M.J. Evans, Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205

APPROXIMATE PEANO DERIVATIVES AND THE BAIRE* ONE PROPERTY

A real valued function f defined on the real line \mathbb{R} is said to have an approximate Peano derivative of order k at x if there are finite numbers $f_{(0)}(x), f_{(1)}(x), \ldots, f_{(k)}(x)$, and a set E of density one at zero such that

$$
\begin{equation*}
f\left(x_{0}+h\right)-\sum_{i=0}^{k} \frac{f_{(i)}(x)}{i!} h^{i}=o\left(h^{k}\right) \quad \text { as } h \rightarrow 0, h \in E \tag{A}
\end{equation*}
$$

In this paper we shall insist that $f_{(0)}(x)=f(x)$ so that the notion of approximate continuity at x will correspond to the notion of having an approximate Peano derivative of order 0 at x. If one replaces the expression $O\left(h^{k}\right)$ in (A) by $O\left(h^{k}\right)$, the resulting weaker property is called approximate Peano boundedness of order k at x, thereby paralleling the terminology used by Ash [2] for Peano differentiability and Peano boundedness of order k.

Approximate Peano derivatives are known to share many of the properties of ordinary derivatives and papers investigating these properties include references [4] through [11]. The purpose of this note is to present a proof, using only first principles, that if a function is approximately Peano bounded of order $k+1$ at each real number, then the $k^{\text {th }}$ approximate Peano derivative of the function belongs to the class Baire* one in the notation of
[12] (or class [C] in the notation of [1].) The proof takes advantage of a function sequence construction originally utilized by the present author [6] to show that approximate Peano derivatives are in class Baire one and the following two elementary lemmas, the first due to Auerbach [3] and the second being a well known exercise in mathematical induction.

LEMMA A. If $\quad \Sigma \varphi_{n}$ is a series of continuous functions on \mathbb{R} and Σa_{n} is a convergent series of positive constants such that for each $x \in \mathbb{R}$ there is a positive number $N(x)$ with the property that $\left|\varphi_{n}(x)\right| \leq a_{n}$ whenever $n \geq$ $N(x)$, then for each nonempty closed set F there is an open interval I such that $I \cap F$ is not empty and $\Sigma \varphi_{n}$ converges uniformly on $I \cap F$ (and, consequently, Σ_{n} is in class Baire* one.)

LEMMA B. For any real number λ

$$
\begin{aligned}
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\left(\lambda+j-\frac{k}{2}\right)^{i} & =0, \quad i=0,1, \ldots, k-1 \\
& =k!, \quad i=k
\end{aligned}
$$

The symbol $4_{k}(x, h ; f)$ will be used to denote the Riemann difference

$$
\Delta_{k}(x, h ; f)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} f\left(x+j h-\frac{1}{2} k h\right)
$$

THEOREM. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be approximately Peano bounded of order $k+1$ at each $x \in \mathbb{R}$. Then the function $f(k): \mathbb{R} \rightarrow \mathbb{R}$ belongs to class Baire* one.

Proof. Note first of all that according to the aforementioned Lemma A of Auerbach, it will suffice to find the existence of a sequence $\left\{\phi_{n}\right\}$ of continuous functions on \mathbb{R} such that for each x there is a number $B(x)$ and a natural number $N(x)$ such that

$$
\begin{equation*}
\left|\phi_{n}(x)-f_{(k)}(x)\right| \leq B(x) / 2^{n} \text { for } n>N(x) \tag{1}
\end{equation*}
$$

Specifically then, we could apply Auerbach's lemma to the series $\phi_{1}+\sum_{n=1}^{\infty}\left(\phi_{n+1}-\phi_{n}\right)$ to conclude that $f_{(k)}=\lim _{x \rightarrow \infty} \phi_{n}$ is Baire ${ }^{*}$ one. Consequently, the remainder of this proof will consist of the construction of the sequence $\left\{\phi_{n}\right\}$ and the verification of (1).

