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 RINGS OF BAIRE FUNCTIONS ON REALCOMPACT SPACES

 1» Introduction. Let C(X) denote the ring of continuous real valued

 functions on a completely regular Hausdorff space X, let E(X) denote the

 ring of Baire functions on X, and let D(X) denote the ring of Baire class

 one functions on X. (Any function in D(X) is the pointwise limit of a

 sequence of functions in C(X).) Then C(X) c D(X) <= E(X). We let C+(X)

 (respectively D+(X), E+(X)) denote the set of nonnegative functions in C(X)

 (respectively D(X), E(X)). By a nonnegative linear functional (written nlf)

 F on C(X) or D(X) or E(X), we mean a real valued linear function that

 takes nonnegative functions in its domain to nonnegative numbers and takes

 the function 1 to the number 1. (In our notation, functions in E(X) will

 be lower case, the identity in the ring E(X) is denoted 1, and mappings

 defined on E(X), D(X) and C(X) are upper case. If f, g € E(X), then

 f v g denotes the maximum of f and g, and f a g denotes the minimum

 of f and g.)

 The sets C(X), D(X) and E(X) have some different properties. For

 example, E(X) is closed under pointwise convergence of sequences, but D(X)

 and C(X) tire not in general. On the other hand, they are all closed under

 uniform convergence ([2], p. 138). E(X) contains the characteristic function

 of any Baire set, but C(X) and D(X) do not in general. D(X) and E(X)

 contain the characteristic function of any zero-set ([1], pp. 14-15), but C(X)

 does not in general. (Note that if f € C(X), then limn.*D ( 1- ( | f | a1 ) )n lies
 in D(X) and E(X).)

 We are particularly interested in spaces that are realcompact [1]. The

 following result is well-known (see [3], Theorems 17 and 18).
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 Theorem 1. Let F be an nlf on C(X) where X is realcompact. Then

 there exists a compact subset Y of X such that any f e C(X) with

 f(Y) = 0 satisfies F{f) = 0, and such that any f e C+(X) with f(Y) * 0,

 satisfies F(f) > 0. Moreover, there is a Baire measure m on X such that

 for all g e C(X),

 f g dm = F(g) .
 JX

 We will give a different proof of Theorem 1 and prove analogues for D(X)

 and E(X) in which Y must be a finite set. We will find that every nlf on

 D(X) or E(X) is continuous in the topology of pointwise convergence, any

 nlf on D(X) extends to an nlf on E(X), and an nlf on C(X) extends to an

 nlf on E(X) if and only if it is continuous in the topology of pointwise

 convergence (Theorems 3 and 4).

 Just as any ring isomorphism of C(Xt) onto C(Xa) (X¿ realcompact) is
 implemented by a homeomorphism of Xa onto X, , a ring isomorphism of

 D(X|) onto D(Xj) or E(Xi) onto E(Xa) is implemented by a bijective

 mapping of X2 onto Xt. In the E(Xļ) case, under the bijection, Baire sets

 correspond to Baire sets, and in the D(Xj) case, Baire class one F^-sets

 correspond to Baire class one F^- sets. (By a Baire class one Fo-set we

 mean the union of countably many zero-sets. By a Baire class one G¿-set

 we mean the complement of a Baire class one Fo- set.) This is contained in

 Theorem 6.

 We use the topology of pointwise convergence to determine when a ring

 homomorphism of C(Xi) to C(Xa), or D(Xa) to D(Xa), or E(Xt) to

 E(Xa) is an isomorphism onto the second ring (Xi realcompact). The

 necessary and sufficient condition is that closed subsets of the first ring map

 to closed subsets of the second ring (Theorem 7).

 We do not determine if every metrizable space is realcompact. But we do

 provide another necessary and sufficient condition for a metrizable space to

 be realcompact (Theorem 11).

 2. Realcompact spaces. Let F be a nonnegative linear functional on

 C(X) where X is a realcompact space. Embed X in its Stone-Cech
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 compactification S. Any function f e C+(X) extends to a unique continuous

 nonnegative extended real valued function on S; to save notation, call the

 extension f also.

 Now let f e C+(X) such that F(f) = 0. Then A = f-MO) c S is

 nonvoid; for otherwise f is positive and bounded away from 0 on the

 compact space S, and for some positive number c, f > cl, and

 F(f) i F(cl) = cF(f) = c > 0.

 Let O be the family of all compact subsets of S of the form f-1(0) where

 f € C+(X) and F(f) = 0. For example S e a. Then every set in Of is

 nonvoid, and Q is closed under finite intersections. (The second statement

 follows from

 F(f,+fa) = F(f J ) + F(fa) =0 and (fł+fa)"1(0) = f»"1 (0) n fa"*(0).)

 Then Y = fi a is a nonvoid compact subset of S. Moreover, if g € C+(X)

 and g is positive at some point in Y, then F(g) > 0. We make the

 following observations about Y.

 1. Y c X.

 Proof. Suppose, to the contrary, y € Y ' X. Since X is realcompact,

 there is an f e C+(X) such that f(y) = <». For each positive integer n,

 put gn = (fvn) - nl. Then gn e C+(X) and gn(y) = ® f°r n«
 CO

 Moreover, F(gn) > 0 and g = I Än/F(Än) € C+(X). (Note that if
 n=i

 X € X and f(x) < k, then gn vanishes on the nbhd. f-1[0,k) of x
 N

 for n > k. ) Finally, g» I gn/F(gn) and
 n=i

 N

 F(g) * F( I gn/F(gn)) = N
 n=i

 for any integer N > 0. But this is impossible, and assertion 1 is proved.
 □
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 Definition. We call each point in Y a heavy point of F. All other

 points in X we call light points of F.

