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 Closure Properties of Order Continuous Operators

 Introduction

 Let X be a compact Hausdorff space and let C(X) (or simply C) be the space of all

 real valued continuous functions on X. C'(X) and C"(X) (or C', C" respectively) represent

 the first and second norm duals of C(X). In [4], Kaplan studied the order closure of C when

 imbedded in C". We will consider an analogous question about operators by imbedding

 the space of operators from C to itself in the space of order continuous operators from C"

 to C.

 1. Preliminaries

 C, C', and C" are examples of Riesz spaces (or vector lattices), ordered vector spaces

 where the supremum and infimum of two elements exist.

 If E is a Riesz space and {xa} is an increasing (decreasing) net in E, we say that xa

 order converges to x€E if x = Vaxa(x = Aaxa), and we write X& f x(xa ļ x). More

 generally, we say that net {xa} which is not necessarily monotone order converges to x if

 there are nets {ya} and {za} such that ya ļ x,za î x and za~xa^.ya. We write xa - *■ x or

 x = limaxa. Unless otherwise specified, any reference to limits, convergence, denseness,

 etc. will be in the sense of order convergence. A Riesz space is Dedekind complete if

 every set which is bounded above has a supremum. If xa is a bounded net in a Dedekind

 complete Riesz space, then the following are always defined.
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 ItmSUPaXa = Aa V ß>at Xß

 liminfaXa = Va Aß>a Xß

 A subspace F C E which is closed under finite infima and suprema is called a Riesz

 subspace. If {y € E ; 0 5y5z, x € F } is also contained in F, then F is said to be an ideal of

 E. An ideal which is closed under order convergence is called a band. If A is any subset of

 E, Ad is defined by

 Ad = {y e E' I y | A | x |= 0, all x G A}.

 Ad is a band in E. If E is Dedekind complete and F G E is a band, then E may be written

 as the direct sum of F and Fd, E = F ® Fd.

 If F is an ideal of E, the positive cone of the band generated by F is obtained by

 taking all suprema of increasing nets in F +.

 Suppose E is Dedekind complete and F C E is a Riesz subspace. If x = Ay€xy =

 for A, B C F implies that x€F, then F is said to be Dedekind closed.

 C may be imbedded in C" in a natural way. In general, we will not distinguish between

 f£C and the corresponding f€C". If a Riesz space is also a Banach space and the norm

 is compatible with the order structure, i.e. ļ x | < | y | implies || z || 5 || y ||, then it is

 called a Banach lattice. C and C" are AM spaces, Banach lattices whose norms satisfy

 II / v g ||=|| / D V D g D for f and g positive. Let 1 be the unit in C, the constant

 one function on X. 1 is also a unit for C", and by a theorem of Kakutani C" may be

 represented as C(Y) for some compact Hausdorif space Y. Since C" is Dedekind complete,

 Y is Stonian, i.e. the closure of every open set is open [6, p. 108]. We will apply this
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 notation throughout, letting Y be the Stone space of C"(X).

 An element e€C"+ will be called a component of 1 (or simply a component) if

 eA(l-e)=0. The set of all components will be denoted by i. Each component corresponds

 to an open and closed subset of Y [3, 17.4 and 31.6]. A set PC Í will be called a partition

 of 1 if Vegpe = 1 and eiAe2 = 0 for eie2 €P.

 For n €C' and f€C", by f/i we will mean that element of C' defined by

 = (n,fg), 9 €C.

 We will be especially interested in several subsets and subspaces of C" . The following

 definitions and results are due to Kaplan [3].

 Every element of C" which is the supremum (infimum) of a subset of C will be called

 lower semicontinuous (upper semicontinuous). The set of all such suprema will be denoted

 by lsc (use). The Riesz subspace lsc-lsc = {f-g; f,g€lsc} (=usc-usc) will be denoted by SC.

 We note that the lsc elements of C" are exactly those which are <7(C',C) (the weak-* or

 vague topology on C') lower semicontinuous on the positive part of the unit ball of C',

 and are thus also lower semicontinuous on the natural image of X in C'. In fact, each open

 subset of X corresponds to an element of £ fllsc. If f€usc and gSlsc, f<g, there is an h€C

 with f<h<g.

