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 APPROXIMATE PEANO DERIVATIVES AND THE BAIRE* ONE PROPERTY

 A real valued function f defined on the real line IR is said to have

 an approximate Peano derivative of order k at x if there are finite

 numbers f^Qj(x), f^j(x), ..., f^(x), and a set E of density one at zero
 such that

 k f(i)(x) . k
 (A) f(x ° + h) - 2 . i - h = o(h ) as h -» 0, h € E. ° i=0

 In this paper we shall insist that f^Qj(x) = f(x) so that the notion of
 approximate continuity at x will correspond to the notion of having an

 approximate Peano derivative of order 0 at x. If one replaces the

 k k
 expression o(h ) in (A) by 0(h ) , the resulting weaker property is called

 approximate Peano boundedness of order k at x, thereby paralleling the

 terminology used by Ash [2] for Peano differentiability and Peano boundedness

 of order k.

 Approximate Peano derivatives are known to share many of the properties

 of ordinary derivatives and papers investigating these properties include

 references [4] through [11]. The purpose of this note is to present a proof,

 using only first principles, that if a function is approximately Peano bounded

 of order k + 1 at each real number, then the k*"*1 approximate Peano
 *

 derivative of the function belongs to the class Baire one in the notation of
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 [12] (or class [C] in the notation of [1].) The proof takes advantage of a

 function sequence construction originally utilized by the present author [6]

 to show that approximate Peano derivatives are in class Baire one and the

 following two elementary lemmas, the first due to Auerbach [3] and the second

 being a well known exercise in mathematical induction.

 LEMMA A. If 2 V isa series of continuous fund ions on IR and Za
 n n

 isa convergent series of positive constant s such that for each x e IR there

 is a positive number N{x) with the property that |^(x) | < a^ whenever n >

 N(x) , then for each nonempty closed set F there is an open interval I such

 that IDF is not empty and Z?n converges uniformly on I n F (and,
 *

 consequent ly , is in class Baire one.)

 LEM4A B. For any real number A

 k . .

 z (-;)* JC)( a + j - 2 ļ)1 = o, i = o, i, k - i j=o J 2
 = kl, i - k .

 The symbol ^(x,h;f) will be used to denote the Riemann difference
 k k-1 k 1

 A (x.h;f) = I (-l)K k-1 JC)f(x k + jh - ikh) 1
 * j=0 3 ¿

 THEOREM. Let f : IR -» IR be approximately Peano bounded of order k+1
 *

 at each x e IR. Then the function f : IR -♦ IR belongs to class Baire one.
 'k)
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 Proof. Note first of all that according to the aforementioned Lemma A of

 Auerbach, it will suffice to find the existence of a sequence {<1)^} of
 continuous functions cmi IR such that for each x there is a number B(x)

 and a natural number N(x) such that

 (1) |4»n(x) - f(k)(x)l * B(x)/2n for n > N(x) .
 Specifically then, we could apply Auerbach1 s lemma to the series

 00 ♦
 + 2 (# .i ~ $ ) to conclude that f,, . = lim «t is Bai re one.
 1 n=l .i n (k) . x--n

 Consequently, the remainder of this proof will consist of the construction of

 the sequence {<J>n> and the verification of (1).

 For each positive integer n, each integer p, each nonzero real number

 h, and each real number a, set

 ïn#p = C(P - §)/2°, (P + §)/2n], In = [-1/Č*1. l/2n+1],

 Sn.p.a,h = <x e xn,p ; > a)'

 Tn n rr = 2 € n : lS„ n,p/a,nl „ « J > tI1« 2 « I > ' n,p,cx n rr 2 n n,p/a,nl „ « 2 n.p «

 and at each point of the form p/2n, define

 Vp/2n) = <a 1 lTn,p,al >
 Finally, extend <1>n linearly to arrive at a continuous function on all of R.

 Let x e r. There is a number C(x ) such that the set
 O o

 k ř(i)<*o> U ° h1 i k+1 E = {h : f(x ° + h) - Z U j, ° h1 i < C(x ° ) |h|K+1} k+1 ° i=0 °

 has density one at zero. Next, set B(xq) = 7^+1(2k)kC(xo) . We shall show

 that (1) will hold with this choice for B(xq) .
 Let e be a positive number less than 1/4 (k+1). There is a positive

 number s such that |E n I ļ > (1 - e. ) ļ I ļ for any interval I containing 0
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 of length less than 6. Choose a positive integer N(xq) so large that
 1/2N(xo) < 6/4.

