David C. Carothers, Department of Mathematics, Hope College, Holland, MI 49423

Closure Properties of Order Continuous Operators

Introduction

Let X be a compact Hausdorff space and let $\mathrm{C}(\mathrm{X})$ (or simply C) be the space of all real valued continuous functions on $\mathrm{X} . \mathrm{C}^{\prime}(\mathrm{X})$ and $\mathrm{C}^{\prime \prime}(\mathrm{X})$ (or $\mathrm{C}^{\prime}, \mathrm{C}^{\prime \prime}$ respectively) represent the first and second norm duals of $\mathrm{C}(\mathrm{X})$. In [4], Kaplan studied the order closure of C when imbedded in C^{n}. We will consider an analogous question about operators by imbedding the space of operators from C to itself in the space of order continuous operators from C^{n} to $C^{"}$.

1. Preliminaries

C, C', and C" are examples of Riesz spaces (or vector lattices), ordered vector spaces where the supremum and infimum of two elements exist.

If E is a Riesz space and $\left\{x_{\alpha}\right\}$ is an increasing (decreasing) net in E , we say that $\mathbf{x}_{\boldsymbol{\alpha}}$ order converges to $x \in E$ if $x=\vee_{\alpha} x_{\alpha}\left(x=\wedge_{\alpha} x_{\alpha}\right)$, and we write $x_{\alpha} \uparrow x\left(x_{\alpha} \downarrow x\right)$. More generally, we say that net $\left\{x_{\alpha}\right\}$ which is not necessarily monotone order converges to x if there are nets $\left\{y_{\alpha}\right\}$ and $\left\{z_{\alpha}\right\}$ such that $y_{\alpha} \downarrow x, z_{\alpha} \uparrow x$ and $z_{\alpha} \leq x_{\alpha} \leq y_{\alpha}$. We write $x_{\alpha} \rightarrow x$ or $x=\lim _{\alpha} x_{\alpha}$. Unless otherwise specified, any reference to limits, convergence, denseness, etc. will be in the sense of order convergence. A Riesz space is Dedekind complete if every set which is bounded above has a supremum. If x_{α} is a bounded net in a Dedekind complete Riesz space, then the following are always defined.

$$
\begin{aligned}
& \limsup _{\alpha} x_{\alpha}=\wedge_{\alpha} \vee_{\beta \geq \alpha} x_{\beta} \\
& \liminf _{\alpha} x_{\alpha}=\vee_{\alpha} \wedge_{\beta \geq \alpha} x_{\beta}
\end{aligned}
$$

A subspace $\mathrm{F} \subset \mathrm{E}$ which is closed under finite infima and suprema is called a Riesz subspace. If $\{y \in E ; 0 \leqq y \leqq x, x \in F\}$ is also contained in F, then F is said to be an ideal of E. An ideal which is closed under order convergence is called a band. If A is any subset of E, A^{d} is defined by

$$
A^{d}=\{y \in E ;|y| \wedge|x|=0, \text { all } x \in A\}
$$

A^{d} is a band in E. If E is Dedekind complete and $F \subset E$ is a band, then E may be written as the direct sum of F and $\mathrm{F}^{d}, \mathrm{E}=\mathrm{F} \oplus \mathrm{F}^{d}$.

If F is an ideal of E, the positive cone of the band generated by F is obtained by taking all suprema of increasing nets in F_{+}.

Suppose E is Dedekind complete and $\mathrm{F} \subset \mathrm{E}$ is a Riesz subspace. If $x=\wedge_{y \in A} y=$ $\vee_{\boldsymbol{z} \in B} z$ for $A, B \subset F$ implies that $x \in F$, then F is said to be Dedekind closed.

C may be imbedded in C^{n} in a natural way. In general, we will not distinguish between $f \in C$ and the corresponding $f \in C^{n}$. If a Riesz space is also a Banach space and the norm is compatible with the order structure, i.e. $|x| \leqq|y|$ implies $\|x\| \leqq\|y\|$, then it is called a Banach lattice. C and C^{n} are AM spaces, Banach lattices whose norms satisfy $\|f \vee g\|=\|f\| \vee\|g\|$ for f and g positive. Let 1 be the unit in C , the constant one function on $\mathbf{X} .1$ is also a unit for $C^{"}$, and by a theorem of Kakutani C" may be represented as $C(Y)$ for some compact Hausdorff space Y. Since C^{n} is Dedekind complete, Y is Stonian, i.e. the closure of every open set is open [6, p. 108]. We will apply this 180
notation throughout, letting Y be the Stone space of $C^{\prime \prime}(X)$.
An element $\mathrm{e} \in \mathrm{C}^{n}+$ will be called a component of 1 (or simply a component) if $\mathrm{e} \wedge(1-\mathrm{e})=0$. The set of all components will be denoted by \mathcal{E}. Each component corresponds to an open and closed subset of $\mathrm{Y}[3,17.4$ and 31.6$]$. A set $\mathrm{P} \subset \mathcal{E}$ will be called a partition of 1 if $V_{e \in P} e=1$ and $e_{1} \wedge e_{2}=0$ for $e_{1} e_{2} \in P$.

For $\mu \in C^{\prime}$ and $\mathrm{f} \in \mathrm{C}^{\prime}$, by $\mathrm{f} \mu$ we will mean that element of C^{\prime} defined by

$$
\langle f \mu, g\rangle=\langle\mu, f g\rangle, g \in C .
$$

We will be especially interested in several subsets and subspaces of C ". The following definitions and results are due to Kaplan [3].