 2. If g c C+(X) and g-1(0,®) is separated from Y, then F(g) = 0.

 Proof. Suppose, to the contrary, that F(g) > 0. For each f e C(X),

 define F0(f) = F(fg)/F(g). Then clearly F0 is a nonnegative linear

 functional on C(X). By assertion 1, F0 has a heavy point w e X.

 Let h € C+(X) such that h(w) > 0. Let h0 c C+(X) such that

 h0(w) >0, h0 * h, and g is bounded on the set ho-I(0»a')« Say g < c on

 this set where c is constant. Then

 0 < F0(h0) = F(h0g)/F(g) * F(ch0)/F(g) = cF(h0)/F(g)

 and 0 < F(h0) ¿ F(h). It follows that w is also a heavy point of F and

 w € Y. But g_1(0,°>) is separated from Y, so there is an f e C+(X) with

 f(w) > 0 and fg = 0. So F0(f) = F(fg)/F(g) = 0 and w is a light point of

 F0. This contradiction proves assertion 2. □

 3. If g e C(X) and g vanishes on Y, then F(g) = 0.

 Proof. It suffices to let g e C+(X) because g = (gvO) + (gAÛ). Take

 any e > 0. Then ((gvc) - cl)-1(0,®) is separated from Y and by

 assertion 2,

 0 = F((gvc) - el) = F(gve) - e * F(g) - e.

 Thus F(g) < c, and because c is arbitrary, F(g) = 0. This proves

 assertion 3. □

 4. Thus if f i = f2 on Y, and fi,fa « C(X), we have Fi^) = F(fa).

 Moreover, Y is a compact and closed subset of S, and by the Tietze

 extension theorem, any function in C(Y) extends to bounded functions in

 C(S) and C(X). It follows that any zero-set with respect to Y is the

 intersection of Y with a zero-set with respect to X. Hence any Baire set

 with respect to Y is the intersection of Y with a Baire set with
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 respect to X. Conversely, any such intersection with Y is a Baire set with

 respect to Y.

 Now F defines an obvious nonnegative linear functional Fi on C(Y).

 To wit,

 F(h) = Fj (hj )

 where ht is the restriction of h to Y. By [4] , there is a Baire measure

 mi on Y such that Fi(hi) = I hj dmt for hi c C(Y). But mt defines an
 Y

 obvious Baire measure m on X. To wit, m(B) = m, (BnY) for all Baire sets

 B in X. It follows from the definition of the integral that

 F(h) = Fi (hi) = f hi dmi = f h dm,
 Y X

 for all h e C(X). D

 This discussion provides an alternative proof to Theorem 1. Compare with

 Theorems 17 and 18 of [3] .

 We next observe that for nlfs F on C(X), D(X) or E(X), functions in

 the domain of F behave as if they are truncated.

 lemta 1. Let F be an nlf on C(X) (respectively, D(X), E(X)) and

 let f lie in the domain of F. Then there is a positive number c such

 that

 F((fvc) - cl) = F((fA(-c)) + cl) = 0 and F((fAc) v (-c)) = F(f).

 Proof. Let rn = tan(*w - 2~n). Then rn *• ®. Since f = (fvO) + (íaO),
 it suffices to let f be nonnegative. Suppose that F((fvc) - cl) > 0 for

 all numbers c. For integers n > 0, put f„ = (fvrn) - rnl. Put
 «

 h = f + I fn/F(fn). It follows that h is finite on X. Moreover,
 n=i

 h c C(X) if f c C(X), and h € E(X) if f € E(X). Thus in cases C(X)

 N N

 and E(X) we have h ^ ï f"n/F(fn) F(h) * F( I fn/F(fn)) = N for
 n= i n= i
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 all N, which is impossible. This proves Lemma 1 for C(X) and E(X).

 Likewise, to prove Lemma 1 for D(X), it suffices to prove that

 h € D(X) if f € D(X). For each positive integer N put

 N

 gN = arc tan (f + I fn/F(fn)).
 n=i

 Then arc tan h = lim^^ g^ pointwise on X. At each x € X where

 gN(x) > gN_ļ(x) and N > 1, we have fN(x) > 0, f(x) > rN,

 arc tan f(x) > In - 2~N, > gN(x) > 8N_-ļ(x) * %n - 2~N, and

 gN(x) - gN_j(x) < 2~N. So |gN - gN1| * 2_N. Each gN € D(X), so

 let pNj € C(X) SUch that 0 * PNj ú 2_N 81,0 limj-*o pNj = gN ~ %_i
 pointwise on X for each N.

 Put q_=p, n+Po o + Po _ + • • • + p for each integer n > 1. q_=p, Ti l,n-l 2,n-2 o Po 3,n-3 _ n-1,1
 For t e X,

 gN(t) - ^(t) + 21 N = I (íI1~«n_1)(t) + 21 N * lim sup^ ^(t),
 n=2

 gN(t) - «ļ(t) - 21 N = l " 21 N * lim infn*o
 n-2

 It follows that -gj(t) + arc tan h(t) = li» )in <!„(*) pointwise on X,
 and since each is continuous, -g^ + arc tan h € D(X). But
 tan gj € D(X), and hence g^ € D(X). Finally arc tan h € D(X); say
 lim hn = arc tan h pointwise on X where each h^ c C+(X). So
 lim ^ tan( (%7T-n_1 ) a h ) = h pointwise on X and h c D(X). □
 n-*° ^ n

 Next we show that if F is an nlf on D(X) or E(X), then F has at

 most a finite number of heavy points. (Recall that x is a heavy point of

 F if for each f c C+(X) with f(x) > 0, we have F(f) >0.) This is

 true for completely regular Hausdorff spaces, realcompact or not.

