p\left(y_{1}\right), \ldots, p\left(y_{j}\right)$ are distinct because $F\left(C\left(X_{1}\right)\right)$ separates points in X_{2}. If a_{1}, \ldots, a_{j} are any real numbers, we can use complete regularity to find an $f \in C\left(X_{1}\right)$ such that $f\left(p\left(y_{i}\right)\right)=a_{i}$ for $i=1, \ldots, j$. Then $F(f)\left(y_{i}\right)=a_{i}$ for $i=1, \ldots, j$. Thus $F\left(C\left(X_{1}\right)\right)$ is dense in $C\left(X_{2}\right)$. But $F\left(C\left(X_{1}\right)\right)$ is also closed in $C\left(X_{2}\right)$ by (2), so $F\left(C\left(X_{1}\right)\right)=C\left(X_{2}\right)$. This proves (3).
$(3) \Rightarrow(1) . \quad B y$ Theorem 6 (and the discussion following it), there exists a one-to-one function p mapping X_{2} onto X_{1} such that $F(f)(y)=f(p(y))$ for $y \in X_{2}$ and $f \in C\left(X_{1}\right)$. Thus if U is an open subset of the real line, for $y \in X_{2}$,

$$
F\left\{f \in C\left(X_{1}\right): f(p(y)) \in U\right\}=\left\{g \in C\left(X_{2}\right): g(y) \in U\right\}
$$

So F and F^{-1} map subbasic open sets to subbasic open sets. Since F is a bijective mapping onto $\mathrm{C}\left(\mathrm{X}_{2}\right)$, if follows that F and F^{-1} map open sets to open sets. This proves (1).

In Theorem 6 we cannot expect $p\left(X_{2}\right)=X_{1}$ even when F is one-to-one. For example, let X_{1} be the compact interval [0,1], let X_{2} be the open interval $(0,1)$, and let p be the inclusion mapping of X_{2} into X_{1}. Then F is one-to-one, but $p\left(X_{2}\right) \neq X_{1}$. We offer

Theorem 8. Let F be a one-to-one linear mapping from $C\left(X_{1}\right)$ to $\mathrm{C}\left(\mathrm{X}_{2}\right)$ that maps $\mathrm{C}^{+}\left(\mathrm{X}_{1}\right)$ into $\mathrm{C}^{+}\left(\mathrm{X}_{2}\right)$ and let X_{1} and X_{2} be realcompact. Then a sufficient condition that p of Theorem 6 satisfy $p\left(X_{2}\right)=X_{1}$ is that for each $s \in S \backslash X_{2}$, where S is the Stone-Čech compactification of X_{2}, there is a $g \in C\left(X_{1}\right)$ with

$$
\lim _{x \rightarrow \mathrm{~s}}(\mathrm{~F}(\mathrm{~g}))(\mathrm{x})=\infty_{0}
$$

Proof. Assume this condition. Any nonempty cozero-set U in X_{1} meets $p\left(X_{2}\right)$; for if $\left\{x \in X_{1}: f(x) \neq 0\right\} n p\left(X_{2}\right)=\varnothing$, then $F(f)=0=F(0)$, contrary to the hypothesis that F is one-to-one.

Fix $w \in X_{1}$. We will prove that $w \in p\left(X_{2}\right)$. Suppose, to the contrary, $w \& p\left(X_{2}\right)$. Let ε denote the family of all sets of the form $U n p\left(X_{2}\right)$ where U is a cozero-set in X_{1}. It follows that every set in ε is nonvoid and the intersection of any two sets in ε is also in ε. The family of sets $\left\{p^{-1}(A): A \in \varepsilon\right\}$ has the same property. So there is a point $s \in S$ such that s is in the closure of $p^{-1}(A)$ for each $A \in \varepsilon$.

We claim that $s \notin X_{2}$. For suppose $s \in X_{2}$. Then $p(s) \neq w$. Choose an $f \in C\left(X_{1}\right)$ such that $f(w)=1$ and $f(p(s))=0$. Put $A=f^{-1}\left(\xi_{2}, 2\right) \cap p\left(X_{2}\right)$. Then $A \in E$ and this set is disjoint from the open set $f^{-1}\left(-1, h_{2}\right)$. Also $p(s) \in f^{-1}\left(-1, y_{2}\right)$ and $s \in p^{-1}\left(f^{-1}\left(-1, y_{2}\right)\right)$. But p is continuous, so $\mathrm{p}^{-1}\left(\mathrm{f}^{-1}\left(-1, k_{2}\right)\right)$ is a nbhd. of s that is disjoint from $\mathrm{p}^{-1}(\mathrm{~A})$. And s is in the closure of $\mathrm{p}^{-1}(\mathrm{~A})$. This contradiction proves that $\mathrm{s} \in \mathrm{S} \backslash \mathrm{X}_{2}$.

