Real Analysis Exchange Vol.11 (1985-86)

M.J. Evans, Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205

APPROXIMATE PEANO DERIVATIVES AND THE BAIRE * ONE PROPERTY

A real valued function f defined on the real line \mathbb{R} is said to have an approximate Peano derivative of order k at x if there are finite numbers $f_{(0)}(x)$, $f_{(1)}(x)$, ..., $f_{(k)}(x)$, and a set E of density one at zero such that

(A)
$$f(x_0 + h) - \sum_{i=0}^{k} \frac{f_{(i)}(x)}{i!} h^i = o(h^k)$$
 as $h \to 0, h \in E$.

In this paper we shall insist that $f_{(0)}(x) = f(x)$ so that the notion of approximate continuity at x will correspond to the notion of having an approximate Peano derivative of order 0 at x. If one replaces the expression $o(h^k)$ in (A) by $O(h^k)$, the resulting weaker property is called approximate Peano boundedness of order k at x, thereby paralleling the terminology used by Ash [2] for Peano differentiability and Peano boundedness of order k.

Approximate Peano derivatives are known to share many of the properties of ordinary derivatives and papers investigating these properties include references [4] through [11]. The purpose of this note is to present a proof, using only first principles, that if a function is approximately Peano bounded of order k + 1 at each real number, then the k^{th} approximate Peano derivative of the function belongs to the class Baire^{*} one in the notation of [12] (or class [C] in the notation of [1].) The proof takes advantage of a function sequence construction originally utilized by the present author [6] to show that approximate Peano derivatives are in class Baire one and the following two elementary lemmas, the first due to Auerbach [3] and the second being a well known exercise in mathematical induction.

LEMMA A. If Σ_n^{n} is a series of continuous functions on \mathbb{R} and Σ_n^{n} is a convergent series of positive constants such that for each $x \in \mathbb{R}$ there is a positive number N(x) with the property that $|\mathcal{P}_n(x)| \leq a_n$ whenever $n \geq N(x)$, then for each nonempty closed set F there is an open interval I such that $I \cap F$ is not empty and Σ_n^{p} converges uniformly on $I \cap F$ (and, consequently, Σ_n^{p} is in class Baire^{*} one.)

LEMMA B. For any real number λ

$$\sum_{j=0}^{k} (-1)^{k-j} {k \choose j} (\lambda + j - \frac{k}{2})^{i} = 0, \quad i = 0, 1, \dots, k-1$$
$$= k!, \quad i = k.$$

The symbol $\Delta_k(x,h;f)$ will be used to denote the Riemann difference $\Delta_k(x,h;f) = \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} f(x + jh - \frac{1}{2}kh)$

THEOREM. Let $f : \mathbb{R} \to \mathbb{R}$ be approximately Peano bounded of order k+1at each $x \in \mathbb{R}$. Then the function $f_{(k)} : \mathbb{R} \to \mathbb{R}$ belongs to class Baire^{*} one. Proof. Note first of all that according to the aforementioned Lemma A of Auerbach, it will suffice to find the existence of a sequence $\{\phi_n\}$ of continuous functions on \mathbb{R} such that for each x there is a number B(x) and a natural number N(x) such that

(1)
$$|\phi_n(x) - f_{(k)}(x)| \le B(x)/2^n$$
 for $n > N(x)$.

Specifically then, we could apply Auerbach's lemma to the series

 $\phi_1 + \sum_{n=1}^{\infty} (\phi_{n+1} - \phi_n)$ to conclude that $f_{(k)} = \lim_{x \to \infty} \phi_n$ is Baire^{*} one. Consequently, the remainder of this proof will consist of the construction of the sequence $\{\phi_n\}$ and the verification of (1).

For each positive integer n, each integer p, each nonzero real number h, and each real number α , set

$$\begin{split} \mathbf{I}_{n,p} &= [(p - \frac{3}{2})/2^{n}, (p + \frac{3}{2})/2^{n}], \quad \mathbf{I}_{n} = [-1/2^{n+1}, 1/2^{n+1}] \\ &\qquad \mathbf{S}_{n,p,\alpha,h} = \{\mathbf{x} \in \mathbf{I}_{n,p} : \mathcal{A}_{k}(\mathbf{x},h;f)/h^{k} > \alpha\}, \\ &\qquad \mathbf{T}_{n,p,\alpha} = \{\frac{1}{2}kh \in \mathbf{I}_{n} : |\mathbf{S}_{n,p,\alpha,h}| > \frac{1}{2}|\mathbf{I}_{n,p}|\}, \end{split}$$

and at each point of the form $p/2^n$, define

$$\phi_n(p/2^n) = \sup \{ \alpha : |T_{n,p,\alpha}| > \frac{1}{2} |I_n| \}.$$

Finally, extend ϕ_n linearly to arrive at a continuous function on all of R.