Every element of $C^{\prime \prime}$ which is the supremum (infimum) of a subset of C will be called lower semicontinuous (upper semicontinuous). The set of all such suprema will be denoted by lsc (usc). The Riesz subspace lsc-lsc $=\{\mathrm{f}-\mathrm{g} ; \mathrm{f}, \mathrm{g} \in \mathrm{lsc}\}$ (=usc-usc) will be denoted by SC. We note that the lsc elements of $C^{\prime \prime}$ are exactly those which are $\sigma\left(C^{\prime}, C\right)$ (the weak-* or vague topology on C^{\prime}) lower semicontinuous on the positive part of the unit ball of C^{\prime}, and are thus also lower semicontinuous on the natural image of X in C '. In fact, each open subset of X corresponds to an element of $\mathcal{E} \cap l s c$. If $f \in u s c$ and $g \in l s c, f \leq g$, there is an $h \in C$ with $\mathrm{f} \leq \mathrm{h} \leq \mathrm{g}$.

Every $f \in C^{"}$ which is the limit of a net in C will be called universally integrable. The set of all such elements is a Riesz subspace and will be denoted by U. Both U and C are Dedekind closed in $C^{n} . ~ U$ is in fact the set of elements of C^{n} which are simultaneously infima of subsets of lsc and suprema of subsets of usc.

The smallest σ-closed (closed under order convergence of sequences) subspace of C^{n} which contains SC will be denoted by Bo. (It is possible to identify Bo with the space of Borel functions on $\mathrm{X}[3,54.3$ and 54.11$])$. As U is σ-closed, Bo $\subset \mathrm{U}$. Every $\mathrm{f} \in \mathrm{C}^{\boldsymbol{\prime}}$ is the order limit of a net in Bo (or U). Both Bo and U are norm closed in C".

For $\mu \in \mathrm{C}^{\prime}, \mathrm{C}^{\prime}{ }_{\mu}$ will represent the band in C^{\prime} generated by $\mu . \mathrm{C}^{\boldsymbol{\prime}}{ }_{\mu}$ will be the band in $\mathrm{C}^{\prime \prime}$ dual to $\mathrm{C}^{\prime}{ }_{\mu}$, i.e. if $\mathrm{C}^{\prime}{ }_{\mu}^{\perp}=\left\{\mathrm{f}^{\prime} \mathrm{C}^{\prime \prime} ;\langle | \mu|,|f|\rangle=0\right\}$, then $\mathrm{C}^{\prime \prime}{ }_{\mu}=\left(\mathrm{C}^{\prime}{ }_{\mu}\right)^{d}$. For $\mathrm{f} \in \mathrm{C}^{\prime}$, f_{μ} will be the image of f under the projection on $\mathrm{C}^{\prime \prime}{ }_{\mu} . \mathrm{C}^{\prime}{ }_{\mu}$ is isomorphic with the space $\mathrm{L}^{1}(\mu)$, thus $\mathrm{C}^{\boldsymbol{\prime}}{ }_{\mu}$ may be identified with $\mathrm{L}^{\infty}(\mu)$. The spaces Bo and U project onto $\mathrm{C}^{\boldsymbol{n}}{ }_{\mu}$. If $\left\{f_{\alpha}\right\} \subset C^{n}{ }_{\mu}$ and $f_{\alpha} \downarrow 0$, then there is a sequence $\left\{f_{n}\right\} \subset\left\{f_{\alpha}\right\}$ such that $f_{n} \downarrow 0 . C^{n}{ }_{\mu}$ is an AM-space with unit $\mathbf{1}_{\mu}$.

For $\mu \in C^{\prime}$, the ideal generated by $\left(C^{\prime \prime}{ }_{\mu}\right)^{d} \cap U$ in $C^{"}$ will be denoted by $N_{\mu} . N_{\mu}$ and $\mathrm{U}+\mathrm{N}_{\mu}$ are σ-closed. ($\mathrm{U}+\mathrm{N}_{\mu}$ corresponds to the set of functions integrable with respect to m.) Every element of U differs from an element of Bo by an element of $\left(\mathrm{C}^{\prime \prime}{ }_{\mu}\right)^{d}$; thus Bo + $\mathrm{N}_{\mu}=\mathrm{U}+\mathrm{N}_{\mu}$.

If E and F are Riesz spaces, the set of all linear operators from E to F which map intervals into order bounded sets is denoted by $L^{b}(E, F) . L^{b}(E, F)$ is ordered by $T \leqq S$ when $\mathrm{Ty} \leqq$ Sy for $\mathrm{y} \in \mathrm{E}_{+}$, but it is not necessarily a Riesz space. The subspace consisting of all differences of positive operators is called the space of regular operators, $L^{r}(E, F)$. If F is Dedekind complete, $L^{b}(E, F)$ is a Dedekind complete Riesz space, and for $T, S \in L^{b}(E, F)$ and $x \in E_{+}, T \vee S$ is given by

$$
T \vee S x=\underset{\substack{x_{1}+x_{2}=x \\ x_{1}, x_{2} \in E_{+}}}{\vee}\left(T x_{1}+S x_{2}\right) .
$$