By hypothesis there is a $g \in C\left(X_{1}\right)$ such that

$$
\lim _{x \rightarrow \mathrm{~s}}(\mathrm{~F}(\mathrm{~g}))(\mathrm{x})=\infty_{0}
$$

Let r be any number greater than $g(w)$. But $B=g^{-1}(-\infty, r) \cap p\left(X_{2}\right)$. Then $B \in \mathcal{E}$ and $p^{-1}(B)$ is disjoint from the $\operatorname{set}(F(g))^{-1}(r, \infty)=p^{-1}\left(g^{-1}(r, \infty)\right)$. In S, $(F(g))^{-1}(r, \infty)$ is a nbhd. of s that is disjoint from $p^{-1}(B)$, and this is impossible.

The condition given in Theorem 8 is sufficient to make $p\left(X_{2}\right)=X_{1}$, but it is not necessary. Let X_{1} be the compact interval $[0,1]$ and let X_{2} be the discrete space [0,1]. Let p be the identity mapping on X_{2}. Then $p\left(X_{2}\right)=X_{1}$, but any function in $F\left(C\left(X_{1}\right)\right)$ is bounded.

Abstract

4. Metrizable spaces. Let F be an nlf on $C(X)$ and let X be realcompact. Then there is a compact subset Y of X such that $f \in C(X)$ and $f(Y)=0$ imply that $F(f)=0$ (Theorem 1). Now let $\{U\}$ be an open covering of X. There exist finitely many sets U_{1}, \ldots, U_{n} in the covering such that $Y \subset U_{1} \cup \cdots \cup U_{n}$. So $f \in C(X)$ and $f\left(U_{1} \cup \cdots u U_{n}\right)=0$ imply that $F(f)=0$. This inspires the following definition.

Definition. Let F be an nlf on $C(X)$ and let X be completely regular and Hausdorff. We say that F is regular if for each open covering $\{U\}$ of X, there exist finitely many sets U_{1}, \ldots, U_{n} in $\{U\}$ such that $f \in C(X)$ and $f\left(U_{1} \cup \cdots \cup U_{n}\right)=0$ imply $F(f)=0$.

Thus every nlf on $C(X)$ is regular if X is realcompact. We will show that the converse statement is true for metrizable spaces: if every nlf on $C(X)$ is regular and if X is metrizable, then X is realcompact.

Theorem 9. Let F be a regular nlf on $C(X)$ and let X be metrizable. Then F has at least one heavy point.

Proof. Let ρ be an appropriate metric on X. Assume, to the contrary, that F has no heavy point. The family of open balls $S(x, 1)(X \in X)$ covers X. Let $h \in C^{+}(X)$ such that $0 \leqslant h \leqslant 1$ and $F(h)>0$. For example, 1 is such a function. Since f is regular, there are finitely many
points $x_{1}, \ldots, x_{n} \in X$ such that any $g \in C(X)$ coinciding with h on $S\left(x_{1}, 1\right) \cup \cdots \cup S\left(x_{n}, 1\right)$ must satisfy

$$
|F(g)-F(h)|=|F(g-h)|=0 \quad \text { and } \quad F(g)=F(h)>0 .
$$

For each $j=1, \ldots, n$, let $g_{j} \in C^{+}(X)$ such that $0 \leqslant g_{j} \leqslant 1, g_{j}=1$ on $S\left(x_{j}, 1\right)$ and $g_{j}=0$ outside of $S\left(x_{j}, 2\right)$. Then $h\left(g_{1} \vee \cdots \vee g_{n}\right)$ coincides with h on $S\left(x_{1}, 1\right) \cup \cdots \cup S\left(x_{n}, 1\right)$, and it follows that

$$
F\left(h \cdot\left(g_{1} \vee \cdots \vee g_{n}\right)\right)=F(h)>0
$$

and

$$
F\left(h g_{1}\right)+\cdots+F\left(h g_{n}\right) \geqslant F\left(h \cdot\left(g_{1} \vee \cdots v g_{n}\right)\right)>0
$$

For some $j, \quad F\left(h_{g}\right)>0$. For this j, set $h_{1}=g_{j}$ and $u_{1}=x_{j}$. Then $F\left(h h_{1}\right)>0,0 \leqslant h_{1} \leqslant 1, h_{1}=1$ on $S\left(u_{1}, 1\right)$ and h_{1} vanishes outside of $S\left(u_{1}, 2\right)$.

