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 A RIESZ-TYPE DEFINITION OF THE DENJOY INTEGRAL

 Riesz [4] defines a Lebesgue integrable function as the almost

 everywhere limit of a mean convergent sequence of step functions. A short

 proof of the uniqueness of the definition can be found in [2]. In this

 note we give a similar definition for the Denjoy integral and show that

 using this definition a convergence theorem can be proved.

 First, we give some' definitions [6].' Let X be a closed set in

 [a,b] . A function F is said to be absolutely continuous in the restricted

 sense on X or AC*(X) if for every e > 0 there exists 6 > 0 such that

 whenever

 I I bi - a± I <6

 where [a^, b^] , i = 1,2,..., is a finite or infinite sequence of

 nonover lapping intervals in [a,b] and a^, b^ e X for all i, we have

 J w(F; [a^, b.]) < e
 i

 where oj denotes the oscillation of F over [a., b.l. Then F is ACG* * if i i *

 [a,b] is the union of closed sets X^, i = 1,2,..., such that F is AC*(Xp

 for each i. A function f is Denjoy integrable on [a,b] if there exists

 a continuo xis and ACG* function F such that the derivative F'(x) = f(x)

 almost everywhere in [a,b] .
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 Next, a sequence of functions f is said to be oontval-convevgent

 to f on [a,b] if the following conditions are satisfied :

 (i) fn(x) "*■ f(x) almost everywhere in [a,b] as n -»■ ® and each

 f is Denjoy integrable on [a,b] ;

 (ii) the primitives Fn of f are ACG* uniformly in n, i.e., [a,b]

 is the union of closed sets on each of which is AC*(X^) uniformly
 in n;

 (iii) Fn00 converges uniformly on [a,b] as n ».

 We define a RD integrable function f on [a,b] to be the limit

 almost everywhere of a control -convergent sequence of step functions <1>n,

 and

 ,b ,b

 f(x) dx = lim d* •
 a. n-x» a

 We shall see that the integral is uniquely determined.

 CONTROLLED CONVERGENCE THEOREM If £ %s control-aonvergent

 to £ an [a,b ],then £ is Dertjoy integrable on [a,b] and

 Í f(x)dx » lim í fn(x)dx. J a J a

 The proof is given in [3] . Bullen pointed out to the authors

 that the convergence theorem is also proved in [1; p. 50 Theorem 47] with

 (iii) replaced by

 (iv) Fn are equicontinuous in [a,b] .

 In fact, the two sets of conditions are equivalent. Suppose that

 conditions (i), (ii) and (iv) hold. We claim that {Fn(x)} is bounded at
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 every point x e [a,b]. Indeed, in view of (iv), for every x e [a,b] there

 exists 6 (x) > 0 such that

 |Fn(x) - F (y) I š 1 for every n

 whenever |x-y| < 6(x). Then it follows from the Heine-Borei covering

 theorem that there exists a finite number of points, say, x^ , x^ , x^,

 such that the union of (x^ - x^ + <S(x^)), i = 1,2,...,N covers

 [a,b] . For any y e [a,b] we have y e (x^ - 6 (x^) , x^ + 6(x^)) for some
 i and

 If (y) I š 1 If n^y (y) ' - F (x.)l + If nv (x.)| n 1 n^y ' n i nv i

 Š 1 + (2i - 1)

 S 2N

 Hence ÍF^Cx)} is uniformly bounded and therefore bounded at each x.

 By Ascoli's theorem [5; p. 155], the above sequence ÍF^} has a

 subsequence which converges pointwise uniformly on [a,b] . In view of

 the controlled convergence theorem, the function f is Den joy integrable

 and this subsequence converges to F, the primitive of f. Consequently,

 for every subsequence of tFn>, there exists a subsubsequence which

 converges uniformly to F on [a,b] . Therefore condition (iii) holds by

 reductio ad absurdum. The converse is easy.

 In other words, the controlled convergence theorem also follows

 from [1] without reference to [3]. As a corollary of the controlled

 convergence theorem, we have the following.

 UNIQUENESS THEOREM If a sequence of step functions <1>n is

 control-convergent to zero on [a,b] , then
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 fb
 lim <ļ> (x)dx = 0.
 n-**> J a

 The theorem can also be proved directly. In view of its similarity

 to [3], we shall not reproduce the proof.