 Let n > N(x ) and select the unique integer p so that

 p/2n < xq 2ś (p+l)/2n. Next, let h be any number such that

 ikh € [-l/2n+1, -l/2n+3] U [l/2n+3, l/2n+1]

 and hold it fixed. For each j = 0, 1, ... k let

 B . = {y - jh + ikh : y € E} . Then for each j = 0, 1, . . . , k we have
 J *

 |B, n [-3/2n+1, l/2n+1]|
 -

 l/2n~
 k

 and so, letting B = n B., it follows that
 j=0 3

 |B n [-3/2n+1, l/2nfl]|

 1/2

 Furthermore, if Ah € B n [-3/2n+1, l/2n+1], then x + Ah « I and
 o n,p

 Ah +jh - ¿kh € E for each j = 0, 1, . . . , k. The next immediate goal will be

 to shew that

 (2) |Jk(xo + Ah,h;f)/hk - f(k)(xo) I < B(xo)/2n.
 We have

 (3) |^(Xo + Ah,h;f)/hk - f(k)(X0)| =

 = ^ |0(-l)k'j(k)f(xo + Ah + jh - jkh) - f(k)(xo)

 Í ^ hK 2 J ff L (X ° + Ah + jh - ^kh) ¿ - i f(iļļXo)(A + j - ^oVl J + hK j=o J L ° ¿ i=o J

 i- 1 k k-i k k f(i)(V ° 1 i i
 + i- 1 z (-1)* k-i J(*) k 3 x % ° (A + j - ik) ¿ 1 i h i - ffk)(x w ° ) . h j=0 3 i=0 ¿ w °

 However,
 286



 k , . . k f...(x ) , • • k f/-x(x ) • k . . . . .

 2 ("D^Ô , . . 3 2 Uļ, ° (A+j- £)V , • • = Z uļ, ° h1 • 2 (-1) . J( . . J )(A+j- ^)1 . . j=o 3 i=o i=o 3=0 J

 = f(k)|xo|hk'
 where the last equality Is due to Lemma B. .

 Consequently, the second absolute value on the rightmost side of

 inequality (3) is identically zero, yielding

 (4) ^(*0 + Ah,h;f)/hk - f(k)(xo) | S

 s Ir- z (-l)k~j(k) J ff L (x ° + Ah + jh - idi) ¿ - z f(iļļXp)(A + j - ik) ¿ VI ' . hK j=o J L ° ¿ i=0 ¿ '
 However, for each j = O, 1, . . . k, Ah + jh - ¿kh € E and hence

 f(x ° +• Ah + jh - ikh) - r f(i1¡Xc>)(A + j - ļk) V < ° 1=0

 < C(Xo)|A + j - ^k|k+1|h|k+1

 < C(Xo)|h|k+1(|A| + ^k)k+1

 £ C(x)|h|k+1L| ° ° [2 |h| 2 .

 < C(xo) |h|k+1'p^!! + ^kk+1

 < C(xo)(7k|h|)k+1.
 Incorporating this estimate in inequality (4), we obtain

 (5) |^(xo + Ah,h;f)/hk- f(k)(X0)| < C(xo)(7k)k+1|h| Z^(k)

 = C(xo)(7k)k+12k|h|

 < C(Xo)(7k)k+12k-^-
 2 K

 B(Xo)
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 thereby establishing inequality (2).

 tet ',h,n * <x * rn,p : l^<x-h:i)/hk " f(lc)<*0)l < B<xo)/2n>. To
 this point we have shown that for a fixed number ìkh e [-l/2n+1, -l/2n+3] u

 [l/2n+3, l/2n+1], we have |Wx h n| >1.-1-.. Consequently,

 = l"x .h.nl > > t'1«' "
 O 2

 and so

 K^kh6In= lWx,h,nl >X,pl>l »K'-
 O

 This, together with the definition of 4>n(p/2n) , implies that

 í(k)(xo) - B(x0)/2n S ♦„(p/a11) í ř(k)(xo) + B(xo)/2n,

 and this inequality is valid for all n > N(xQ) . In a similar manner we can

 show that for n > N(xq) we have

 f(k)(xo) " B<V/2n s *n((p + 1,/2Ï1) - f(k)(xo) + B(xo)/2n*

 Therefore, for n > N(x o ) |<f> n (x o ) - f #,_» (x o ) | S B(x o )/2n, establishing the o n o (le) #,_» o o

 validity of inequality (1) and completing the proof.

 An immediate consequence of this theorem is, of course, the fact that if

 a function has a (finite) Peano derivative of order k + 1 at each point of
 *

 the real line, then its Peano derivative of order k is a Baire one function,

 a result first proved by Den joy [5],
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