Let $x_o \in \mathbb{R}$. There is a number $C(x_o)$ such that the set

$$E = \{h : |f(x_0 + h) - \sum_{i=0}^{k} \frac{f_{(i)}(x_0)}{i!} h^i | < C(x_0) |h|^{k+1} \}$$

has density one at zero. Next, set $B(x_0) = 7^{k+1} (2k)^k C(x_0)$. We shall show that (1) will hold with this choice for $B(x_0)$.

Let ϵ be a positive number less than 1/4(k+1). There is a positive number 5 such that $|E \cap I| > (1 - \epsilon)|I|$ for any interval I containing 0 of length less than 5. Choose a positive integer $N(x_0)$ so large that $1/2^{N(x_0)} < 5/4$.

Let $n > N(x_0)$ and select the unique integer p so that $p/2^n < x_0 \le (p+1)/2^n$. Next, let h be any number such that $\frac{1}{2}kh \in [-1/2^{n+1}, -1/2^{n+3}] \cup [1/2^{n+3}, 1/2^{n+1}]$

and hold it fixed. For each j = 0, 1, ..., k let $B_j = \{y - jh + \frac{1}{2}kh : y \in E\}$. Then for each j = 0, 1, ..., k we have $\frac{|B_j \cap [-3/2^{n+1}, 1/2^{n+1}]|}{1/2^{n-1}} > 1 - \epsilon,$

and so, letting $B = \bigcap_{j=0}^{k} B_{j}$, it follows that $\frac{|B \cap [-3/2^{n+1}, 1/2^{n+1}]|}{\frac{1/2^{n-1}}{2}} > 1 - (k+1)\epsilon > 3/4.$

Furthermore, if $\lambda h \in B \cap [-3/2^{n+1}, 1/2^{n+1}]$, then $x_0 + \lambda h \in I_{n,p}$ and $\lambda h + jh - \frac{1}{2}kh \in E$ for each j = 0, 1, ..., k. The next immediate goal will be to show that

(2)
$$|4_{k}(x_{0} + \lambda h, h; f)/h^{k} - f_{(k)}(x_{0})| < B(x_{0})/2^{n}.$$

We have

$$\begin{aligned} |4_{k}(x_{o} + \lambda h, h; f)/h^{k} - f_{(k)}(x_{o})| &= \\ &= \left| \frac{1}{h^{k}} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} f(x_{o} + \lambda h + jh - \frac{1}{2}kh) - f_{(k)}(x_{o}) \right| \\ &\leq \left| \frac{1}{h^{k}} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \left[f(x_{o} + \lambda h + jh - \frac{1}{2}kh) - \sum_{i=0}^{k} \frac{f_{(i)}(x_{o})}{i!} (\lambda + j - \frac{1}{2}k)^{i}h^{i} \right] \right| + \\ &+ \left| \frac{1}{h^{k}} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \sum_{i=0}^{k} \frac{f_{(i)}(x_{o})}{i!} (\lambda + j - \frac{1}{2}k)^{i}h^{i} - f_{(k)}(x_{o}) \right|. \end{aligned}$$

However,

$$\sum_{j=0}^{k} (-1)^{k-j} {k \choose j} \sum_{i=0}^{k} \frac{f_{(i)}(x_{0})}{i!} (\lambda + j - \frac{k}{2})^{i} h^{i} = \sum_{i=0}^{k} \frac{f_{(i)}(x_{0})}{i!} h^{i} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} (\lambda + j - \frac{k}{2})^{i}$$
$$= f_{(k)}(x_{0}) h^{k},$$

where the last equality is due to Lemma B..

Consequently, the second absolute value on the rightmost side of inequality (3) is identically zero, yielding

