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*
APPROXIMATE PEANO DERIVATIVES AND THE BAIRE ONE PROPERTY

A real valued function f defined on the real line R 1is said to have

an approximate Peano derivative of order k at x if there are finite

numbers f(o)(x), f(l)(x), ooy f(k)(x), and a set E of density one at zero
such that

k f(i)(x) i Kk
(A) f(xofh)—iio—i-!—h = o(h™) as h -0, h€E.

In this paper we shall insist that £ = f(x) so that the notion of

0y )
approximate continuity at x will correspond to the notion of having an
approximate Peano derivative of order 0 at x. If one replaces the
expression o(hX) in (A) by O(KY), the resulting weaker property is called
approximate Peano boundedness of order k at x, thereby paralleling the
terminology used by Ash [2] for Peano differentiability and Peano boundedness
of order k.

Approximate Peano derivatives are known to share many of the properties
of ordinary derivatives and papers investigating these properties include
references [4] through [11]. The purpose of this note is to present a proof,
using only first principles, that if a function is approximately Peano bounded

th

of order k + 1 at each real number, then the k approximate Peano

derivative of the function belongs to the class Baire* one in the notation of
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[12] (or class [C] in the notation of [1].) The proof takes advantage of a
function sequence construction originally utilized by the present author [6]
to show that approximate Peano derivatives are in class Baire one and the
following two elementary lemmas, the first due to Auerbach [3] and the second

being a well known exercise in mathematical induction.

LEMMA A. If an is & series of continuous functions on R and zan

is a convergent series of positive constants such that for each x € R there

is a positive number N(x) with the property that |Pn(x)| < a whenever n 2

N(x), then for each nonempty closed set F there is an open interval I such

that I N F is not empty and an converges uniformly on I N F (and,

. *
consequently, an is in class Baire one.)

LEMMA B. For any real number A
k k—j kK k. i :
s (-0 E ya+ - =0, i=0,1, ..., k-1
J=0 / 2

"
x
~

]
F

The symbol Ak(x,h;f) will be used to denote the Riemann difference

k
ey o _k-Jk |
4 (x,h;f) = jio( 1) (j)f(x + jh - zkh)

THEOREM. Let f : R - R be approximately Peano bounded of order K+l
*

at each x € R. Then the function f(k) : R+ R belongs to class Baire one.
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Proof. Note first of all that according to the aforementioned Lemma A of
Auverbach, it will suffice to find the existence of a seguence {cpn} cof
continuous functions on R such that for each x there is a number B(x)
and a natural number N(x) such that

n
(1) lqan(x) - f(k) ()| = B(x)/2 for n > N(x).

Specifically then, we could apply Auerbach's lemma to the series

*
= lim ¢n is Baire one.
X » @

- ]
¢1 + nil(qnn_’_:l - q:n) to conclude that f

Consequently, the remainder of this proof will consist of the construction of

(k)

the sequence {q:n} and the verification of (1).
For each positive integer n, ‘each integer p, each nonzero real number

h, and each real number «, set

_ _3 3,,,n, = - +1 n+1
Lp=UB-3/2 (p+3)/2, 1 =[-1/27, 1277,
- , ek
Sn,p,cx,h = (X € In,p : Ak(x,h,f)/h > a},
T =(kherI :|s 1>y
n,p,a 2 n°~ '"“n,p,ah 2" n.p!’"

and at each point of the form p/zn, define

= . 1
0,(0/2%) =sup {a : |T | > FIT ).

Finally, extend ¢n linearly to arrive at a continuous function on all of R.
Let X, € R. There is a mumber C(xo) such that the set

k £ (x.)
= ) _ (i)'"o’ . i
E=(h : f(xo + h) iz S § h l

has density one at zero. Next, set ’B(xo) = 7k+1(2k)k0(x0). We shall show

k+1
< Clx ) [h[™ 7}

that (1) will hold with this choice for B(xo).
Let e¢ be a positive number less than 1/4(k+1). There is a positive

mumber &6 such that |[EN I| > (1 - ¢)]|I| for any interval I containing 0
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of length less than 6. Choose a positive integer N(xo) so large that
1/28%) < 6/4.
. Let n > N(xo) and select the unique integer p so that
p/2n < xo < (p+1)/2n. Next, let h be any number such that
%kh € [-1/2n+1, _1/2n+3] U [1/2n+3' 1/2n+1]
and hold it fixed. For each j=0,1, ... k let

Bj={y-jh+%kh:yeE). Then for each j =0, 1, ..., kK we have

|Bj n [_3/2n+1' 1/2n+1]|
) >1 -€,
1/2
k
and so, letting B = N Bj' it follows that
j=0
1B n [-3/2%*, 1/2°%)
= >1-(k+ 1)e > 3/4.
1/2
Furthermore, if Ah € B n [—3/2n+1, 1/2n+1], then X + Ah € In p and
Ah +jh - %kh € E foreach j=0,1, ..., k. The next immediate goal will be
to show that
k n
(2) IAk(XO + Ah,h;f)/h™ - f(k) (x°)| < B(xo)/z .