 Every fgC which is the limit of a net in C will be called universally integrable. The

 set of all such elements is a Riesz subspace and will be denoted by U. Both U and C are

 Dedekind closed in C". U is in fact the set of elements of C" which are simultaneously

 infima of subsets of lsc and suprema of subsets of use.
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 The smallest <r-closed (closed under order convergence of sequences) subspace of C"

 which contains SC will be denoted by Bo. (It is possible to identify Bo with the space of

 Borei functions on X [3, 54.3 and 54.11]). As U is <r-closed, Bo C U. Every fSC" is the

 order limit of a net in Bo (or U) . Both Bo and U are norm closed in C .

 For fi €C', C'M will represent the band in C' generated by fx. C"M will be the band

 in C" dual to C'M, i.e. if C'¿- = {f€C; ('p',' f ') = 0}, then C"M = (C'¿-)d. For f€C",

 {fi will be the image of f under the projection on C"M. C'M is isomorphic with the space

 L^/i), thus C"M may be identified with L°°(/z). The spaces Bo and U project onto CM.

 If {fa} C C% and fa 10, then there is a sequence {fn} C {fa} such that fn 10. C"M is an

 AM-space with unit 1M.

 For /X €C', the ideal generated by (C"M)dnU in C" will be denoted by NM. NM and

 U+Nm are a-closed. (U+NM corresponds to the set of functions integrable with respect to

 fi.) Every element of U differs from an element of Bo by an element of (C"M)d; thus Bo +

 nm = u+nm.

 If E and F are Riesz spaces, the set of all linear operators from E to F which map

 intervals into order bounded sets is denoted by L6(E,F). Lk(E,F) is ordered by T5S when

 Ty=Sy for y€E+, but it is not necessarily a Riesz space. The subspace consisting of all

 differences of positive operators is called the space of regular operators, Lr(E,F). If F is

 Dedekind complete, L6(E,F) is a Dedekind complete Riesz space, and for T, S € L6(E,F)

 and x€E+, TVS is given by

 rv5x= Xl+Xa=* {Txi + Sx2).
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 In this case, we have Lr (E,F) = Lk(E,F). Also, the band of L6(E,F) consisting of oper-

 ators which we continuous with respect to order convergence is designated by LC(E,F) and

 is called the space of order continuous operators. For T6LC(C,,C")) TM is the projection

 onto C"M composed with T.

 L6(C,C) may be imbedded in LC(C",C) by identifying each TeL6(C,C) with its bi-

 transpose Tu €LC(C",C"). In general, we will not distinguish between T and T" and we

 will consider T as an element of L^CjC") when it is convenient to do so. If T€LC(C",C)

 and fsC", we will denote by fT the operator defined by

 fTg = f(Tg ), g e C'

 Because C is order dense in C, every operator in LC(C",C) is determined by its

 values on C, and conversely every bounded operator from C to C may be (uniquely)

 extended to an order continuous operator from C" to C". Thus, we will use the symbol

 Lr(C,U) to represent the subspace of LC(C,C") which consists of differences of positive

 operators mapping C to U.

 For more complete information about Riesz spaces and operators, see Vulikh [7] or

 Schaeffer [6].

 It is possible to translate the lifting theorem of Tulcea and Tulcea [l] to C" by replacing

 L°°(/x) with and the space of measurable functions with Bo + in the proof to obtain

 [2, Theorem A.l]:
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 1.1 Theorem (Tulcea) There exists a positive bounded linear mapping I: C"M -*C"

 which satisfies:

 1. I1M = 1.

 2. I maps £nC"M into Í.

 3. (If)M = f for all f€C"M.

 4. I takes values in Bo + NM(=U+NM).

 We will often require two copies of C"(X) = C(Y) and will denote the second by C

 = C(Y). We will extend this notation with f € C", y € Y and ē a component in C" =

 C(Y).