In this case, we have $L^{r}(E, F)=L^{b}(E, F)$. Also, the band of $L^{b}(E, F)$ consisting of operators which are continuous with respect to order convergence is designated by $L^{c}(E, F)$ and is called the space of order continuous operators. For $T \in L^{c}\left(C^{"}, C^{"}\right), T_{\mu}$ is the projection onto $\mathrm{C}^{\prime}{ }_{\mu}$ composed with T .
$L^{b}(C, C)$ may be imbedded in $L^{c}\left(C^{n}, C^{n}\right)$ by identifying each $T \in L^{b}(C, C)$ with its bitranspose $\mathrm{T}^{t t} \in \mathrm{~L}^{c}\left(\mathrm{C}^{n}, \mathrm{C}^{n}\right)$. In general, we will not distinguish between T and $\mathrm{T}^{t t}$ and we will consider T as an element of $L^{c}\left(C^{n}, C^{\prime \prime}\right)$ when it is convenient to do so. If $T \in L^{c}\left(C^{\prime \prime}, C^{\prime \prime}\right)$ and $f \in C^{"}$, we will denote by $f T$ the operator defined by

$$
f T g=f(T g), \quad g \in C^{n}
$$

Because C is order dense in C^{n}, every operator in $L^{c}\left(C^{n}, C^{\prime \prime}\right)$ is determined by its values on C, and conversely every bounded operator from C to C " may be (uniquely) extended to an order continuous operator from C^{n} to C^{n}. Thus, we will use the symbol $L^{r}(C, U)$ to represent the subspace of $L^{c}\left(C^{n}, C^{n}\right)$ which consists of differences of positive operators mapping C to U.

For more complete information about Riesz spaces and operators, see Vulikh [7] or Schaeffer [6].

It is possible to translate the lifting theorem of Tulcea and Tulcea [1] to C" by replacing $\mathrm{L}^{\infty}(\mu)$ with $\mathrm{C}^{n}{ }_{\mu}$ and the space of measurable functions with $\mathrm{Bo}+\mathrm{N}_{\mu}$ in the proof to obtain [2, Theorem A.1]:
1.1 Theorem (Tulcea) There exists a positive bounded linear mapping I: $\mathrm{C}^{\boldsymbol{n}}{ }_{\mu} \rightarrow \mathrm{C}^{\boldsymbol{n}}$ which satisfies:

1. $\mathrm{I} 1_{\mu}=1$.
2. I maps $\mathcal{E} \cap C^{n}{ }_{\mu}$ into \mathcal{E}.
3. (If) ${ }_{\mu}=\mathrm{f}$ for all $\mathrm{f} \in \mathrm{C}^{\boldsymbol{n}}{ }_{\mu}$.
4. I takes values in $\mathrm{Bo}+\mathrm{N}_{\mu}\left(=\mathrm{U}+\mathrm{N}_{\mu}\right)$.

We will often require two copies of $\mathrm{C}^{n}(\mathrm{X})=\mathrm{C}(\mathrm{Y})$ and will denote the second by $\overline{\mathrm{C}}^{\text {n }}$ $=C(\overline{\mathrm{Y}})$. We will extend this notation with $\overline{\mathrm{f}} \in \overline{\mathrm{C}}^{n}, \overline{\mathrm{y}} \in \overline{\mathrm{Y}}$ and $\overline{\mathrm{e}}$ a component in $\overline{\mathrm{C}}^{n}=$ $C(\bar{Y})$.

Each $e \in \mathcal{E}$ determines a set $V(e)$ which is open and closed in Y. The set of all such $\mathrm{V}(\mathrm{e})$ is a basis for the topology on Y .

If $T \in L^{b}\left(C^{n}, C^{n}\right)_{+}, \mu \in C^{\prime}$, and $f \in C^{n}$, then

$$
m(V(e), V(\bar{e}))=\langle\bar{e} \mu, T f e\rangle, e, \bar{e} \in \mathcal{E}
$$

defines a measure on $\mathrm{Y} \otimes \overline{\mathrm{Y}}$. If Φ is a function defined on $\mathrm{Y} \times \overline{\mathrm{Y}}$, we will denote the integral of Φ with respect to this measure (when it exists) by

$$
\int \Phi(y, \bar{y})\langle d \bar{e} \mu, T f d e\rangle .
$$

The following is essentially due to Nakano [5, Theorem 4.3].
1.2 Proposition. If $\mathrm{S}, \mathrm{T} \in \mathrm{L}^{c}\left(\mathrm{C}^{n}, \mathrm{C}^{n}\right)$ with $0 \leqq \mathrm{~T} \leqq \mathrm{~S}$ and $\mu \in \mathrm{C}_{+}$, then there is a Borel measurable function Φ defined on $\mathrm{Y} \times \overline{\mathrm{Y}}$ such that $\langle\nu, \mathrm{Tf}\rangle=\int \Phi(\mathrm{y}, \overline{\mathrm{y}})\langle\mathrm{de} \nu$, Sfde \rangle for all $\mathrm{f} \in \mathrm{C}^{\boldsymbol{\prime}}$, and $\nu \in \mathrm{C}^{\prime}{ }_{\mu}$.
2. The order closure of $L^{r}(C, C)$ and $L^{r}(C, U)$.