We have

(3) 14 (%, + Ahh;£)/B - £, (%)) =

k
= 1 _\/k-3k _1 _
;E j:o( 1) (J.)f(xo + Ah + jh fkh) f(k) (xo)
k k £ (x_)
1 k-3 k . _ (1) %o L
< ;,Ej:o(-l) (j)[f(x°+Ah+Jh %kh) i:o—ﬂ—(/\+j 2k) ] +
k k £,..(x) .
1 _qk-j k (i) ‘"o I Y % S )
+ }:E j:o( 1) (j)iio —1'|—'(A + ] 2k) h f(k)(xo)
However,
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k

k . k £, .. (x) . k £ ..(x) . . .
- . i k-j k .k
-0k I £ (l)i, O (A+3- .12;)1}11 = z (_;'_"_ ntz (-1) J(j)(A+J— 3"
3=0 I i=0 : i=0 3=0
_ k
= f(k) (xo)h '
where the last equality is due to Lemma B..
Consequently, the second absolute value on the rightmost side of
inequality (3) is identically zero, yielding
k
(4) IAk(xo + Ah,h;f)/h - f(k) (xo)| <
k . k £,..(x)
s % 2 09I {f(xo +Ah+ jh- ) -z A0 %k)ihi] :
h™ j=0 i=0 :
However, for each j =0, 1, ...k,Ah+jh—%kheE and hence
k £ .. (x)
_1 _ (i) o R TR P
If(xo #ah+ jh-gkh) - 2 2L 204 5 - Hgtht| <
i=0
< cx)|A+ 3 - k<R
) 2
k+1 1, k+1
< C(x ) [h|T T(1A] + k)
k+1[ 3 1 Tk+1
= Gl IR = * 3¢
27 " |h| ]
. n+2 ]
k+1[3k-2 1, 1k+1
< C(xo) h| 'z'rTl-T—" + §k

< c(x ) (Tka ),

Incorporating this estimate in inequality (4), we obtain

K
(5) |4 (%, + Mh,hif)/mE - £ (%) | < C(xo)(7k)k+1|h|jio(l;)

c(x_) (1)< 125 n|

k1 Rk

IA

Clx ) (7k) 25 2
2

B(xo)

21’1
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thereby establishing inequality (2).

Let W

= . ) k _ n
xo,h,n = (X € In,p : IAk(x,h,f)/h f(k) (xo)| < B(xo)/z }. To

this point we have _showh that for a fixed number -;-kh € [-1/2n+1, _1/2n+3] U

n+3 n+l 3 1
(1/2°° =, 1/2° 7], we have |Wx°,h,n' > Z;ﬁ-—i' Consequently,
1 3 1 3
H'ikh € In : wa ,h,nI > 7 n--l}I > ZlIn"
o] 2
and so

1
'{'ikh € In ; wa ,h,n
(o)

1 3
| > Z1T, o1 > FIT 0
This, together with the definition of ¢n(p/2n) , implies that
n ' n
£ i) (%,) ~ B(x)/2% < ¢ (p/2%) = £, (%) + B(x)/2",
and this inequality is valid for all n > N(xo) . In a similar manner we can
show that for n > N(xo) we have
n n n
f(k) (xo) - B(xo)/z < qJn((p +1)/27) < f(k) (xo) + B(xo)/2 .
n -
Therefore, for n > N(xo) |¢n(xo) - f(k) (xo)l < B(xo)/z , establishing the

validity of inequality (1) and completing the proof.

An immediate consequence of this theorem is, of course, the fact that if
a function has a (finite) Peano derivative of order k + 1 at each point of

the real line, then its Peano derivative of order k is a Baire* one function,

a result first proved by Denjoy [5].

288



10.

11.

12.

REFERENCES

S. Agronsky, R. Biskner, A. M. Bruckner, and J. Marik,
Representations of functions by derivatives, Trans. Amer.
Math. Soc. 263 (1981), 493-500.

