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 PLANAR SETS WHOSE COMPLEMENTS DO NOT CONTAIN A DENSE SET OF LINES

 lfl. Introduction and terminology

 Steinhaus proved that the set A-B = {a-b : a € A, b € B}

 contains an interval whenever A and B are measurable subsets of

 the real line IR with positive Lebesgue measure. The authors of

 [1] provide an alternate way of interpreting the Steinhaus
 2

 theorem in terms of projections of the subset A x B of 1 ; they
 2

 prove among other things that there exists a residual set in ]R

 no projection of which contains an interval. We prove the pro-
 2

 jection (measure projection) of a compact set in H to be compact

 (resp. an F set) ini. We employ the proof of Steinhaus' theorem

 using convolutions in ([3, p. 296]) to show that the measure pro-

 jection of E = A x b is open in its projection whenever A and B

 are measurable sets with positive finite Lebesgue measure. Con-

 trary to Theorems 2 and 3 of [1] the analogous statements are

 not true when A and B have either the property of Baire or, are

 sets of the second category. However, if the sets A and B are

 assumed to possess both the above properties then the category

 projection of E has nonempty interior; this follows from the

 method in [6, p. 21] . Finally, there exists a residual set
 2

 E ini with full measure such that its projection has empty

 interior for each linear function f in a dense set. As a

 corollary it follows that such a set does not contain any rec-

 tangle A x B with both A and B having any one of the properties:
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 dense G^; Baire property and of the second category; positive
 measure.

 Terminology: Let f : 1 + E be continuous linear, i.e.

 there exists an m ? 1 such that f (x) = mx for each x € 3R.

 For c £ ]R we denote by f itself the graph of f : 3R -*■ ]R
 c c

 defined by fc(x) = f (x) + c, x € 3R. The Lebesgue measure on
 2

 measurable subsets of 1R0R ) is denoted by X^ (resp. X2) , and
 2

 Ttļ denotes the projection (x,y) w x of 1 onto 3R.
 2

 Let EcH. Following [1] we define the f-projection,

 f-measure projection and f -category projection of E, denoted

 by P(f,E), Q(f,E) and R(f,E) as below:

 P(f ,E) ={cf2R:fcnE=ļ=<f>}/
 Q(f,E) = {c € M i X1(TT1(fcP.E)) > 0},

 and R(f,E) = {c € H : -rr. (f 0E) is of second category in E}.
 JL O

 In general, Q(f,E) and R(f,E) are subsets of P(f,E), and

 examples are easily constructed to show that both are proper

 subsets even for relatively simple sets E = A x B. The lines

 3-6 on page 207 of [1] state that Q(f,E) fills up almost all of

 P(f,E) in the sense of measure whenever > Unfortunately

 this is false as can be seen by taking E to be the union of the

 sets [1,3] x [-1,0], [1,3] x [4,5], {(x,y) : x = 2 and 0 z y s 4},

 and f to be the identity function on ]R. For we have P(f,E) = [-4,4]

 whereas Q(f,E) = (-4,-1) U (1/4) which does not fill up almost all

 of P ( f , E ) in the sense of measure. However, in case E has full

 measure (i.e. its complement is a null set) then it follows from

 invariance of X£ under rotations and Fubini's theorem that Q(f,E)
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 does fill up almost all of P(f,E) in the sense of measure.

 Let us collect some facts that follow directly from the

 definitions. The complement of a set A is denoted by A'.

 1.1. PROPOSITION; Let A,B be subsets of 1, E be the

 rectangle A x B and f : ]R -*■ 1R be continuous and linear. Then

 (i) P(f,E) = B -f (A)

 (ii) P(f,E)'= {c : c + f ( A) c b1}

 and (iii) Q(f,E) = {c : (Afif * (B) ) > 0},
 X

 where A and B are measurable.

 1.2. COROLLARY : Let A be of second category, B be

 residual and E = A * B. Then P(f,E) = ]R for every continuous

 linear function ^ 0 .