 Leima 2. Let F be an nlf on D(X) or E(X) where X is a completely

 regular Hausdorff space. Then F has at most finitely many heavy points.
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 Proof. Suppose, to the contrary, that there are infinitely many heavy

 points of F. Let xt be a heavy point such that some nbhd. of xx excludes

 infinitely many other heavy points. (If a heavy point has no such nbhd.

 then any other heavy point will have one.) Let U! be an open nbhd. of

 Xj such that X ' Ux contains infinitely many heavy points. Likewise,

 choose a heavy point x2 and an open nbhd. U2 of x2 such that

 U, n U2 = 0 and X ' (Uj u u2) contains infinitely many heavy points.

 We use induction on n to choose a heavy point xn and an open nbhd.

 Un of xn such that Uļ n Uj = <t> if i * j and infinitely many heavy
 points of F lie in X ' (Uj u ••• u Un) . Now let fn € C+(X) such that
 *n (xn) > 0 and fn vanishes outside Un for each n. Put

 0»

 f = Z fn/F(fn)' Then f € D(X) c E(X) and for each N,
 n=i

 N

 f & I fn/F(fn) and hence F(f) * N
 n=i

 which is impossible. □

 The next Lemma on uniqueness of measures is not very original, but we

 will need it. It does not require realcommpactness.

 Łe»a 3. Let m} and m2 be Baire measures on a space X such that

 mj(X) = m2(X) = 1 and for each bounded function f e C(X),

 J f dmi = J f dm2.

 Then mi = m2.

 Proof. Consider the family J of all functions f € E(X) for which

 J ((lAf) v 0) dm! = J ((lAf) v 0) dm a .

 Clearly C(X) c J. Moreover, if g c E(X) is the pointwise limit of a

 sequence of functions (gn) c then for each n,

 J ((lAgn) v 0) dm! = J ((lAgn) v 0) dm2
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 and by the Lebesgue dominated convergence theorem,

 J((lAg) v 0) dnjj = J ((lAg) v 0) dm a .

 Then ? is closed under pointwise limits of sequences, and hence ? = E(X).

 Now let g be the characteristic function of any Baire set A. Then

 g € E(X) and

 ffli(A) = J g dnu = J g d">2 = ma(A). □

 We show that any nlf on E(X) is an integral. Again realcompactness

 is not needed here.

 Lewm 4. Let F be an nlf on E(X). Then there is a unique Baire

 measure m on X such that for all f e E(X),

 J f dm = F(f) .

 Proof. For each Baire set A, put m(A) = F(k^) where is the
 characteristic function of A. Then m(0) =0, m(X) = 1, and m is

 obviously finitely additive. To prove that m is countably additive

 let Ai, Aa, A3, ... be a sequence of mutually disjoint Baire sets and

 suppose, to the contrary, that

 CO

 Z »(Aj) * m( U Aj).
 j=1 j=»

 For each N,

 N N «

 Z m(Aj) * m( U Aj) ¿ m( U Aj),
 j=» j=i j=»

 O GO

 so I œ(Aj) < m( U Aj).
 j=i j=i

 00

 For each N, let B„ = ( U Ai)- Then m(B„) > 0 for all N, and
 W • M N

 J=N • M

 00

 fi B„ = 0. Finally
 N=1
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 00

 g = I kß„ / m(Bjj) € E(X) ,
 N=1 *

 and for all j > 0,

 j
 F(g) * F( l kßN / m(Bjj)) = j,

 N=1

 which is impossible. Thus m is a Baire measure on X.

 If f € E(X), then f = (fvO) + (fAÛ). Thus it suffices to take

 f e E+(X).

 Fix f € E+(X), and choose any « > 0. Then there is an index N > 0

 such that F(fA(N«)) = F(f) by Lemma 1. Now let

 B. = P 1[(j-l)£,j£) where p = fA(Nc). We note that
 Õ

 N+l N+l

 ía(N£) ¿ Z jckß. * I (j-l)«kß. + cl
 j=l J j=l J

 and

 N+l N+l f
 F(f) = F(fA(Nc)) < Z (j-l)sF(kß.) + e = î (j-l)cm(Bj) + s * Jf f dm + e.

 j=l J j=l

 Also

 00 (O

 f * l (j-l)ckß. * I jckß. - el
 j=l J j=l J

 and

 00 CO

 F(f ) * I jcF(kß.) - e = £ jcm(Bj) - e * Jf dm - e.
 j=l J j=l

 Since e is arbitrary, F(f) = Jf dm for f e E+(X), and clearly for
 f c E(X). Uniqueness of the measure m follows from Lemma 3. □

 The next Lemma concerns only D(X).
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 Ica 5. Let f e C(X), 0 ' f í 1 and let A = f 1 (1) . Then
 CO

 Î (fV(l - k ) € D(X)
 11=1

 where kA is the characteristic function of A.
 A

 00

 Proof. Let g = I (f^-íl - k^). If x c X and 0 * f(x) < 1, then
 n=l

 00

 Ï f(x)n < ® and g(x) is real. If x € X and f(x) = 1, then
 n=l

 1 - k^(x) = 0 and g(x) = 0. Thus g < « on X. Also
 N

 g(x) = lim (1 - k.(x)) I f(x)D
 A n=l

 for each x e X, and f(x) = 1 if k.(x) = 1. It follows that
 A

 M N
 g(x) = lia (1 - f (x) M ) z f(x)n

 N-*» n=l

 and since each term on the right lies in C(X), g e D(X). a

 We are now able to analyze the situation when F has exactly one heavy

 point. We assume realcompactness.

 L§mi_6. Let F be an nlf on C(X) or D(X) or E(X) where X is
 realcompact. Suppose F has exactly one heavy point x0. Then F(f) = f(x0)

 for any f in the demain of F.