We begin with an important topology on $L^{c}\left(C^{n}, C^{\prime \prime}\right)$.
2.1 Theorem. Let $\mu \in C^{\prime}+$ and $E=C$ or $U . L^{r}(C, E)$ is dense in the band which it generates in $L^{c}\left(C^{"}, C^{n}\right)$ in the topology defined by the semi-norm

$$
\|T\|_{\mu}=\langle\mu,| T|\mathbf{1}\rangle
$$

Proof. We will first suppose that $T \in L^{c}\left(C^{\prime \prime}, C^{\prime \prime}\right)$ satisfies $0 \leqq T \leqq S$ for some $S \in L^{r}(C, E)$. By 1.2 , there is a Borel function Φ such that $\langle\nu, T f\rangle=\int \Phi(\mathrm{y}, \overline{\mathrm{y}})\langle\mathrm{d} \bar{e} \nu$, Sfde \rangle holds for all $\mathrm{f} \in \mathrm{C}^{\text {" }}$ and $\nu \in C^{\prime}{ }_{\mu}$. We may assume $0 \leqq \Phi \leqq 1(\mathrm{Y} \times \overline{\mathrm{Y}})$. Given $\epsilon>0$, there is a function Ψ which is continuous on $\mathrm{Y} \times \overline{\mathrm{Y}}$ such that $0 \leqq \Psi \leq 1(\mathrm{Y} \times \overline{\mathrm{Y}})$ and

$$
\int|\Psi-\Phi|\langle d \bar{e} \mu, S 1 \mathrm{de}\rangle<\epsilon
$$

Hence, it suffices to consider operators defined by $\langle\nu, T f\rangle=\int \Psi(y, \bar{y})\langle\operatorname{de} \nu, \operatorname{Sfde}\rangle$ where Ψ is continuous, taking values between 0 and 1 .

Because Ψ is continuous, there are, for given $\epsilon>0$, finite collections of components $\left\{\mathrm{e}_{i}\right\}$ and $\left\{\overline{\mathrm{e}}_{\mathrm{j}}\right\}$ and real numbers $\mathrm{r}_{i, j}$ that satisfy

$$
\int\left|\Psi-\sum_{i, j} r_{i, j} e_{i} \otimes \overline{\mathrm{e}}_{\mathrm{j}}\right|\langle\mathrm{d} \overline{\mathrm{e}} \nu, \text { S1de }\rangle<\epsilon
$$

We conclude that we may assume $\Psi=\mathrm{e} \otimes \overline{\mathrm{e}}$ for $\mathrm{e}, \overline{\mathrm{e}} \in \mathcal{E}$. We will need the following lemma.
2.2 lemma. Given $e \in \mathcal{E}, \mu \in C^{n}$, and $\epsilon>0$, there are elements $e_{1} \in$ usc $\cap \mathcal{E}$ and $\mathbf{e}_{2} \in \operatorname{lsc} \cap \mathcal{E}$ that satisfy $\left(e_{1}\right)_{\mu} \leqq e \leqq\left(e_{2}\right)_{\mu}, e_{1} \leqq e_{2}$, and $\left\langle\mu, e_{2}-\dot{e}_{1}\right\rangle<\epsilon$.

Proof. Since $\mathrm{C}^{\boldsymbol{n}}=\mathrm{U}_{\mu}$, we may choose $\dot{\mathrm{e}} \in \mathrm{U}_{+}$with $\dot{\mathrm{e}}_{\mu}=\mathrm{e}_{\mu}$. We may also assume that $\dot{\mathrm{e}}$ is a component, replacing \dot{e} with $\vee_{n}(n \dot{e} \wedge 1)$ if necessary (recall that U is σ-closed). Because \dot{e} is the supremum of a subset of usc, we find $f \in$ usc with $0 \leqq f \leqq \dot{e}$ and $\langle\mu, \dot{e}-f\rangle<\epsilon /(4\|\mu\|)$. Consider $\mathrm{A}=\{\mathrm{x} \in \mathrm{X} ; \mathrm{f}(\mathrm{x}) \geqq \epsilon /(4\|\mu\|)\}$. Since $\mathrm{f} \in \mathrm{usc}$, this set is closed in \mathbf{X}. A determines element $\mathrm{e}_{1} \in$ usc $\cap \mathcal{E}$ with $\mu(\mathrm{A})=\left\langle\mu, \mathrm{e}_{1}\right\rangle$. We have $\mathrm{e}_{1} \leqq \dot{e}$ and

$$
\left\langle\mu, \dot{e}-e_{1}\right\rangle \leqq\langle\mu, \dot{e}-f\rangle+\langle\mu,(\epsilon /(4\|\mu\|)) 1\rangle<\frac{1}{4} \epsilon+\frac{1}{4} \epsilon=\frac{1}{2} \epsilon .
$$

If we apply the above to $1-\dot{e}$, we find characteristic $\left(1-e_{2}\right) \in u s c$ with

$$
\left\langle\mu, \mathrm{e}_{2}-\dot{\mathrm{e}}\right\rangle=\left\langle\mu, 1-\dot{\mathrm{e}}-\left(1-\mathrm{e}_{2}\right)\right\rangle<\frac{1}{2} \epsilon .
$$

and $(1-\dot{e}) \geqq\left(1-e_{2}\right)$. We have then $e_{2} \in l s c, e_{1} \leqq \dot{e} \leqq e_{2}$, and

$$
\left\langle\mu, e_{2}-e_{1}\right\rangle=\left\langle\mu, e_{2}-\dot{e}\right\rangle+\left\langle\mu, \dot{e}-e_{1}\right\rangle<\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon .
$$

We return to the operator defined by $\int e \otimes \bar{e}\langle d \bar{e} \nu, S f d e\rangle$. Given $\epsilon>0$, choose $\mathrm{e}_{1}, \mathrm{e}_{2}, \overline{\mathrm{e}}_{1}$, and $\overline{\mathrm{e}}_{\mathbf{2}}$ according to the lemma such that

$$
\begin{gathered}
\left\langle S^{t} \mu, e_{2}-e_{1}\right\rangle<\frac{1}{2} \epsilon \\
\left\langle\mu, \bar{e}_{2}-\bar{e}_{1}\right\rangle<\epsilon /(2\|S\|) .
\end{gathered}
$$