 PROOF : As f preserves sets of the second category, f(A) is

 of the second category, so is c + f (A) . Since the set B' is of

 the first category we have P(f,E)' = <ļ> from part (ii) , i.e. P(f,E)=3R.

 1.3. REMARK : The above corollary is no longer true if

 A and B are of the second category; an example is provided by

 Theorem 4 of [1]. However, see Theorem 2.6 below.

 1.4. PROPOSITION: Let E G ]R^ and f be linear and con-

 tinuous. Then P(f,E)° = <p iff E' contains a dense set of

 lines each parallel to f.

 PROOF : As in part (ii) of Proposition 1.2, we have

 P (f ,E) = {c : f CE1}, and so P(f,E)° = <f> if P(f,E)' is
 c

 dense in H, which is equivalent to the condition stated.
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 112. Let us first relate in Proposition 2.1 the compact-
 2

 ness of E c3R to the properties of the projections.

 2
 2.1. PROPOSITION: If E is compact in ]R then for every

 continuous f : 3R ->• 3R

 (a) P(f,E) is compact in ]R

 and (b) Q(f,E) is an F set in 3R.
 a

 PROOF : (a) We have c € P(f,E) iff there exists

 2
 (x,y) £fcHE, i.e. c = y - f(x) . Consider the map <j> : ]R ]R

 2
 defined by <ļ»(X/y) = y - f(x), (x,y) Ç. 3R . Then 4> is continuous

 since f is; as E is compact so is the set

 <ME) = {y - f(x) : (x ,y) € E}

 = {c € m : 3(x,y) f_ E H c = y- f (x) }

 = P(f ,E) .

 (b) With E and f being as above, let us write P = P(f,E).

 Then P is compact by (a) , Let a = inf P and ß = sup P. Define

 <t> : [ a , $ ] ->• 3R by ( c) = Xļ (fcfiE) ) , c € [a,ß]. Then
 Q = Q(f,E) = {c : <f> ( c ) > 0} = U Q , where Q = {c : <1>(c) >

 n=l n

 for every natural number n. To prove Q to be an F^ it clearly

 suffices to show each Qn to be closed, and this will follow
 from the uppersemicontinuity of 4». To verify the latter, let

 {c^} be a sequence in [a,ß] that converges to c € [a,ß]. We

 need to show that lim <f> ( Cj^ ) < <ļ> ( c) .

 For any sequence íA^} of sets in a matric space X the

 limit superior, LsA^ is defined in [5, p. 337] and shown to
 be the following set: 171



 LsAjç = {x € X : g a subsequence {A^} of A^ and x^ € a^

 for each i, such that x^ ■* x as i ■+ «}. We claim that
 Lstt. (f OE) c tt (f He) .

 1 'Tc 1 c
 For let x € Lsir- (f He) . Then there exists a subsequence

 ck
 {c. } of {c, > and x. € it. (f Oe) for each i such that x. x
 i k li c^ i

 as i 00 . Since ir^ is the first projection there further

 exists a y^ € 3R such that (x^,y^) € f^ He for every i. We

 have y^ = f(x^) + c^, and as f is continuous the sequence iy^}
 converges to f(x) + c = y say. Then (x,y) € f , and as the

 G

 sequence {(x^,y^)} is contained in the closed set E and con-
 verges to (x,y) , we have (x,y) € E and so (x,y) € E 0 f , or

 c

 x € Tf (E Of ) as claimed,
 l c

 Thus we obtain <ļ>(c) = x^ (ir^ (fcfiE) ) k x^ (Lsir^ (fc fi E) ) . For any
 k

 sequence {A^} we have [5, p. 337] LsA^ 3 lim A^, and so we get

 <j>(c) * X. (lim ir. (f He))
 x i ck

 ¿ lim X- (ir. (f He)) by Fatou's lemma
 i i ck

 = lim <f> (ck) ,

 and so is uppersemicontinuous as asserted. This completes the

 proof of (b) .