 Proof for C(X). Let f c C(X). Then f - f(x0)l vanishes at all the

 heavy points of F and by Theorem 1, 0 = F(f - f(x0)l) = F(f) - f(x0). D

 Proof for D(X). First let f e C(X) such that 0 < f < 1 and

 f(x0) = 1. Let A = f 1(1). We claim that F(k^) = 1 where kA is the

 characteristic function of A. Assume, to the contrary, that F(k^) * 1.

 Then necessarily F(k^) = t < 1. By the preceding argument, Fif11) =
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 f(x0)n = 1 for all indices n > 0 and Fif11 - k^) = 1 - t > 0. Put
 CO

 g = I (f°-k).
 n=l

 N

 By Lemma 5, g € D(X). But g * I (f11 - k.) for each N and
 n=l A

 F(g) ^ N(1 - t),

 which is impossible. So F(k ) = 1.
 A

 Now let h € D(X) with 0 < h * 1, and let h(x0) > 0. Pick any

 t > 0, so small that h(x0) - c > 0. The set h 1(h(x0) - c,«) is a class

 one F -set containing x0. Thus there is a zero-set A such that À c
 <T

 h '(híxo) - c,») and x0 e A. Hence h * (h(x0) - c)k^ and = *
 by the preceding paragraph. It follows that F(h) * h(x0) - e. Since e is

 arbitrary, we have F(h) ^ h(x0). On the other hand, if h(x0) were 0,

 then we should have F(h) * h(x0) anyway. The same argument with 1-h in

 place of h shows that

 l-F(h) = F(l-h) ^ (1-h) (x0) = l-h(xo)

 and F(h) * h(x0). Finally F(h) = h(x0).

 It follows from the preceding paragraph that for any bounded function

 h0 € D(X), F(h0) = h0(x0). Now let q be any function in D(X). By

 Lemma 1, there is a number c > 0 such that F((qAc) v (-c)) = F(q) and

 (by increasing c if necessary) -c < q(x0) < c. It follows that

 F(q) = F( (qAc) v (-c)) = ((qAc) v (-c))(x0) = q(x0). O

 Proof for K(X). Let m be the Baire measure on X found by setting

 m(B) =1 if x0 e B and m(B) =0 if x0 i B. Then

 Jf dm = f(x0)
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 for each f c E(X) because the set f ł(f(x0)) has measure 1 and its
 complement has measure 0. Moreover,

 f(x0) = F(f) = Jf dm

 for f € C(X) by the proof for C(X). It follows from Lemmas 3 and 4 that

 Jf dm = F(f )

 for all f e E(X). a

 Definition. We say that an nlf F is simple if there exist finitely

 many points

 n n

 E a. = 1 and F(f) = Z a.f(x.) for all f in the domain of F.
 j=l J j=l J J

 We are now able to characterize all nlfs on D(X) and E(X) when X

 is real compact .

 Theorea 2. Let F be an nlf on D(X) or E(X), where X is real-

 compact. Then F is simple.

 Proof. By Theorem 1, F has at least one heavy point, and by Lemma 2, F

 has only finitely many heavy points, Xļ , . . . ,xn c X. First we construct a

 "resolution of the identity" for X. We claim that there exist functions

 gi>>>>>gn c C+(X), 0 ' < 1, for i = l,...,n, such that gi = 1 on

 a nbhd. of xj and gļ = 0 on a nbhd. of Xj for i * j, and
 gt + ••• + gn = 1. Let h!,...,^ € C+(X) such that hi = 1 on a nbhd.

 of xj for each i, hļ = 0 on a nbhd. of xj for j * i, and
 0 * hļ * 1. (Use complete regularity to choose h c C(X) with

 h(xi) = 2, h(xj) = -1 for j * i ; put hi = (hvO)A 1.)
 If n = 1, put = 1. In general n > 1 and we suppose that

 g i » • • > gy- i have been constructed such that gļ = 1 on a nbhd. of xļ

 and gi = 0 on a nbhd. of each xj(j * i), 0 * gi * 1, and
 gi + •** + gv-i = 1» Then the v functions

 gi ( 1- hy) i • • • » gv- i ( l~hy) » hv

 334



 satisfy the same properties. By induction on v, we obtain the desired

 functions gt , . . . , gD .

 Each F(g^) > 0 because is a heavy point of F. For each
 j = l,...,n put F . (f ) = F(fg.)/F(g) for all f in the domain of F.

 J 3 3

 Then each F. is an nlf with the same domain as F. If f e C+(X) and
 J

 f(w) > 0, and w is a heavy point of F., then
 J

 F(f) i F(fg .) = F(g ) • F (f) > 0
 %} J J

 and w is a heavy point of F. Since the points x^ (i * j) cannot be
 heavy points of F. (note that F.(f) = 0 for f € C+(X) such that f

 3 J

 vanishes outside of the nbhd. of x^ where gj vanishes) it follows that
 X. is the only heavy point of F.. By Lemma 6, F.(f) = f(x.) for all
 J 3 3 3

 j = l,...,n, and all f in the domain of F. Moreover, F(fg.) =
 3

 F(g-)f (x .) and
 J 'J

 F(f ) = F(fg +fg +• • *+fg ) = F(g )f(x ) + F(g )f (x )+• • *+F(g )f (x ) .
 i2 n ii 22 nn

 Finally, we put f = 1 and find that F(gt) + F(ga)+' • *+F(gn) =1. D

 At this juncture we observe that if F is continuous in the topology of

 pointwi8e convergence on C(X), then F has at most finitely many heavy

 points. This is much like Theorem 20 of [3].

 Lemma 7. Let F be an nlf on C(X) and let X be realcompact. Then

 a necessary and sufficient condition that F be continuous on C(X) in the

 topology of pointwÍ8e convergence is that F have only a finite number of

 heavy points. Moreover, if F is continuous on C(X), then F must be

 simple on C(X).