 Each e€ i determines a set V(e) which is open and closed in Y. The set of all such

 V(e) is a basis for the topology on Y.

 If T€L6(C,C")+, ß €C'+, and feC"+, then

 m(V(e),V(ē)) = (ē^Tfe), e,ē € í

 defines a measure on Y®Y. If $ is a function defined on Y x Y, we will denote the integral

 of $ with respect to this measure (when it exists) by

 J ${y,y){dēp,Tfde).

 The following is essentially due to Nakano [5, Theorem 4.3].

 1.2 Proposition. If S, T€LC(C,C") with 0<T<S and p €C'+, then there is a Borei

 measurable function $ defined on YxY such that (i/,Tf) = / $ (y,y ) (dēi/,Sfde) for all

 f€C", and u €C'M.
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 2. The order closure of Lr(C,C) and Lr(C,U).

 We begin with an important topology on LC(C,C).

 2.1 Theorem. Let n €C'+ and E = C or U. Lr(C,E) is dense in the band which it

 generates in LC(C,C) in the topology defined by the semi-norm

 II r|U=<M,|r|i>.

 Proof. We will first suppose that T€LC(C",C) satisfies 0<T<S for some S€Lr(C,E).

 By 1.2, there is a Borei function $ such that = J $(y,y)(dēi/,Sfde) holds for all f€C

 and v 6C'm. We may assume (YxY). Given e > 0, there is a function 'ř which is

 continuous on YxY such that (YxY) and

 j I ^ $ I (děfíy Side) < e.

 Hence, it suffices to consider operators defined by (f,Tf) = / ^(y,y)(dêi/,Sfde) where 'ř is

 continuous, taking values between 0 and 1.

 Because Ý is continuous, there are, for given e > 0, finite collections of components

 {et} and {ēj} and real numbers rt)J- that satisfy

 J I ® ~ $3 r'jei ® ®j I Slde^ < e'
 U

 We conclude that we may assume ^ = e ® ē for e, ē € £. We will need the following

 lemma.

 2.2 lemma. Given e€ £, /* €C" + , and e >0, there are elements ei 6 uscfi£ and

 e2 €lscn<f that satisfy (ej)M5e5(e2)M, ei<e2, and ( ¿¿,e2-ei ) < e.
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 Proof. Since C"M = UM, we may choose é€U+ with éM=eM. We may also assume that é

 is a component, replacing é with V„(nèAl) if necessary (recall that U is a-closed). Because

 é is the supremum of a subset of use, we find fSusc with 0£f<é and (/x,è -f) < e/ (4|| ß ļļ).

 Consider A = {x€X; f(x)>c/(4|| /z ļļ)}. Since féusc, this set is closed in X. A determines

 element ei €uscfl£ with n( A) = (ß,ei). We have ei5è and

 {ti, è -ex) < <Ai,é-/> + <Ai,(e/(4 [| M ļ|))l> < 'e+'e='€-

 If we apply the above to 1-é , we find characteristic (l-e2)€usc with

 (/x,e2-é) = (/i, 1 - é - (1 - e2)) <

 and (1-é )>(l-e2). We have then e2 €lsc, ei<é5;e2, and

 (p,e2-ei) = (fi,e2-è) + (ß,e-ei) < = e.

 We return to the operator defined by f e ® ē(dēu, S fde). Given e >0, choose ei,e2,ēi,

 and Č2 according to the lemma such that

 2-ci) <

 (/i,ē2 -ēi) < c/(2 ļļ S II).

 We next find f , f € C such that ei5f£e2 and ēi<f<Č2, since ei and ēi are from use and e2

 and Č2 are from lsc. It follows that
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 ļ I / ® / - e ® e I (de^ł, Side) < ļ (e2 ® e2 - ei ® ei)(de/z, Side)

 = J e2 <g>ē2(dē/z,Slde) - J ei ® ēi(dējtf, Side)

 = (ē2/*, Se2) - (ēi/i, Sei)

 = (ē2Ai,Se2) - (ēi/i, Se2) + (ēiA4,Se2) - (ēi/i,Sei)

 = II ^ II (M>ē2 - ēi) + (SV,e2 - ei)

 1 1
 < -e + -e = e.
 2 2

 If the operator R is defined by ( u,Rg ) = ff® f{dēuiSgde ), the above shows that

 II R - T''fi< e. We now demonstrate that R€Lr(C,E).