For each positive integer n, each integer p, each nonzero real number h, and each real number α, set

$$
\begin{gathered}
I_{n, p}=\left[\left(p-\frac{3}{2}\right) / 2^{n},\left(p+\frac{3}{2}\right) / 2^{n}\right], \quad I_{n}=\left[-1 / 2^{n+1}, 1 / 2^{n+1}\right], \\
S_{n, p, \alpha, h}=\left\{x \in I_{n, p}: \Delta_{k}(x, h ; f) / h^{k}>\alpha\right\}, \\
T_{n, p, \alpha}=\left\{\frac{1}{2} k h \in I_{n}:\left|S_{n, p, \alpha, h}\right|>\frac{1}{2}\left|I_{n, p}\right|\right\},
\end{gathered}
$$

and at each point of the form $\mathrm{p} / 2^{\mathrm{n}}$, define

$$
\phi_{n}\left(p / 2^{n}\right)=\sup \left\{\alpha:\left|T_{n, p, \alpha}\right|>\frac{1}{2}\left|I_{n}\right|\right\}
$$

Finally, extend ϕ_{n} linearly to arrive at a continuous function on all of \mathbb{R}.
Let $x_{0} \in \mathbb{R}$. There is a number $C\left(x_{0}\right)$ such that the set

$$
E=\left\{h:\left|f\left(x_{0}+h\right)-\sum_{i=0}^{k} \frac{f_{(i)}\left(x_{0}\right)}{i!} h^{i}\right|<C\left(x_{0}\right)|h|^{k+1}\right\}
$$

has density one at zero. Next, set $B\left(x_{0}\right)=7^{k+1}(2 k)^{k} C\left(x_{0}\right)$. We shall show that (1) will hold with this choice for $B\left(x_{0}\right)$.

Let ϵ be a positive number less than $1 / 4(k+1)$. There is a positive number δ such that $|E \cap I|>(1-\epsilon)|I|$ for any interval I containing 0
of length less than δ. Choose a positive integer $N\left(x_{0}\right)$ so large that $1 / 2^{N\left(x_{0}\right)}<\delta / 4$.

Let $n>N\left(x_{0}\right)$ and select the unique integer p so that
$p / 2^{n}<x_{0} \leq(p+1) / 2^{n}$. Next, let h be any number such that

$$
\frac{1}{2} k h \in\left[-1 / 2^{n+1},-1 / 2^{n+3}\right] \cup\left[1 / 2^{n+3}, 1 / 2^{n+1}\right]
$$

and hold it fixed. For each $j=0,1, \ldots k$ let $B_{j}=\left\{Y-j h+\frac{1}{2} k h: y \in E\right\}$. Then for each $j=0,1, \ldots, k$ we have

$$
\frac{\left|B_{j} \cap\left[-3 / 2^{\mathrm{n}+1}, 1 / 2^{\mathrm{n}+1}\right]\right|}{1 / 2^{\mathrm{n}-1}}>1-\epsilon
$$

and so, letting $B=\prod_{j=0}^{k} B_{j}$, it follows that

$$
\frac{\left|B \cap\left[-3 / 2^{n+1}, 1 / 2^{n+1}\right]\right|}{1 / 2^{n-1}}>1-(k+1) \epsilon>3 / 4 .
$$

Furthermore, if $\lambda h \in B \cap\left[-3 / 2^{n+1}, 1 / 2^{n+1}\right]$, then $x_{0}+\lambda h \in I_{n, p}$ and $\lambda h+j h-\frac{1}{2} k h \in E$ for each $j=0,1, \ldots, k$. The next immediate goal will be to show that

$$
\begin{equation*}
\left|厶_{k}\left(x_{0}+\lambda h, h ; f\right) / h^{k}-f_{(k)}\left(x_{0}\right)\right|<B\left(x_{0}\right) / 2^{n} \tag{2}
\end{equation*}
$$