We next find $f, \overline{\mathrm{f}} \in \mathrm{C}$ such that $\mathrm{e}_{1} \leqq f \leq \mathrm{e}_{2}$ and $\overline{\mathrm{e}}_{1} \leqq \overline{\mathrm{f}} \leqq \bar{e}_{2}$, since e_{1} and $\overline{\mathrm{e}}_{1}$ are from usc and e_{2} and $\overline{\mathrm{e}}_{2}$ are from lsc. It follows that

$$
\begin{aligned}
\int|f \otimes \bar{f}-e \otimes \overline{\mathrm{e}}|\langle\mathrm{d} \overline{\mathrm{e}} \mu, \mathrm{~S} 1 \mathrm{de}\rangle & \leqq \int\left(\mathrm{e}_{2} \otimes \overline{\mathrm{e}}_{2}-\mathrm{e}_{1} \otimes \overline{\mathrm{e}}_{1}\right)\langle\mathrm{d} \overline{\mathrm{e}} \mu, \mathrm{~S} 1 \mathrm{de}\rangle \\
& =\int \mathrm{e}_{2} \otimes \overline{\mathrm{e}}_{2}\langle\mathrm{~d} \overline{\mathrm{e}} \mu, \mathrm{~S} 1 \mathrm{de}\rangle-\int \mathrm{e}_{1} \otimes \overline{\mathrm{e}}_{1}\langle\mathrm{~d} \overline{\mathrm{e}} \mu, \mathrm{Slde}\rangle \\
& =\left\langle\overline{\mathrm{e}}_{2} \mu, \mathrm{Se}_{2}\right\rangle-\left\langle\overline{\mathrm{e}}_{1} \mu, \mathrm{Se}_{1}\right\rangle \\
& =\left\langle\overline{\mathrm{e}}_{2} \mu, \mathrm{Se}_{2}\right\rangle-\left\langle\overline{\mathrm{e}}_{1} \mu, \mathrm{Se}_{2}\right\rangle+\left\langle\overline{\mathrm{e}}_{1} \mu, \mathrm{Se}_{2}\right\rangle-\left\langle\overline{\mathrm{e}}_{1} \mu, \mathrm{Se}_{1}\right\rangle \\
& \leqq\|S\|\left\langle\mu, \overline{\mathrm{e}}_{2}-\overline{\mathrm{e}}_{1}\right\rangle+\left\langle\mathrm{S}^{\mathrm{t}} \mu, \mathrm{e}_{2}-\mathrm{e}_{1}\right\rangle \\
& <\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon .
\end{aligned}
$$

If the operator R is defined by $\langle\nu, R g\rangle=\int f \otimes \bar{f}\langle d \bar{e} \nu, S g d e\rangle$, the above shows that $\|R-T\|_{\mu}<\epsilon$. We now demonstrate that $\mathrm{R} \in \mathrm{L}^{r}(\mathrm{C}, \mathrm{E})$.
2.3 lemma. If $f \in C_{+}$, there is a net $f_{\alpha} \uparrow f$ in order and norm, where each f_{α} may be written

$$
f_{\alpha}=\sum_{i=1}^{m_{\alpha}} a_{\alpha, i} e_{\alpha, i}
$$

with $\mathbf{e}_{\alpha, i} \in \operatorname{lsc} \cap \mathcal{E}$.
Proof. Assume, without loss of generality, that $0 \leqq f \leqq 1$. For each $\mathbf{g} \in \mathrm{C}$ and real number $0 \leqq a \leqq 1$, let $e(a, g)=V_{n}\left(1 \wedge n(g-a 1)^{+}\right)$.

By definition, $\mathrm{e}(\mathrm{a}, \mathrm{g}) \in \operatorname{lsc} \cap \mathcal{E}$, and $\mathrm{ae}(\mathrm{a}, \mathrm{g}) \leqq \mathrm{g}$. In general if

$$
0=a_{0} \leqq a_{1} \ldots \leqq a_{n}=1
$$

let

$$
e_{i}+e\left(a_{i}-a_{i-1},\left(f-a_{i-1} 1\right)^{+}\right)=V_{n}\left(1 \wedge n\left(\left(f-a_{i-1} 1\right)^{+}-\left(a_{i}-a_{i-1}\right) 1\right)^{+}\right)
$$

we have

$$
\sum_{l}^{n}\left(a_{i}-a_{i-1}\right) e_{i \leq f}
$$

and

$$
0 \leqq f-\sum_{1}^{n}\left(a_{i}-a_{i-1}\right) e_{i} \leqq\left(\bigvee_{1}^{n}\left|a_{i}-a_{i-1}\right|\right) 1 .
$$

Hence, f is the supremum of all such sums. To find an increasing net simply consider all finite suprema of the sums above. This completes the proof.