By argument in the preceding paragraph, with $h h_{1}$ in place of h, there is a function $h_{2} \in C^{+}(X)$ such that $F\left(h h_{1} h_{2}\right)>0,0 \leqslant h_{2} \leqslant 1$, and a point $u_{2} \in X$ such that $h_{2}=1$ on $S\left(u_{2}, \frac{1}{2}\right)$ and h_{2} vanishes outside of $S\left(u_{2}, 1\right)$. Likewise there is an $h_{3} \in C^{+}(X)$ such that $F\left(h h_{1} h_{2} h_{3}\right)>0$, $0 \leqslant h_{3} \leqslant 1$, and a point $u_{3} \in X$ such that $h_{3}=1$ on $S\left(u_{3}, k\right)$ and h_{3} vanishes outside of $S\left(u_{3}, k_{1}\right)$.

In general, there is an $h_{j} \in C^{+}(X)$ such that $F\left(h h_{1} \cdots h_{j}\right)>0$, $0 \leqslant h_{j} \leqslant 1$, and a point $u_{j} \in X$ such that $h_{j}=1$ on $S\left(u_{j}, 2^{1-j}\right)$ and h_{j} vanishes outside of $S\left(u_{j}, 2^{2-j}\right)$. Since $h h_{1} \cdots h_{j}$ is positive at some point t,

$$
\rho\left(u_{j-1}, u_{j}\right) \leqslant \rho\left(u_{j-1}, t\right)+\rho\left(u_{j}, t\right)<2^{3-j}+2^{2-j}<2^{4-j} .
$$

It follows that the sequence of points $\left(u_{j}\right)$ is a Cauchy sequence in X.
We claim that the Cauchy sequence $\left(u_{j}\right)$ does not converge in X. Suppose, to the contrary, $\left(u_{j}\right)$ converges to $u \in X$. Then u is a light point of F, and there is a $p \in C^{+}(X)$ such that $p(u)>0$ and $F(p)=0$. Let $c>0$ be a number so large that $c p(u)>1$. Say $c p>1$ on the open nbhd. v of u. For large enough $j, ~ S\left(u_{j}, 2^{2-j}\right) \subset v$ and it follows that $0 \leqslant h j<c p$. But $F(c p)=c F(p)=0$, so $F\left(h_{j}\right)=0$. Finally, $0 \leqslant h h_{1} \cdots h_{j} \leqslant h_{j}$ and hence $F\left(h h_{1} \cdots h_{j}\right)=0$, which is impossible. Hence
(u_{j}) does not converge in X.
Any $x \in X$ has a nbhd. U such that all but finitely many h_{j} vanish on U. Put $k_{j}=h h_{1} \cdots h_{j}$ for each $j \geq 1$. Then $F\left(k_{j}\right)>0$ and
$\sum_{j}^{\infty} k_{j} / F\left(k_{j}\right)$ sums to a function $k \in C^{+}(X)$. For each integer $N>0$, $\mathrm{j}=1$

$$
\mathbf{k} \gtrsim \sum_{j=1}^{N} \mathbf{k}_{\mathrm{j}} / \mathrm{F}\left(\mathbf{k}_{\mathrm{j}}\right)
$$

and

$$
F(k) \geq F\left(\sum_{j=1}^{N} k_{j} / F\left(k_{j}\right)\right)=N,
$$

which is impossible.

As we noted in Section 3, a ring homomorphism F from $C(X)$ to the real numbers can have at most one heavy point. We can draw some conclusions about ring homomorphisms on $C(X), D(X)$ and $E(X)$ when X is metrizable.

Theorem 10. Let X be a metrizable space and let F be a ring homomorphism of $C(X)$ or $D(X)$ or $E(X)$ such that the restriction of F to $C(X)$ is regular. Then there is a point $x_{0} \in X$ such that $F(f)=f\left(x_{0}\right)$ for all f in the domain of F.

Proof for $C(X)$. Let X_{0} be the unique heavy point of F. Choose any function $f \in C(X)$ such that x_{0} is not in the closure of the set $\{x:$ $f(x) \neq 0$. Let $g \in C^{+}(X)$ such that $g\left(x_{0}\right)>0$ and $f g=0$. Then

$$
0=F(f g)=F(f) F(g),
$$

and since x_{0} is a heavy point of $F, F(g)>0$ and $F(f)=0$. But if $f_{0} \in C^{+}(X)$ and $f_{0}\left(x_{0}\right)=0$, then for any number $\varepsilon>0$ we have

$$
F\left(\left(f_{0} \vee \varepsilon\right)-\varepsilon 1\right)=0=F\left(f_{0} \vee \varepsilon\right)-\varepsilon .
$$