 Proof. If F has only a finite number of heavy points xt ,...,xn, then
 by the same proof used for Theorem 2, it follows that F is simple. Clearly

 F is continuous.

 Let F be continuous and suppose that there are infinitely many heavy

 points of F. Let {u,,...,uļ,} be a (finite) subset of X and let d be a
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 positive number such that if f e C(X) and |f(uj)| < d (j = l,...,t), then
 |F(f)| < 1. Take any heavy point w that is different from all the uj
 (j = l,...,t). Let f e C+(X) such that f(uj) = 0 (j = l,...,t), and f(w) > 0.
 Then F(f) > 0 and F(nf) = nF(f) for all integers n > 0. Also nf(uj) = 0
 for all j = l,...,t and F(nf) < 1. But for some n, nF(f) = F(nf) > 1 which

 is impossible. □

 We see that C(X) is dense in D(X) and E(X), and D(X) is dense in

 E(X) in the topology of pointwise convergence. By Theorem 2, any nlf on

 D(X) or E(X) is continuous. But an nlf F on C(X) need not be

 continuous. Indeed by Theorem 2 and Lemma 7 it follows that F can be

 extended to an nlf on E(X) if and only if F is continuous on C(X).

 We turn to nonnegative linear functions from C(Xi) to C(X2).

 (We assume all linear functions map the function 1 to the function 1.)

 Theorem 3. Let F be a nonnegative linear function mapping D(Xi)

 into D(Xa) and let Xj be realcompact. Then F can be extended to a

 unique nonnegative linear function from E^) to E(Xa).

 Proof« For each y € Xa, let Fy be the nlf on DiX^ defined

 Fy(f) = F(f)(y) for f c D(Xļ). By Theorem 2, Fy is simple. So there

 exist finitely many points x j e Xļ and positive numbers a^j such that
 £. a . = 1 and F (f) = £. a .f(x .) for f € D(X ).
 j yj y j yj yj 1

 For each g c E(Xt ) , let F(g) be the real function on defined by
 F(g)(y) = I- a .g(x .). It remains only to prove that F(g) € E(X ); the

 j yj yj ^

 linearity and nonnegativity of F are evident. Let A be the family of

 all functions g e E^) such that F(g) c E(Xa). Then A contains all

 functions in C(Xļ) and indeed in D(Xt). If (g^) is a sequence of

 functions in ¿ converging pointwise to a function g c E^), then

 (F(gļ)) is a sequence of functions in E(Xa) converging pointwise to F(g).

 So F(g) e E(X2) and g e £. Finally ¿i contains CÍX^) and the pointwise
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 limit of any sequence of functions in ¿ must be in So ¿ = E(Xt).
 Uniqueness follows from the fact that D(Xi) is dense in E(X}) and F is
 plainly continuous on E(Xj). □

 Theore» 4. Let F be a nonnegative linear function mapping C(Xx ) to

 C(Xa) and let Xx be realcompact. Then F can be extended to a nonnegative

 linear function from E^) to E(X2) if and only if F is continuous on

 C(Xx). There is at most one such extension of F.

 Proof. Let F be continuous on C(Xt ) . For each y e X2 , the nlf

 f F(f)(y) is continuous on C(Xj). So F(f)(y) is simple by Lemma 7,

 and has the form ïj ajf(xj) (finitely many terms). The proof that F
 can be extended uniquely to E(Xj ) is just like the proof of Theorem 3,

 so we leave it.

 Now let Fo be an extension of F to E(Xx). Then for each y € X2,

 the nlf f F0(f)(y) on E(Xt ) must be simple by Theorem 2. It follows

 that F0 is continuous on E(Xi ) , and hence F is continuous on C^).

 This completes the proof. □

 We note also that any nonnegative linear function mapping D(Xx ) to

 D(Xa), or EiXj) to E(X2) must be continuous if Xx is realcompact.

 Now we draw a conclusion about Baire measures.

 Theorea 5. Let m be a Baire measure on a realcompact space X such

 that m(X) = 1 and C(X) c Lj(m) (respectively, D(X) c L,(sa)). Then

 there is a compact subset Y of X (respectively, finite subset Y of X)

 such that m(A) = 0 for any Baire set A c X'Y.

 Proof. F(f ) = I f dm is an nlf on C(X ). By Theorem 1 and its proof,
 X 1

 we see that there is a compact set Y composed of all the heavy points of F

 and a Baire measure m on X such that
 i

 F(f) =f f dm = i f dm
 Jx Jx

 for all f € CÍX^), and mj (A) = 0 for Baire sets A c X'Y. By Lemma 3,
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 m = n^. Finally, if D(X) c Lļ(jn), then F is an nlf on D(Xļ), and Y is
 a finite set by Lemma 2. □

 3. Ring homomorphisms. In this Section we consider nlfs on C(X), D(X)

 and E(X) that are multiplicative; F(fif2) = F(fj)F(fa). Such F are

 obviously ring homomorphisms. Observe that a ring homomorphism F is

 nonnegative and cannot have more than one heavy point. For if Xi * x2,

 choose functions fi,f2 « C+(X) such that fi(xt) > 0, f2(x2) > 0, ftf2 = 0,
 and note that

 0 = F(f if2) = F(f,)F(fa);

 then one of the factors on the right must vanish. So if X is a realcompact

 space, there must be an x e X such that F(f) = f(x) by Theorem 1 and

 Lemma 6. (See also [1, 10.5(c)] for C(X).)

 Now let X2 be a completely regular space and Xt a realcompact space

 and let F be a ring homomorphism from C(Xt) to C(X2), or D(Xi) to

 D(X2), or E(Xi) to E(X2). For each y c X2, there is a point p(y) c Xx

 such that the nlf f •-> F(f)(y) satisfies F(f)(y) = f(p(y)) for all f in the

 domain of F. Indeed p(y) is unique because C(Xi) separates points in

 Xx. Moreover,

 (*) p-Mf-MO,»)) = (ftp))"1^,«) = (F(f))"M0,»).