We apply the lemma to find $\mathrm{f}_{\alpha} \uparrow \mathrm{f}$ and $\overline{\mathrm{f}}_{\alpha} \uparrow \overline{\mathrm{f}}$, and consequently $\mathrm{f}_{\alpha} \otimes \overline{\mathrm{f}}_{\alpha} \uparrow \mathrm{f} \otimes \overline{\mathrm{f}}$. Let one of these be written

$$
f_{\alpha} \otimes \bar{f}_{\alpha}=\sum_{i, j} \eta_{i, j} e_{i} \otimes \bar{e}_{j}
$$

Suppose first that $\mathrm{E}=\mathrm{C}$. Let $\left\{\nu_{\beta}\right\}$ be a net in C^{\prime} which $\sigma\left(\mathrm{C}^{\prime}, \mathrm{C}\right)$ converges to ν. For $h \in C_{+}$, he $e_{i} \in l s c$ and we may find a net $\left\{h_{\gamma}\right\}$ in C_{+}with $h_{\gamma} \uparrow$ he e_{i}. Note that

$$
\int e_{i} \otimes \bar{e}_{j}\left\langle d \bar{e} \nu_{\beta}, S h d e\right\rangle=\left\langle\bar{e}_{j} \nu_{\beta}, S h e_{i}\right\rangle .
$$

and we have

$$
\left\langle\bar{e}_{j} \nu, S h_{\gamma}\right\rangle \leqq \operatorname{limin} f_{\beta}\left\langle\bar{e}_{j} \nu_{\beta}, S h_{\gamma}\right\rangle \leqq l i m i n f_{\beta}\left\langle\bar{e}_{j} \nu_{\beta}, S h e_{i}\right\rangle .
$$

Thus $\left\langle\bar{e}_{j} \nu, S h e_{i}\right\rangle \leqq \operatorname{limin} f_{\beta}\left\langle\bar{e}_{j} \nu_{\beta}, S h e i\right\rangle$, and we conclude that the operator defined by $\left\langle\nu, R^{\prime} h\right\rangle=\int e_{i} \otimes \bar{e}_{j}\langle d \bar{e} \nu, S h d e\rangle$ maps $h \in \mathrm{C}_{+}$to an element of lsc, and hence the same holds for R_{α} defined by $\left\langle\nu, R_{\alpha} h\right\rangle=\int f_{\alpha} \otimes \bar{f}_{\alpha}\langle d \bar{e} \nu$, Shde \rangle. Since $f_{\alpha} \otimes \bar{f}_{\alpha} \uparrow f \otimes \bar{f}$ in order and norm, we have that $\langle\nu, R h\rangle=\int f \otimes \bar{f}\langle d \bar{e} \nu, S h d e\rangle$ maps $h \in \mathrm{E}_{+}$to an element of lsc.

In an analogous manner, we can show that $R h \in u s c$ for $h \in C_{+}$, and thus $R \in L^{b}(C, C)$, because C is Dedekind closed (i.e. usc $\cap \mathrm{lsc}=\mathrm{C}$).

Next assume $\mathrm{E}=\mathrm{U}$. Fix $\mathrm{h} \in \mathrm{C}_{+}$and consider

$$
\begin{aligned}
\int f_{\alpha} \otimes \bar{f}_{\alpha}\langle d \bar{e} \nu, S h d e\rangle & =\sum_{i, j} \eta_{i, j} \int e_{i} \otimes \bar{e}_{j}\langle d \bar{e} \nu, S h d e\rangle \\
& =\sum_{i, j} \eta_{i, j}\left\langle\bar{e}_{j} \nu, S h e_{i}\right\rangle
\end{aligned}
$$

as a function of ν. For fixed i and j , there is a net $\mathrm{h}_{\boldsymbol{\gamma}} \dagger \mathrm{he}_{\boldsymbol{i}}$ with $\mathrm{h}_{\gamma} \subset \mathrm{C}$. $\left\langle\overline{\mathrm{e}}_{\mathrm{j}} \nu, \mathrm{Sh} \mathrm{h}_{\gamma}\right\rangle$ is then, as a function of ν, an element of U . Thus $\int f \otimes \bar{f}\langle\bar{e} \nu, S h d e\rangle$ is a supremum of elements of U (as a function of ν). In a similar manner we can show that $\int f \otimes \bar{f}\langle d \bar{e} \nu, S h d e\rangle$ is an infimum of elements of U. Since U is Dedekind closed, the operator above maps C to U.

Every positive operator in the ideal generated by $L^{r}(\mathrm{C}, \mathrm{E})$ is dominated by an operator in $L^{r}(\mathrm{C}, \mathrm{E})$, for if $\mathrm{S}, \mathrm{T} \geqq 0$, we have $\mathrm{S} \vee \mathrm{T} \leqq \mathrm{S}+\mathrm{T}$. As a consequence, the preceding argument implies that $L^{r}(\mathrm{C}, \mathrm{E})$ is dense under $\|\bullet\|_{\mu}$ in the ideal which it generates in $L^{c}\left(\mathrm{C}^{"}, \mathrm{C}^{\prime \prime}\right)$. If $T \geqslant 0$ is in the band generated by $L^{r}(C, C)$, there is a net T_{α} in the ideal generated by $L^{r}(\mathrm{C}, \mathrm{C})$ with $\mathrm{T}_{\alpha} \uparrow \mathrm{T}$. Since $\left\langle\mu, \mathrm{T}_{\alpha} \mathbf{1}\right\rangle \uparrow\langle\mu, \mathrm{T} \mathbf{1}\rangle$, we conclude $\mathrm{L}^{r}(\mathrm{C}, \mathrm{C})$ is dense in the band it generates under $\|\bullet\|_{\mu}$, and the proof of 2.1 is complete.

We note without proof that if X is a compact metric space, $\mathrm{L}^{r}(\mathrm{C}, \mathrm{C})$ may be replaced by $L^{b}(C, C)$.
2.4 Proposition. Given $T \in L^{c}\left(C^{n}, C^{n}\right)$ and $S \in L^{r}(C, E), E=C$ or U, with $0 \leqq T \leqq S$, and $\mu \in C^{\prime}+, T_{\mu}=\lim _{n} \mathrm{~T}_{\mu}^{n}$ for a sequence $\left\{\mathrm{T}^{n}\right\} \subset \mathrm{L}^{r}(\mathrm{C}, \mathrm{E})$ satisfying $0 \leqq \mathrm{~T}^{n} \leqq \mathrm{~S}$.