$$\begin{array}{lll} (4) & |a_{k}^{\prime}(x_{0} + \lambda h, h; f)/h^{k} - f_{(k)}^{\prime}(x_{0})| \leq \\ \leq & \left|\frac{1}{h^{k}} \sum\limits_{j=0}^{k} (-1)^{k-j} {k \choose j} \left[f(x_{0} + \lambda h + jh - \frac{1}{2}kh) - \sum\limits_{i=0}^{k} \frac{f_{(i)}^{\prime}(x_{0})}{1!} (\lambda + j - \frac{1}{2}k)^{i}h^{i}\right]\right|. \\ \\ \text{However, for each } j = 0, 1, \dots k, \lambda h + jh - \frac{1}{2}kh \in E \text{ and hence} \\ & \left|f(x_{0} + \lambda h + jh - \frac{1}{2}kh) - \sum\limits_{i=0}^{k} \frac{f_{(i)}^{\prime}(x_{0})}{1!} (\lambda + j - \frac{1}{2}k)^{i}h^{i}\right| < \\ < & C(x_{0}) |\lambda + j - \frac{1}{2}k|^{k+1} |h|^{k+1} \\ \leq & C(x_{0}) |h|^{k+1} (|\lambda| + \frac{1}{2}k)^{k+1} \\ \leq & C(x_{0}) |h|^{k+1} \left[\frac{3}{2^{n+1}|h|} + \frac{1}{2}k\right]^{k+1} \\ \leq & C(x_{0}) |h|^{k+1} \left[\frac{3k \cdot 2^{n+2}}{2^{n+1}} + \frac{1}{2}k\right]^{k+1} \\ \leq & C(x_{0}) (7k|h|)^{k+1}. \\ & \text{Incorporating this estimate in inequality (4), we obtain} \\ (5) & |a_{k}^{\prime}(x_{0} + \lambda h, h; f)/h^{k} - f_{(k)}^{\prime}(x_{0})| < C(x_{0}) (7k)^{k+1} |h| \frac{k}{2} (\frac{k}{j}) \\ & = C(x_{0}) (7k)^{k+1} 2^{k} |h| \end{array}$$

$$\leq C(x_{0}) (7k)^{k+1} 2^{k} \cdot \frac{1}{2^{n} k}$$
$$= \frac{B(x_{0})}{2^{n}},$$

thereby establishing inequality (2).

Let
$$W_{X_0,h,n} = \{x \in I_{n,p} : |4_k(x,h;f)/h^k - f_{(k)}(x_0)| < B(x_0)/2^n\}$$
. To
this point we have shown that for a fixed number $\frac{1}{2}kh \in [-1/2^{n+1}, -1/2^{n+3}] \cup [1/2^{n+3}, 1/2^{n+1}]$, we have $|W_{X_0,h,n}| > \frac{3}{4} \cdot \frac{1}{2^{n-1}}$. Consequently,
 $|\{\frac{1}{2}kh \in I_n : |W_{X_0,h,n}| > \frac{3}{4} \cdot \frac{1}{2^{n-1}}\}| > \frac{3}{4}|I_n|$,

and so

$$|\{\frac{1}{2}kh \in I_n : |W_{x_0,h,n}| > \frac{1}{2}|I_{n,p}|\}| > \frac{3}{4}|I_n|.$$

This, together with the definition of $\phi_n(p/2^n)$, implies that

$$f_{(k)}(x_0) - B(x_0)/2^n \le \phi_n(p/2^n) \le f_{(k)}(x_0) + B(x_0)/2^n$$

and this inequality is valid for all $n > N(x_0)$. In a similar manner we can show that for $n > N(x_0)$ we have

$$\begin{split} f_{(k)}(x_{o}) &= B(x_{o})/2^{n} \leq \phi_{n}((p+1)/2^{n}) \leq f_{(k)}(x_{o}) + B(x_{o})/2^{n}. \end{split}$$
 Therefore, for $n > N(x_{o}) \quad |\phi_{n}(x_{o}) - f_{(k)}(x_{o})| \leq B(x_{o})/2^{n}$, establishing the validity of inequality (1) and completing the proof.

An immediate consequence of this theorem is, of course, the fact that if a function has a (finite) Peano derivative of order k + 1 at each point of the real line, then its Peano derivative of order k is a Baire^{*} one function, a result first proved by Denjoy [5].

REFERENCES

- 1. S. Agronsky, R. Biskner, A. M. Bruckner, and J. Marik, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500.
- 2. J. M. Ash, Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 12 (1967), 181-199.
- H. Auerbach, Sur les derivees generalisees, Fund. Math. 8 (1926), 49-55.
- 4. B. S. Babcock, On properties of the approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294.
- 5. A. Denjoy, Sur l'integration des coefficients differentials d'order superieur, Fund. Math. 25 (1935), 273-326.
- M. J. Evans, L derivatives and approximate Peano derivatives, Trans. Amer. Math. Soc. 165 (1972), 381-388.
- 7. C.-M. Lee, On approximate Peano derivatives, Journal London Math. Soc. 12 (1976), 475-478.
- 8. _____, On functions with summable approximate Peano derivatives, Proc. Amer. Math. Soc. 57 (1976), 53-57.
- Monotonicity theorems for approximate Peano derivatives and integrals, Real Analysis Exchange 1 (1976), 52-62.
- 10. _____, Note on the oscillatory behavior of certain derivatives, Real Analysis Exchange 4 (1979), 178-183.
- 11. J. Marik, On generalized derivatives, Real Analysis Exchange 3 (1978), 87-92.
- 12. R. J. O'Malley, Baire 1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976) 187-192.

Received August 2, 1985