 2.3 lemma. If f€C+, there is a net fa ff in order and norm, where each fa may be

 written

 m a

 fa - ) ^ aa ,iea,t
 i-1

 with ea>t- €lscfl£.

 Proof. Assume, without loss of generality, that 0<f£l. For each gSC and real number

 0<a<l, let e(a,g) = Vn(lA n(g-al)+).

 By definition, e(a,g)€lscn£, and ae(a,g)<g. In general if

 0 = ao=ai...^an = 1.

 let

 ei + e(ai - ai_i, (f - ai_il)+) = Va(l A n((f - a-,_il)+ - (a-, - a5_i)l)+)

 we have

 n

 l
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 and
 n n

 0<f - ]P(oť - «ť-i)«ť»(V I a* ~~ a»'-i I)1-
 i i

 Hence, f is the supremum of all such sums. To find an increasing net simply consider all

 finite suprema of the sums above. This completes the proof.

 We apply the lemma to find fa jf and fa f f, and consequently fQ ® fa |f®f. Let one

 of these be written

 /a® 7a = Vi>iei ®

 Suppose first that E = C. Let {vß} be a net in C' which or(C',C) converges to v. For

 h€C+, he,- €lsc and we may find a net {h7} in C+ with h7 |het-. Note that

 J «ť ® «y (devß , S hde) = {eji/ß, S hei).

 and we have

 (ëjV, Sh^'S.liminf ß^tjUßySh^'S.Uminf ß^j&jUß, Shei) .

 Thus (ēj u, S hei) <1 iminfß (ēy i/ß, S het), and we conclude that the operator defined by

 ( u,R'h ) = / e» ® ēj(dēu,Shde) maps h€C+ to an element of Isc, and hence the same

 holds for Ra defined by (v, Rah) = f /a ® /a(dēi/, S hde). Since /a ® fa | / ® / in order

 and norm, we have that (v, Rh) = f f ® f{dēu, S hde) maps h€E+ to an element of lsc.

 In an analogous manner, we can show that Rheusc for h€C+, and thus RgL6(C,C),

 because C is Dedekind closed (i.e. uscfilsc=C).

 Next assume E = U. Fix h€C+ and consider

 I fa ® fa {àîv-, s hde) = y; rjij / e, ®ēj{dēv,Shde)
 •J

 «'j
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 as a function of v. For fixed i and j, there is a net h7 fhet- with h7cC. (ēji/, Sh7) is then,

 as a function of u, an element of U. Thus / / ® f(dčv, Sh.de ) is a supremum of elements

 of U (as a function of u). In a similar manner we can show that / / <8> / {dēu, Shdt) is an

 infimum of elements of U. Since U is Dedekind closed, the operator above maps C to U.

 Every positive operator in the ideal generated by Lr(C,E) is dominated by an operator

 in Lr(C,E), for if S, T > 0, we have SVT5S+T. As a consequence, the preceding argument

 implies that Lr(C,E) is dense under || • ||M in the ideal which it generates in LC(C",C).

 If T^O is in the band generated by Lr(C,C), there is a net Ta in the ideal generated by

 Lr(C,C) with Ta |T. Since (/x,Tal) f (¿i,Tl), we conclude Lr(C,C) is dense in the band

 it generates under || • ||M, and the proof of 2.1 is complete.

 We note without proof that if X is a compact metric space, Lr(C,C) may be replaced

 by L6(C,C).

 2.4 Proposition. Given T€LC(C,C") and S€Lr(C,E), E=C or U, with 05T£S, and

 /X €C'+, Tm= limnTJJ for a sequence {Tn} cLr(C,E) satisfying 0lTn5S.