 Next, we show that the Denjoy and RD integrals are equivalent.

 It is easy to see from the controlled convergence theorem that every RD

 integrable function is Denjoy integrable.

 Now suppose f is Denjoy integrable on [a,b] . We shall prove that

 it is RD integrable there. Let F be the primitive of f. Then F is ACG*,

 i.e., [a,b] is the union of closed sets on each of which F is AC*(X^).

 Put F fx) = F fx) when x e X. U ... U X and linear or piecewise r linear n 1 n r

 elsewhere. We want piecewise linearity so that lFnCx) -F(X)I 1. */n f°r a^1

 X s [a,b] and that Fn(x) converges to F(x) uniformly on [a,b] as n + «.

 Furthermore let fn(x) = almost everywhere. It is easy to
 see that each f is Lebesgue integrable on [a,b] . Thus for each n there

 exists a step function <1>n satisfying

 fb

 lfn(x) " I dx < 2" j a

 IfnOO'+nMl < 2"n for x 6 [a,b] - En

 where is an open set with measure less than 2~n. It is a

 standard argument to show that <1>n is control -convergent to f on [a,b] .

 Hence f is RD integrable on [a,b] .

 Therefore we have proved the following

 EQUIVALENCE THEOREM A function f is RD integrable on [a,b] if

 and only if it is Denjoy integrable on [a,b] .
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 In what follows we give a shorter proof of the controlled

 convergence theorem, using the definition of the RD integral.

 PROOF OF CONTROLLED CONVERGENCE THEOREM Suppose f is contro 1-

 convergent to f on [a,b] . Since the primitives Fn of f are ACG*

 uniformly in n, there exists a sequence of closed sets X^ with union

 [a,b] and on each of which Fn is AC*(X^) uniformly in n. Put Gn(x) = FnOO

 when X e U ... U and linear or piecewise linear (if necessary)

 elsewhere, and gn(x) = g1(x) almost everywhere. We want piecewise

 linearity again so that Gn - Fn converges uniformly on [a,b] as n -*■ 00 .

 Then each gn is Lebesgue integrable on [a,b], gn(x) -*• f(x) almost

 everywhere in [a,b] as n -*-09, and Gn is ACG* uniformly in n. Again,

 there is a step function such that

 ,b

 I gjjCx) - + (x)|dx < 2~n
 J a

 lgnW"*n^l < 2"n f0r X 6 " En

 where En is an open set with measure less than. 2"n. It remains

 to show that <j>n is control -convergent to f on [a,b] .

 First, it is easy to see that <l>n(x) -*■ f(x) almost everywhere in

 [a,b] as n -»- <». Second , let $n be the primitive of $ and we see that

 for any J u. , v. e I . , J i' , i i' . ,

 vi v.

 il <i>n(X)dx I < l' (<j,n(x) - gn(x))dx| + J| gn(x)dx|
 i "'u. i -'u. i J u.
 1 1 1

 (•b

 - I <í»n(x) - gnW |dx + J oj(Gn ;
 •'a i
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 which implies that

 £ <*j( $ n' ; I iJ . ) Ž 2 n + j 4- ai C v G ; I.)- h n' ; iJ . 4- v n a/
 i i

 Therefore {$ } is ACG* uniformly in n. Finally, we write

 1 1 Gn - Gmll = SUP t I (Sn - gm) OOdxl i a ś X á b }
 ' a

 and we have

 f* rx rx

 I J C*n-+m)Cx)dx| S I ^ On - gn) (x) I + llGn - Gmll + ' I (gm- V(x)dxl J a ^ a ' * a

 Ž 2~n + 11 Il G -F n" H + H " F -F m" II + " H G - F m" II + 2~m. 11 n n" " n m" " m m"

 Thus $n(x) converges uniformly on [a,b]. Consequently, f is RD integrable

 on [a,b] and

 •b rb

 f(x) dx = lim <J> (x) dx
 ' a n+°° ' a

 By the construction of Ý , we get

 rb rb

 lim f fx) dx = f(x) dx .
 n-x»

 Hence the proof is complete.

 This together with [1] and [3] provides a third proof to the

 controlled convergence theorem.
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