 So if F maps E(Xt) into E(X2) and A is a Baire set in Xi, let

 f c E(Xi) such that A = f~1(0,®). Then p-1(A) is a Baire set in X2 by

 (*). If F maps D(Xt) into D(X2) and A is a class one Fa-set in Xt,

 let f € D(Xt) such that A = f~l(0,«). Then p~*(A) is a class one F^-set in

 X2. Finally, if F maps C(X,) into C(X2) and A is a cozero-set in Xi,

 it follows similarly that p-1(A) is a cozero-set in X2; but the cozero-sets

 in a completely regular space form a base for the topology, so p is in fact

 continuous.

 Conversely, if p maps X2 to Xi such that p-,(A) is a Baire set in

 X2 whenever A is a Baire set in Xi, then the mapping f •■+ f(p(y))

 (y e Xa) is a ring homomorphism of E(Xt) to E(X2). If p maps X2 to
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 Xt such that p-l(A) is a class one Fa- set in X2 whenever A is a class

 one Fa-set in Xi, then the mapping f •-» f(p(y)) (y € Xa ) is a ring

 homomorphism of D(X!) to D(X2). (See [2], Theorem 6, p. 143; the

 arguments there are for the real line, but they also work for general

 completely regular spaces.) Finally, if p is continuous, then the mapping

 f f(p(y)) (y € X2) is a ring homomorphism of C(Xj ) to C(Xa).

 To sum up;

 Theorem 6. Let X2 be a completely regular space and X¡ be a

 realcompact space. Let F be a ring homomorphism of C(Xi ) to C(X2)

 (respectively, D(X¡) to D(Xa), E(X,) to E(X2)). Then there is a function

 p from X2 to Xi such that F(f)(y) = f(p(y)) for all y c X2 and such

 that p-1 (A) is an open set (respectively, class one Fff-set, Baire set) in X2

 if A is an open set (respectively, class one F^-set, Baire set) in Xi.

 Conversely, if p is such a function from X2 to Xt, then the mapping F

 defined by F(f)(y) = f(p(y)) for all y c X3, is such a ring homomorphism.

 (See also [1, 10.6] for C(Xj).)

 In particular, let Xi and X2 be realcompact. Then F in Theorem 6 is

 an isomorphism of C(Xi) onto C(X2) (respectively, D(Xi) onto D(X2),

 E(X,) onto E(X2)) if and only if p is a one-to-one mapping of Xa onto

 Xi such that p and p-1 map open sets to open sets (respectively, class

 one F^- sets to class one F^-sets, Baire sets to Baire sets). In this sense, for

 realcompact X the ring C(X) identifies the open and closed sets in X, the

 ring D(X) identifies the class one F^-sets and G¿-sets in X, and the ring

 E(X) identifies the Baire sets in X. The smaller rings contain more

 information than the larger rings in the sense that the smaller rings identify

 the more restricted types of sets in X.

 On the other hand, an isomorphism between E(X, ) and E(X2) or D(Xt)

 and D(X3), need not map C(Xt) onto C(X2). Let Xt be the integers, X2

 the rational numbers, and let p be any bijection of Xa onto Xi.

 We can now use the topology of pointwise convergence on E(X) to

 determine when ring homomorphisms of C(X) or D(X) or E(X) are

 isomorphisms.
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 Theorem 7. Let Xt and X2 be realcompact spaces, and let F be a

 ring homomorphism from C(X, ) to C(X2) (respectively, D(X,) to D(Xa),

 E(X,) to E(X2)) such that the functions in the image of F separate points

 in Xa. Then the following are equivalent.

 (1) F is a homeomorphism of C(Xi) onto C(Xa) (respectively, D(Xi)

 onto D(X2), E(X,) onto E(X2)),

 (2) F maps closed subsets of C(Xt ) to closed subsets of C(X2)

 (respectively, of D(Xt) to closed subsets of D(X2), of E(Xï) to closed

 subsets of E(X2)),

 (3) F is a ring isomorphism of C(Xi) onto C(X2) (respectively, D(Xt)

 onto D(Xa), E(Xi) onto E(X2)).

 Proof. We will give the proof only for C(X). The proofs for D(X) and

 E(X) are analogous.

 (1) => (2). Clear.

 (2) => (3). We must prove that F is a bijective mapping. Suppose, to

 the contrary, there is a nonzero f c C+(X) such that F(f) = 0 in C(X2).

 For each integer n, let fn = nf + (n~l)l. Then F(fn) = n-1l € C(Xa) and

 the set F{fn} is not a closed subset of C(Xa). But for some x € X1(

 f(x) > 0 and fn(x) •* », and this implies that the set {fn} has no

 accumulation point in C(Xj ). Thus {fn} is a closed subset of C(Xt) that

 does not map to a closed subset of C(Xa). This contradiction proves that F

 is one-to-one.

 Now suppose yt,...,yj € Xa. Let p be the function in Theorem 6. The
 points p(yt ),..., p(yj) are distinct because F(C(Xt)) separates points in X2.
 If at,...,aj are any real numbers, we can use complete regularity to find an
 f € C(Xj) such that f(p(yi)) = aļ for i = l,...,j. Then F(f)(yj) = aj for
 i = l,...,j. Thus F(C(Xi)) is dense in C(X2). But F(C(Xi)) is also closed

 in C(Xa) by (2), so F(C(Xj)) = C(X2). This proves (3).