J. M. Ash, Generalizations of the Riemann derivative, Trans.
Amer. Math. Soc. 12 (1967), 181-199.

H. Auerbach, Sur les derivees generalisees, Fund. Math. 8
(1926), 49-55.

B. S. Babcock, On properties of the approximate Peano
derivatives, Trans. Amer. Math. Soc. 212 (1975), 279-294.

A. Denjoy, Sur l'integration des coefficients differentials
d'order superieur, Fund. Math. 25 (1935), 273-326.

M. J. Evans, LP derivatives and approximate Peano
derivatives, Trans. Amer. Math. Soc. 165 (1972), 381-388.

C.—M. Lee, On approximate Peano derivatives, Journal London
Math. Soc. 12 (1976), 475-478.

, On functions with summable approximate Peano
derivatives, Proc. Amer. Math. Soc. 57 (1976), 53-57.

, Monotonicity theorems for approximalte Peano
derivatives and integrals, Real Analysis Exchange 1 (1976),
52-62.

, Note on the oscillatory behavior of certain
derivatives , Real Analysis Exchange 4 (1979), 178-183.

J. Marik, On generalized derivatives, Real Analysis Exchange
3 (1978), 87-92.

*
R. J. O'Malley, Baire !, Darboux functions, Proc. Amer.
Math. Soc. 60 (1976) 187-192.

Recedived August 2, 1985

289



	Contents
	p. 283
	p. 284
	p. 285
	p. 286
	p. 287
	p. 288
	p. 289

	Issue Table of Contents
	Real Analysis Exchange, Vol. 11, No. 1 (1985-86) pp. 1-289
	Front Matter
	EDITORIAL MESSAGE [pp. 4-4]
	THE TENTH SUMMER REAL ANALYSIS SYMPOSIUM July 27-30 1986 [pp. 5-5]
	PROCEEDINGS OF THE NINTH SYMPOSIUM
	The Ninth Summer Real Analysis Symposium June 12-15, 1985, The University of Louisville: Schedule of Events [pp. 6-9]
	Very Generalized Riemann Derivatives, Generalized Riemann Derivatives and Associated Summability Methods [pp. 10-29]
	NONABSOLUTE INTEGRATION IN THE PLANE [pp. 30-39]
	Determining Sets for Functions and Measures [pp. 40-55]
	CONCERNING EXTENDABLE CONNECTIVITY FUNCTIONS [pp. 56-63]
	Continuous Restrictions of Marczewski Measurable Functions [pp. 64-71]
	Infinite Peano derivatives [pp. 72-74]
	TWO MORE CHARACTERIZATIONS OF BESOV-BERGMAN-LIPSCHITZ SPACES [pp. 75-80]
	HIGH ORDER SMOOTHNESS [pp. 81-84]
	A New Approach to Integration [pp. 85-96]

	TOPICAL SURVEY
	SELECTIVE DIFFERENTIATION [pp. 97-120]

	RESEARCH ARTICLES
	NONABSOLUTELY CONVERGENT INTEGRALS [pp. 121-133]
	BILINEAR INTEGRATION OF AN EXTREME POINT MULTIFUNCTION [pp. 134-158]
	DERIVATIVES ON COUNTABLE DENSE SUBSETS [pp. 159-167]
	PLANAR SETS WHOSE COMPLEMENTS DO NOT CONTAIN A DENSE SET OF LINES [pp. 168-178]
	Closure Properties of Order Continuous Operators [pp. 179-193]
	CONTINUOUS FUNCTIONS NEED NOT HAVE σ-POROUS GRAPHS [pp. 194-203]
	MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES [pp. 204-220]
	A RIESZ-TYPE DEFINITION OF THE DENJOY INTEGRAL [pp. 221-227]
	Some Properties of Semi-continuous Functions [pp. 228-243]

	INROADS
	A MOMENT INEQUALITY [pp. 244-253]
	THE UNIFORM LIMIT OF CONNECTIVITY FUNCTIONS [pp. 254-259]
	CONNECTIVITY FUNCTIONS WITH A PERFECT ROAD [pp. 260-264]
	A DERIVATIVE OFTEN ZERO AND DISCONTINUOUS [pp. 265-270]
	THE METHOD OF FRACTIONAL OPERATORS APPLIED TO SUMMATION [pp. 271-282]
	APPROXIMATE PEANO DERIVATIVES AND THE BAIRE ONE PROPERTY [pp. 283-289]