We have

$$
\text { (3) } \begin{aligned}
& \quad\left|4_{k}\left(x_{0}+\lambda h, h ; f\right) / h^{k}-f(k)\left(x_{0}\right)\right|= \\
&=\left|\frac{1}{h^{k}} \sum_{j=0}^{k}(-1)^{k-j}\left(k_{j}\right) f\left(x_{0}+\lambda h+j h-\frac{1}{2} k h\right)-f_{(k)}\left(x_{0}\right)\right| \\
& \leq\left|\frac{1}{h^{k}} \sum_{j=0}^{k}(-1)^{k-j}\left(k_{j}\right)\left[f\left(x_{0}+\lambda h+j h-\frac{1}{2} k h\right)-\sum_{i=0}^{k} \frac{f_{(i)}\left(x_{0}\right)}{i!}\left(\lambda+j-\frac{1}{2} k\right)^{i^{i}} h^{i}\right]\right|+ \\
& \quad+\left|\frac{1}{h^{k}} \sum_{j=0}^{k}(-1)^{k-j}\left(k_{j}\right) \sum_{i=0}^{k} \frac{f_{(i)}\left(x_{0}\right)}{i!}\left(\lambda+j-\frac{1}{2} k\right)^{i^{i}} h^{i}-f_{(k)}\left(x_{0}\right)\right| .
\end{aligned}
$$

However,
where the last equality is due to Lemma B..
Consequently, the second absolute value on the rightmost side of
inequality (3) is identically zero, yielding
(4) $\left|4_{k}\left(x_{0}+\lambda h, h ; f\right) / h^{k}-f_{(k)}\left(x_{0}\right)\right| \leq$
$\leq\left|\frac{1}{h^{k}} \sum_{j=0}^{k}(-1)^{k-j}\left(k_{j}\right)\left[f\left(x_{0}+\lambda h+j h-\frac{1}{2} k h\right)-\sum_{i=0}^{k} \frac{f_{(i)}\left(x_{o}\right)}{i!}\left(\lambda+j-\frac{1}{2} k\right)^{i} h^{i}\right]\right|$.
However, for each $j=0,1, \ldots k, \lambda h+j h-\frac{1}{2} k h \in E$ and hence

$$
\begin{aligned}
& \left|f\left(x_{0}+\lambda h+j h-\frac{1}{2} k h\right)-\sum_{i=0}^{k} \frac{f_{(i)}\left(x_{0}\right)}{i!}\left(\lambda+j-\frac{1}{2} k\right)^{i_{h}}{ }^{i}\right|< \\
& \quad<C\left(x_{0}\right)\left|\lambda+j-\frac{1}{2} k\right|^{k+1}|h|^{k+1} \\
& \leq C\left(x_{0}\right)|h|^{k+1}\left(|\lambda|+\frac{1}{2} k\right)^{k+1} \\
& \leq C\left(x_{0}\right)|h|^{k+1}\left[\frac{3}{2^{n+1}|h|}+\frac{1}{2^{k}}\right]^{k+1} \\
& \leq C\left(x_{0}\right)|h|^{k+1}\left[\frac{3 k \cdot 2^{n+2}}{2^{n+1}}+\frac{1}{2} k\right]^{k+1} \\
& \quad<C\left(x_{0}\right)(7 k|h|)^{k+1} .
\end{aligned}
$$

Incorporating this estimate in inequality (4), we obtain

$$
\begin{align*}
\left|\Delta_{k}\left(x_{0}+\lambda h, h ; f\right) / h^{k}-f_{(k)}\left(x_{0}\right)\right| & <C\left(x_{0}\right)(7 k)^{k+1}|h| \sum_{j=0}^{k}\left(k_{j}\right) \tag{5}\\
& =C\left(x_{0}\right)(7 k)^{k+1} 2^{k}|h| \\
& \leq C\left(x_{0}\right)(7 k)^{k+1} 2^{k} \cdot \frac{1}{2^{n} k} \\
& =\frac{B\left(x_{0}\right)}{2^{n}},
\end{align*}
$$

$$
\begin{aligned}
& \sum_{j=0}^{k}(-1)^{k-j}\left(k_{j}\right) \sum_{i=0}^{k} \frac{f_{(i)}\left(x_{0}\right)}{i!}\left(\lambda+j-\frac{k}{2}\right)^{i^{\prime}} h^{i}=\sum_{i=0}^{k} \frac{f_{(i)}\left(x_{o}\right)}{i!} h^{i} \sum_{j=0}^{k}(-1)^{k-j}\left(k_{j}\right)\left(\lambda+j-\frac{k}{2}\right) i \\
& =f_{(k)}\left(x_{0}\right) h^{k},
\end{aligned}
$$