Proof. By 2.1, there is a sequence $\left\{\mathrm{T}^{n}\right\} \subset L^{r}(C, E)$ satisfying $0 \leqq T^{n} \leqq S$ and

$$
\left\|\mathrm{T}^{\mathrm{n}}-\mathrm{T}\right\| \mu=\langle\mu,| \mathrm{T}^{\mathrm{n}}-\mathrm{T}|1\rangle \leqq\left(\frac{1}{2}\right)^{\mathrm{n}} .
$$

Let $S^{n}=V_{m \geq n} T^{m}$. It follows that

$$
\begin{aligned}
\langle\mu,| S^{n}-T|1\rangle & \leqq\left\langle\mu, \vee_{m \geq n}\right| T^{m}-T|1\rangle \\
& =\left\langle\mu, \bigvee_{k} \bigvee_{m=n}^{k}\right| T^{m}-T|1\rangle \\
& =\bigvee_{k}\left\langle\mu, \bigvee_{m=n}^{k}\right| T^{m}-T|1\rangle
\end{aligned}
$$

The last step follows from the fact that the finite suprema are increasing. Thus

$$
\begin{aligned}
\langle\mu,| S^{n}-T|1\rangle & \leqq \bigvee \sum_{k=n}^{k}\langle\mu,| T^{m}-T|1\rangle \\
& \leqq \bigvee \sum_{k=n}^{k}\left(\frac{1}{2}\right)^{m} \\
& =\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

Thus $\lim _{n}\langle\mu,| S^{n}-T|\mathbf{1}\rangle=0$.
Since limsup ${ }_{m} \mathrm{~T}^{m}=\wedge_{m} \mathrm{~S}^{m}$, we have

$$
\lim _{\mathrm{n}}\langle\mu,| \limsup _{\mathrm{m}} \mathrm{~T}^{\mathrm{m}}-\mathrm{S}^{\mathrm{n}}|\mathbf{1}\rangle=0
$$

From

$$
\langle\mu,| \limsup _{\mathrm{m}} \mathrm{~T}^{\mathrm{m}}-\mathrm{T}|1\rangle \leqq\langle\mu,| \limsup _{\mathrm{m}} \mathrm{~T}^{\mathrm{m}}-\mathrm{S}^{\mathrm{n}}|1\rangle+\langle\mu,| \mathrm{S}^{\mathrm{n}}-\mathrm{T}|1\rangle
$$

we obtain

$$
\langle\mu,| \text { limsup }_{\mathrm{m}} \mathrm{~T}^{\mathrm{m}}-\mathrm{T}|\mathbf{1}\rangle=0
$$

Finally, since $\left(\limsup _{m} T^{m}\right)_{\mu}=\limsup _{m} T_{\mu}^{m}$, we conclude that $\limsup _{m} T_{\mu}^{m}=\mathrm{T}_{\mu}$.
In an analogous manner, we can demonstrate that $\liminf _{m} T_{\mu}^{m}=\mathrm{T}_{\mu}$, and the proposition follows.

Note that $\mathrm{T}_{\mu} \dagger \mathrm{T}$ as μ increases in C_{+}, with $\left\{\mathrm{T}_{\mu}\right\}$ a net indexed by the directed set $C^{\prime}+$
2.5 Proposition. If $T \in L^{c}\left(\mathrm{C}^{n}, \mathrm{C}^{n}\right)$ with $0 \leqq \mathrm{~T} \leqq \mathrm{~S} \in \mathrm{~L}^{r}(\mathrm{C}, \mathrm{E}), \mathrm{E}=\mathrm{C}$ or U , then T is in the order closure of $L^{r}(C, E)$. In particular, if $\left(L^{r}(C, E)\right)^{\ell u}$ represents the set of all infima of operators which are suprema of subsets of $L^{r}(C, E)$, then T is the order limit of a net in $\left(L^{r}(C, E)\right)^{\ell u}$.

Proof. By 2.4 there is, for each $\mu \in C^{\prime}$, a sequence $\left\{T^{n}\right\} \subset L^{r}(C, E)$ with $0 \leqq T^{n} \leqq S$ and $\lim _{n} \mathrm{~T}_{\mu}^{n}=\mathrm{T}_{\mu}$. In addition, $\limsup _{n} \mathrm{~T}^{n} \leqq \mathrm{~S}$ and $\left(\limsup _{n} \mathrm{~T}^{n}\right)_{\mu}=\mathrm{T}_{\mu}$. Let $\mathrm{R}(\mu)=\limsup _{n} \mathrm{~T}^{n}$. Then $\mathrm{T}_{\mu} \leqq \mathrm{R}(\mu) \leqq \mathrm{T}+\mathrm{S}_{\mu}^{d}$, where S_{μ}^{d} is the projection of S on $\left(\mathrm{C}^{\prime \prime}{ }_{\mu}\right)^{d}$. As μ increases in $\mathrm{C}^{\prime}{ }_{+}, \mathrm{T}_{\mu} \uparrow \mathrm{T}$ and $\mathrm{S}_{\mu}^{d} \downarrow 0$, so that $\lim _{\mu} \mathrm{R}(\mu)=\mathrm{T}$.
2.6 Theorem. Let $\mathrm{E}=\mathrm{C}$ or $\mathrm{U} . \mathrm{L}^{r}(\mathrm{C}, \mathrm{E})$ is order dense in the band of $\mathrm{L}^{c}\left(\mathrm{C}^{\prime \prime}, \mathrm{C}^{\prime \prime}\right)$ which it generates. If X is a compact metric space, $\mathrm{L}^{r}(\mathrm{C}, \mathrm{U})$ is order dense in $L^{c}\left(C^{\prime \prime}, C^{\prime \prime}\right)$.