 Proof. By 2.1, there is a sequence {Tn} cLr(C,E) satisfying 0<Tn5S and

 II T° - T H m = <M, I X» - T 1 1>£C|)°.

 Let Sn = Vm> nTm. It follows that

 WS"-T| Vm>„ I Tm - T 1 1)
 k

 = teVV I - T 1 1)
 k m=n

 k

 = V<". V 'Tm -T'l)
 k m=n
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 The last step follows from the fact that the finite suprema are increasing. Thus

 k

 0«, I s- - r 1 1)< V Y. <*•• I Tm - T 1 1)
 k m=n

 k m=n

 V

 Thus limn(p, I Sn - T | 1) = 0.

 Since lirnsupmTm = AmSm, we have

 lim(/¿, I limsupmTm - Sn | 1) = 0.
 n

 From

 (/*, I lirnsupmTm - T I 1)=(m> I lirnsupmTm - Sn [ 1) + (jí, | Sn - T 1 1)

 we obtain

 (/*, I lirnsupmTm - T I 1) = 0.

 Finally, since (limsupmTm)M = limsupmT™, we conclude that limsupmT™=TM.

 In an analogous manner, we can demonstrate that liminfm!T™=TM, and the proposi-

 tion follows.

 Note that TM |T as n increases in C'+, with {TM} a net indexed by the directed set

 C'+.

 2.5 Proposition. If T€LC(C,C") with 0<T<S€Lr(C,E), E=C or U, then T is in the

 order closure of LP(C,E). In particular, if (Lr(C,E))*u represents the set of all infima of

 operators which are suprema of subsets of Lr(C,E), then T is the order limit of a net in

 (I/(C,E))<». 190



 Proof. By 2.4 there is, for each ß €C'+> a sequence {Tn} cLr(C,E) with 05Tn5S and

 limnTJJ =Tm. In addition, limsupnTn<S and (limsupnTn)M =TM. Let R(/i)=limsup„Tn.

 Then Tm5R (fi) 5 T + Sjļ, where is the projection of S on (C" ß)d. As ß increases in

 C'+> Tm fT 10, so that limMR(/x)=T.

 2.6 Theorem. Let E = C or U. Lr(C,E) is order dense in the band of LC(C,C") which

 it generates. If X is a compact metric space, Lr(C,U) is order dense in LC(C,C").

 Proof. The first statement follows immediately from the preceeding arguments. In

 order to prove the second, we need the following.

 2.7 Proposition. Let T€LC(C,C") with range in C"M for some ¡jl GOV. If X is a

 metric space, there is an operator S€Lr(C,U) such that SM=T. If T>0, we may choose

 S>0.

 Proof. By the lifting theorem (1.1), there is an isometry I:C"M - >U+NM satisfy-

 ing (If)M=f for f€CM and 11^=1. If X is a metric space, C(X) is separable. Let {/n}

 be a countable norm dense subset of C(X). {Tfn} is norm dense in T(C(X))cC". Let

 gn=I(Tfn). We may write gn = hn + kn with hn SU and kn €N. In addition, we may

 choose kn which satisfy |kn | < jn for some jn €C"£nU. Let 1„ = Vm(mj„)Al and lx =

 Vnln. It follows that ln €C"¿nU and thus lx SC^HU, since U is cr-closed.

 Define I' by I' = (l-lx)I. I' maps Tfn to U for each n, since

 (1 - lA)gn = (1 - lA)hn + (1 - lA)kn = (l " lA)hn.

 Because 1-lx GCjļnU, we have (I'(Tf»))M = Tfn. From the fact that {Tfn} is norm

 dense in T(C(X)) and I' is norm continuous, we conclude that I'(T(C))cU, since U is

 norm closed. 1-1a €C"jļnU implies that (I'(Tf))M=Tf for all f€C.
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 I' composed with T restricted to C determines a map S €L6(C,C") with image in U,

 which defines S€Lr(C,U). Note that (Sf)M = Tf for f€C. If f€C" is arbitrary, we have (Sf)M

 = Tf, because S and T are order continuous and C is dense in C .
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