thereby establishing inequality (2).
Let $W_{x_{0}, h, n}=\left\{x \in I_{n, p}:\left|A_{k}(x, h ; f) / h^{k}-f_{(k)}\left(x_{0}\right)\right|<B\left(x_{0}\right) / 2^{n}\right\}$. To this point we have shown that for a fixed number $\frac{1}{2} \mathrm{kh} \in\left[-1 / 2^{\mathrm{n}+1},-1 / 2^{\mathrm{n}+3}\right] u$ $\left[1 / 2^{\mathrm{n}+3}, 1 / 2^{\mathrm{n}+1}\right]$, we have $\left|\mathrm{W}_{\mathrm{x}_{0}, \mathrm{~h}, \mathrm{n}}\right|>\frac{3}{4} \cdot \frac{1}{2^{\mathrm{n}-1}}$. Consequently,

$$
\left|\left\{\frac{1}{2} \mathrm{kh} \in I_{n}:\left|W_{x_{0}, h, n}\right|>\frac{3}{4} \cdot \frac{1}{2^{n-1}}\right\}\right|>\frac{3}{4}\left|I_{n}\right|
$$

and so

$$
\left|\left\{\frac{1}{2} \mathrm{kh} \in I_{n}:\left|W_{x_{0}, h, n}\right|>\frac{1}{2}\left|I_{n, p}\right|\right\}\right|>\frac{3}{4}\left|I_{n}\right| .
$$

This, together with the definition of $\phi_{n}\left(p / 2^{n}\right)$, implies that

$$
f_{(k)}\left(x_{0}\right)-B\left(x_{0}\right) / 2^{n} \leq \phi_{n}\left(p / 2^{n}\right) \leq f_{(k)}\left(x_{0}\right)+B\left(x_{0}\right) / 2^{n}
$$

and this inequality is valid for all $n>N\left(x_{0}\right)$. In a similar manner we can show that for $n>N\left(x_{0}\right)$ we have

$$
f_{(k)}\left(x_{0}\right)-B\left(x_{0}\right) / 2^{n} \leq \phi_{n}\left((p+1) / 2^{n}\right) \leq f_{(k)}\left(x_{0}\right)+B\left(x_{0}\right) / 2^{n}
$$

Therefore, for $n>N\left(x_{0}\right) \quad\left|\phi_{n}\left(x_{0}\right)-f_{(k)}\left(x_{0}\right)\right| \leq B\left(x_{0}\right) / 2^{n}$, establishing the validity of inequality (1) and completing the proof.

An immediate consequence of this theorem is, of course, the fact that if a function has a (finite) Peano derivative of order $k+1$ at each point of the real line, then its Peano derivative of order k is a Baire* one function, a result first proved by Denjoy [5].

1. S. Agronsky, R. Biskner, A. M. Bruckner, and J. Marik, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500.
2. J. M. Ash, Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 12 (1967), 181-199.
3. H. Auerbach, Sur les derivees generalisees, Fund. Math. 8 (1926), 49-55.
4. B. S. Babcock, On properties of the approximate Peano derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294.
5. A. Denjoy, Sur l'integration des coefficients differentials d'order superieur, Fund. Math. 25 (1935), 273-326.
6. M. J. Evans, L_{p} derivatives and approximate Peano derivatives, Trans. Amer. Math. Soc. 165 (1972), 381-388.
7. C.-M. Lee, On approximate Peano derivatives, Journal London Math. Soc. 12 (1976), 475-478.
8. \qquad , On functions with summable approximate Peano derivatives, Proc. Amer. Math. Soc. 57 (1976), 53-57.
9. \qquad , Monotonicity theorems for approximate Peano $\overline{d e r i v a t i v e s ~ a n d ~ i n t e g r a l s, ~ R e a l ~ A n a l y s i s ~ E x c h a n g e ~} 1$ (1976), 52-62.
10. \qquad , Note on the oscillatory behavior of certain derivatives , Real Analysis Exchange 4 (1979), 178-183.
11. J. Marik, On generalized derivatives, Real Analysis Exchange 3 (1978), 87-92.
12. R. J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976) 187-192.

Received August 2, 1985