Proof. The first statement follows immediately from the preceeding arguments. In order to prove the second, we need the following.
2.7 Proposition. Let $T \in L^{c}\left(C^{n}, C^{n}\right)$ with range in $C^{n}{ }_{\mu}$ for some $\mu \in C^{\prime}{ }_{+}$. If X is a metric space, there is an operator $S \in L^{r}(C, U)$ such that $S_{\mu}=T$. If $T \geq 0$, we may choose $S \geq 0$.

Proof. By the lifting theorem (1.1), there is an isometry I: $\mathrm{C}^{n}{ }_{\mu} \rightarrow \mathrm{U}+\mathrm{N}_{\mu}$ satisfying (If) $)_{\mu}=\mathrm{f}$ for $\mathrm{f} \in \mathrm{C}^{\boldsymbol{n}}{ }_{\mu}$ and $\mathrm{I} 1_{\mu}=\mathbf{1}$. If X is a metric space, $\mathrm{C}(\mathrm{X})$ is separable. Let $\left\{f_{n}\right\}$ be a countable norm dense subset of $\mathrm{C}(\mathrm{X}) .\left\{T f_{n}\right\}$ is norm dense in $\mathrm{T}(\mathrm{C}(\mathrm{X})) \subset \mathrm{C}^{\prime}$. Let $\mathrm{g}_{n}=\mathrm{I}\left(\mathrm{Tf}_{n}\right)$. We may write $\mathrm{g}_{n}=\mathrm{h}_{n}+\mathrm{k}_{n}$ with $\mathrm{h}_{n} \in \mathrm{U}$ and $\mathrm{k}_{n} \in \mathrm{~N}$. In addition, we may choose k_{n} which satisfy $\left|k_{n}\right| \leqq j_{n}$ for some $j_{n} \in C^{n}{ }_{\mu}^{d} \cap U$. Let $\mathbf{1}_{n}=V_{m}\left(m j_{n}\right) \wedge \mathbf{1}$ and $\mathbf{1}_{A}=$ $\vee_{n} \mathbf{1}_{n}$. It follows that $\mathbf{1}_{n} \in C^{\boldsymbol{n}}{ }_{\mu}^{d} \cap U$ and thus $\mathbf{1}_{A} \in C^{\boldsymbol{n}}{ }_{\mu}^{d} \cap U$, since U is σ-closed.

Define I^{\prime} by $I^{\prime}=\left(\mathbf{1 - 1}_{\boldsymbol{A}}\right) I$. I^{\prime} maps $T f_{n}$ to U for each n, since

$$
\left(1-1_{A}\right) g_{n}=\left(1-\mathbf{1}_{A}\right) h_{n}+\left(1-1_{A}\right) k_{n}=\left(1-\mathbf{1}_{A}\right) h_{n}
$$

Because $\mathbf{1 - 1} \mathbf{1}_{\boldsymbol{A}} \in C^{\boldsymbol{n}}{ }_{\mu}^{d} \cap \mathrm{U}$, we have $\left(\mathrm{I}^{\prime}\left(\mathrm{Tf}_{n}\right)\right)_{\mu}=\mathrm{Tf}_{n}$. From the fact that $\left\{\mathrm{Tf}_{n}\right\}$ is norm dense in $T(C(X))$ and I^{\prime} is norm continuous, we conclude that $I^{\prime}(T(C)) \subset U$, since U is norm closed. $\mathbf{1 - 1} \mathbf{1}_{A} \in C^{\boldsymbol{n}} \underset{\mu}{d} \cap U$ implies that $\left(I^{\prime}(T f)\right)_{\mu}=T f$ for all $f \in C$.

I' composed with T restricted to C determines a map $\bar{S} \in L^{b}(C, C ")$ with image in U, which defines $S \in L^{r}(C, U)$. Note that $(S f)_{\mu}=T f$ for $f \in C$. If $f \in C^{"}$ is arbitrary, we have (Sf$)_{\mu}$ $=\mathrm{Tf}$, because S and T are order continuous and C is dense in C .

REFERENCES

1. A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the Theory of Lifting, Berlin-Heidelberg-New York:Springer 1969.
2. D. Carothers, "Order and Closure Properties of Order Continuous Operators", Ph.D. dissertation, Purdue University (1981).
3. S. Kaplan, The Bidual of C(X)I, Amsterdam:Elsevier Science Publishers 1985.
4. S. Kaplan, "Closure Properties of C(X) in its Second Dual", Proc. Amer. Math. Soc. 17 (1966) 401-406.
5. H. Nakano, "Product Spaces of Semi-Ordered Linear Spaces", J. Fac. Sci. Hokkaido Univ. Ser. I 12 (1953) 163-210.
6. H.H. Schaefer, Banach Lattices and Positive Operators, New York-Heidelberg-Berlin: Springer-Verlag 1974.
7. B.C. Vulikh, Introduction to the Theory of Partially Ordered Vector Spaces, Groningen: Wolters-Noordhoff 1967.