 (3) => (1). By Theorem 6 (and the discussion following it), there exists a

 one-to-one function p mapping X2 onto X! such that F(f)(y) = f(p(y))

 for y € X2 and f e C(Xi). Thus if U is an open subset of the real line,

 for y e X2,

 F{f € C(Xj ) : f(p(y)) e U} = {g € C(X2) : g(y) c U}.
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 So F and F-1 map subbasic open sets to subbasic open sets. Since F is

 a bijective mapping onto C(Xa), if follows that F and F~ł map open sets

 to open sets. This proves (1). □

 In Theorem 6 we cannot expect p(Xa) = Xj even when F is one-to-one.

 For example, let Xx be the compact interval [0,1], let Xa be the open

 interval (0,1), and let p be the inclusion mapping of Xa into Xi. Then

 F is one-to-one, but p(Xa) * X1( We offer

 Theorem 8. Let F be a one-to-one linear mapping from C(X,) to

 C(X2) that maps C+(Xi) into C+(Xa) and let Xt and Xa be realcompact.

 Then a sufficient condition that p of Theorem 6 satisfy p(Xa) = X! is that

 for each s e S ' Xa, where S is the Stone-Cech compactification of Xa,

 there is a g € C(Xi) with

 limx-*s (F(g))(x) = ».

 Proof. Assume this condition. Any nonempty cozero-set U in Xi

 meets p(Xa); for if {x e X! : f(x) * 0} n p(Xa) = 0, then F(f) = 0 = F(0),

 contrary to the hypothesis that F is one-to-one.

 Fix w € Xi. We will prove that w € p(X2). Suppose, to the contrary,

 w i p(Xa). Let £ denote the family of all sets of the form U n p(Xa)

 where U is a cozero-set in Xt. It follows that every set in £ is nonvoid

 and the intersection of any two sets in £ is also in £. The family of sets

 (p-1(A) : A € £} has the same property. So there is a point s € S such

 that s is in the closure of p~ł(A) for each A € £.

 We claim that s i X2. For suppose s e Xa. Then p(s) * w. Choose an

 f € CiXj) such that f(w) = 1 and f(p(s)) = 0. Put A = n p(Xa).

 Then A € £ and this set is disjoint from the open set f-1(-l>M« Also

 p(s) € f- 1 (-1,54) and s e p-1 (f~ł (-1,X)). But p is continuous, so

 p-1 (f-1 (-1,*)) is a nbhd. of s that is disjoint from p-1(A). And s is in

 the closure of p_1(A). This contradiction proves that s e S ' X2.

 By hypothesis there is a g e C(Xx) such that

 limx-»s (F(g))(x) = ».
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 Let r be any number greater than g(w). But B = r) n p(X2). Then

 B € £ and p~l(B) is disjoint from the set (F(g))~l (r,») = p"1 (g-1 (r,®)). In

 S, (F(g))~l (r,») is a nbhd. of s that is disjoint from p-,(B), and this is
 impossible. □

 The condition given in Theorem 8 is sufficient to make p(X3) = X, , but

 it is not necessary. Let Xi be the compact interval [0,1] and let X2 be

 the discrete space [0,1]. Let p be the identity mapping on X2. Then

 p(X2) = Xi, but any function in F(C(Xi)) is bounded.

 4. Metrizable spaces» Let F be an nlf on C(X) and let X be

 realcompact. Then there is a compact subset Y of X such that f c C(X)

 and f(Y) = 0 imply that F(f) = 0 (Theorem 1). Now let { U) be an open

 covering of X. There exist finitely many sets Ui,...,Un in the covering

 such that Y c Ui u ••• u Un. So f € C(X) and f(Ut u ••• u un) = 0 imply
 that F(f) = 0. This inspires the following definition.

 Definition. Let F be an nlf on C(X) and let X be completely regular

 and Hausdorff. We say that F is regular if for each open covering {U} of

 X, there exist finitely many sets Ui,...,Un in (U) such that f c C(X) and

 f(U, u ••• u Un) = 0 imply F(f) = 0.

 Thus every nlf on C(X) is regular if X is realcompact. We will show

 that the converse statement is true for metrizable spaces: if every nlf on

 C(X) is regular and if X is metrizable, then X is realcompact.

 Theorem 9. Let F be a regular nlf on C(X) and let X be metrizable.

 Then F has at least one heavy point.

 Proof. Let p be an appropriate metric on X. Assume, to the contrary,

 that F has no heavy point. The family of open balls S(x,l) (X € X)

 covers X. Let h € C+(X) such that 0 ¿ h < 1 and F(h) > 0. For

 example, 1 is such a function. Since f is regular, there are finitely many
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 points xi,...,xn c X such that any g c C(X) coinciding with h on

 S(xt,l) u ••• u S(xn,l) must satisfy

 |F(g) - F(h) I = |F(g-h) I = 0 and F(g) = F(h) > 0.

 For each j = let gj € C+(X) such that 0 * gj * 1, gj = 1 on
 S(xj,l) and gj = 0 outside of S(xj,2). Then h(g, v ••• v gn) coincides
 with h on S(xi,l) u "• u S(xn,l), and it follows that

 F(h*(g, v ••• v gn )) = F(h) > 0
 and

 F(hgi) + •" + F(hgn) * F(h-(g! v - v gn)) > 0.

 For some j, F(hgj) > 0. For this j, set hj = gj and u» = xj. Then
 F(hh,) >0, 0 * h! * 1, hj = 1 on S(ui,l) and hj vanishes outside of

 S(ulf2).

 By argument in the preceding paragraph, with hht in place of h,

 there is a function h2 c C+(X) such that F(hhth2) >0, 0 < ha * 1, and a

 point u2 c X such that h2 = 1 on S(u2>%) and h2 vanishes outside of

 S(u2,l). Likewise there is an h3 e C+(X) such that F(hhih2h3) > 0,

 0 * h3 * 1, and a point u3 e X such that h3 = 1 on S(u3>X) and h3

 vanishes outside of S(u3,X).