(Here put $f=\left(f_{0} \vee \varepsilon\right)-\varepsilon 1$ in the preceding argument.) Hence

$$
0 \leqslant F\left(f_{0}\right)=F\left(\left(f_{0} \vee \varepsilon\right)-\varepsilon 1\right)+F\left(\left(f_{0} \wedge \varepsilon\right)\right)=F\left(\left(f_{0} \wedge \varepsilon\right)\right) \leqslant \varepsilon .
$$

Since ε is arbitrary, $F\left(f_{0}\right)=0$.
Thus if $h \in C(X)$ and $h\left(x_{0}\right)=0$, we obtain $F(h \vee 0)=F(h \wedge 0)=0$, and $F(h)=0$ also. For any $q \in C(X), q-\left(q\left(x_{0}\right)\right) 1$ vanishes at x_{0} and

$$
F(q)-q\left(x_{0}\right)=F\left(q-\left(q\left(x_{0}\right) 1\right)=0\right.
$$

Proof for $D(X)$. Let g denote the characteristic function of the singleton set $\left\{x_{0}\right\}$. Then $g \in D(X)$, and $0 \leqslant F(g) \leqslant F(1)=1$. We claim that $F(g)=1$. Suppose, to the contrary, that $F(g)<1$. Let $f \in C^{+}(X)$ such that $0 \leqslant f \leqslant 1$, and $f=1$ at x_{0} and at no other point. Then $F(f)=1$ and $F(f-g)=1-F(g)>0$. By Lemma 5,

$$
\sum_{n=1}^{\infty}\left(f^{n-g}\right) \in D(X)
$$

For any index $N \geq 1, \quad \sum_{n=1}^{\infty}\left(f^{n}-g\right) \geq \sum_{n=1}^{N}\left(f^{n}-g\right) \quad$ and $F\left(\sum_{n=1}^{\infty}\left(f^{n}-g\right)\right) \geq F\left(\sum_{n=1}^{N}\left(f^{n}-g\right)\right)=\sum_{n=1}^{N}(1-F(g))=N(1-F(g)), \quad$ which is
impossible. This proves $F(g)=1$.

Take any $h \in D(X)$ satisfying $h\left(x_{0}\right)=0$. Then

$$
F(h)=F(h \cdot(1-g))=F(h)(1-F(g))=0 .
$$

So for $q \in D(X)$,

$$
0=F\left(q-\left(q\left(x_{0}\right)\right) I\right)=F(q)-q\left(x_{0}\right)
$$

The proof for $E(X)$ is analogous to the proof for $D(X)$, so we leave it.

It follows from Theorems 9 and 10 that if every ring homomorphism F from $C(X)$ to the reals is regular, and if X is metrizable, then X is realcompact. We now have a number of conditions equivalent to realcompactness for metrizable spaces.

Theorem 11. Let X be a metrizable space. Then the following are equivalent.
(1) X is realcompact.
(2) Every nlf on $\mathrm{C}(\mathrm{X})$ is regular.
(3) Every ring homomorphism from $\mathrm{C}(\mathrm{X})$ to the reals is regular.
(4) Every ring homomorphism from $C(X)$ to the reals has a heavy point.

Proof. (1) \Rightarrow (2) follows from Theorem 1 and remarks at the beginning of this Section. (2) \Rightarrow (3) is clear. (3) \Rightarrow (4) follows from Theorem 9. $(4) \Rightarrow(1)$ is just like the proof of Theorem 10 in the case $C(X)$, so we leave it.

We do not know if there exists a metrizable space that is not realcompact, but we close with this observation.

Theorem 12. Let (X, ρ) be a metric space that is not realcompact. Then there is a ring homomorphism F from $C(X)$ to the reals such that for some c > 0 , there do not exist finitely many open balls B_{1}, \ldots, B_{n} in X, each of radius c, for which $f \in C(X)$ and $f\left(B_{1} \cup \cdots \cup B_{n}\right)=0$ imply $F(f)=0$.

Proof. By Theorem 11, there is a ring homomorphism F from $C(X)$ to the reals that has no heavy point. The condition must hold for F, for otherwise the argument in the proof of Theorem 9 would go through and F would have a heavy point. We leave the rest.

References

1. L. Gillman and M. Jerison, Rings of Continuous Functions, van Nostrand, 1960.
2. C. Goffman, Real Functions, Holt, Rhinehart \& Winston, 1964.
3. E. Hewitt, Linear Functionals on Spaces of Continuous Functions, Fund. Math. 37 (1950), pp. 161-189.
4. S. Kakutani, Concrete Representations of Abstract M-spaces, Annals of Math. 42 (1941), pp. 994-1024.