 In general, there is an hj e C+(X) such that Ffhh^-'hj) > 0,
 0 * hj * 1, and a point Uj € X such that hj = 1 on S(uj,21-j) and hj
 vanishes outside of S(uj,22~j). Since hh,-hj is positive at some point t,

 p(uj_i,uj) < ¿»(uj-ijt) + /o(uj,t) < 23-j + 22~j < 24~j.

 It follows that the sequence of points (uj) is a Cauchy sequence in X.
 We claim that the Cauchy sequence (uj) does not converge in X.

 Suppose, to the contrary, (uj) converges to u € X. Then u is a light
 point of F, and there is a p e C+(X) such that p(u) > 0 and F(p) = 0.

 Let c > 0 be a number so large that cp(u) > 1. Say cp > 1 on the open

 nbhd. V of u. For large enough j, S(uj,22~j) c V and it follows that
 0 * hj < cp. But F(cp) = cF(p) = 0, so F(hj) = 0« Finally,
 0 * hh,"*hj * hj and hence F(hhi"'hj) = 0, which is impossible. Hence
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 (uj) does not converge in X.
 Any X e X has a nbhd. U such that all but finitely many hj vanish

 on U. Put kj = hh^'-hj for each j * 1. Then F(kj) > 0 and
 œ

 I kj/F(kj) sums to a function k e C+(X). For each integer N > 0,
 j=l

 N

 k * I kj/F(kj)
 j=l

 and

 N

 F(k) ' F( Ï kj/F(kj) ) = N,
 j=l

 which is impossible. □

 As we noted in Section 3, a ring homomorphism F from C(X) to the

 real numbers can have at most one heavy point. We can draw some

 conclusions about ring homomorphisms on C(X), D(X) and E(X) when X

 is metrizable.

 Theorem 10. Let X be a metrizable space and let F be a ring

 homomorphism of C(X) or D(X) or E(X) such that the restriction of F

 to C(X) is regular. Then there is a point x0 € X such that F(f) = f(Xo)

 for all f in the domain of F.

 Proof tor C(X). Let x0 be the unique heavy point of F. Choose any

 function f c C(X) such that x0 is not in the closure of the set {x :

 f(x) * 0}. Let g € C+(X) such that g(x0) > 0 and fg = 0. Then

 0 = F(fg) = F(f)F(g),

 and since x0 is a heavy point of F, F(g) > 0 and F(f) = 0. But if

 f0 e C+(X) and f0(x0) = 0, then for any number e > 0 we have

 F( (f o v e) - ®1) = 0 = F(f0 v c) - c.

 (Here put f = (f0 v e) - el in the preceding argument.) Hence
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 O < F(fo) = F((f0 ve)- el) + F((f0 A.E)) = F((f0 a c)) * c.

 Since c is arbitrary, F(f0) = 0.

 Thus if he C(X) and h(x0) = 0, we obtain F(h v 0) = F(h a 0) = 0,

 and F(h) = 0 also. For any q € C(X), q - (q(x0))l vanishes at x0 and

 F(q) - q(x0) = F(q - (q(x0)l) = 0.

 Proof for D(X). Let g denote the characteristic function of the

 singleton set {x0}. Then g c D(X), and 0 * F(g) < F(l) = 1. We claim that

 F(g) = 1. Suppose, to the contrary, that F(g) < 1. Let f c C+(X) such that
 0 * f < 1, and f = 1 at x0 and at no other point. Then F(f) = 1 and

 F(f-g) = 1 - F(g) > 0. By Lemma 5,

 00

 1 (f^g) € D(X) .
 n=l

 N

 For any index N * 1, I (fn-g) * £ (fn-g) and
 n=l n=l

 ® NN

 F( Ï (f°-g)) * F( I (fn-g)) = I (1 - F(g) ) = N(1 - F(g)) , which is
 n=l n=l n=l

 impossible. This proves F(g) = 1.

 Take any h c D(X) satisfying h(x0) = 0. Then

 F(h) = F(h* ( 1 - g)) = F(h) (1 - F(g) ) = 0.

 So for q € D(X),

 0 = F(q - (q(x0))l) = F(q) - q(x0).

 The proof for E(X) is analogous to the proof for D(X), so we leave

 it. a

 It follows from Theorems 9 and 10 that if every ring homomorphism F

 from C(X) to the reals is regular, and if X is metrizable, then X is

 realcompact. We now have a number of conditions equivalent to realcom-

 pactness for metrizable spaces.
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 Theorem 11« Let X be a metrizable space. Then the following are
 equivalent.

 (1) X is realcompact.

 (2) Every nlf on C(X) is regular.

 (3) Every ring homomorphism from C(X) to the reals is regular.

 (4) Every ring homomorphism from C(X) to the reals has a heavy

 point.

 Proof. (1) => (2) follows from Theorem 1 and remarks at the beginning

 of this Section. (2) => (3) is clear. (3) => (4) follows from Theorem 9.

 (4) => (1) is just like the proof of Theorem 10 in the case C(X), so we leave

 it. □

 We do not know if there exists a metrizable space that is not realcompact,

 but we close with this observation.

 Theorem 12» Let (X,p) be a metric space that is not realcompact. Then

 there is a ring homomorphism F from C(X) to the reals such that for some

 c > 0, there do not exist finitely many open balls Bt,...,Bn in X, each of

 radius c, for which f e C(X) and f(Bx u ••• u Bn) = 0 imply F(f) = 0.

 Proof. By Theorem 11, there is a ring homomorphism F from C(X) to

 the reals that has no heavy point. The condition must hold for F, for

 otherwise the argument in the proof of Theorem 9 would go through and F

 would have a heavy point. We leave the rest. □
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