 2.2. REMARK: Part (a) is false when E is not compact
 2

 as we see by taking E to be the open unit disk in H ; nor

 can we replace "Fa" in part (b) by "closed" as is clear from
 the example in Section 1. Moreover, let E be the set obtained

 by rotating the set in that example counterclockwise through

 45° and f be as before. Then the function <(> in the proof of
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 (b) is not continuous. However, <|> is continuous for a measur-

 able rectangle E = A x b of positive measure as we see in the

 proof of Theorem 2.3.

 Although the next theorem is essentially known [3, p. 296],

 it provides an improvement of Theorem 1 of [1] when f is linear.

 We use the ideas of [3, p. 295] where the notions of P(f,E) and

 Q(f,E) are not considered, and indicate the modifications

 necessary in our context.

 2.3. THEOREM : Let A and B be measurable sets in 1 with

 finite positive measure and let E = A x B. Then Q(f,E) is an

 open subset of P(f,E) for every continuous linear function f

 not identically 0.

 PROOF : First let f(x) = -x, x € H, which is the case

 considered in [3, p. 296]. Define <ji : H ■* by the convolu-

 tion of the characteristic functions xA an£* XB (°f the sets
 2

 A and B) in L :

 (1) <Mc) = xA*xB(c) = / xA(c+y) (y), c € M. The
 integrand in (1) has the support (-c+A) fi (-B) , and so <f> ( c) > 0

 iff X1((-c+A) O (-B) ) > 0

 iff (aO(c-B) ) > 0 (as is invariant under translations)

 iff X- (Afif ^ (B) ) > 0 (as f * (x) = -x and f ^ (x) = c - x) and so
 l c c

 <f>(c) > 0 iff c € Q(f ,E) .

 Since <ļ> is continuous [3, p. 295] its support Q(f,E) is

 an open set. 173



 In general, let f(x) = mx with m =1= 0. We now have, from

 (iii) of Proposition 1.1,

 Q(f,E) = {c : X, 1 (AOf"1 c (B) ) > 0} 1 c

 = {c : À, (Af"¿-(B-c) ) > 0}
 i m

 = {c : Xļ(mAn(B-c)) > 0},

 for (C) > 0 iff A^ (mC) > 0, and so we only have to replace
 A by mA in the special case considered first in order to com-

 plete the proof.

 2.4. COROLLARY [1, Theorem 1 for linear f ] . Let A and

 B be measurable sets in ]R with finite positive measure and f

 be non-zero linear continuous. Then Q(f,AxB) contains an

 open interval.

 A set E has the property of Baire ([6, p. 19]) if E = 0AA

 with 0 open and A first category, where A denotes symmetric

 difference. The class of sets having the property of Baire

 is the sigma-algebra generated by the open sets together with

 sets of first category ([6, p. 19]); every F set and each G.
 O Ò

 set has the property of Baire.

 2.5. REMARK; The analogues of Theorem 2.3 are false

 when A and B are assumed either to have the property of Baire

 or to be of second category. For an example of the latter,

 see Theorem 4 of [1] . For an example of the former, let A

 be the set Q of rational numbers and B be the set J of

 irrational numbers . Let f : JR -* 3R be linear and continuous ,
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 defined by f (x) = mx, x £ 3R, for some m € 3R. From part (i) of Propo-
 li if m = 0

 sition 1.1, we get P (f ,E) =.3 - mQ and so P (f ,E) - Q if mÇQ, m ^ 0 .
 3R if m Ç Q

 Hence P(f,E) c «9 whenever m Ç. Q, i.e. P(f,E) has empty interior.

 Since A is an set and B is a G^ set, both have the property
 of Baire; and as B is residual, this example shows Theorem 2

 and 3 of [1] to be false. Inspired by Theorem 4.8 of [6, p. 21]

 we do however, have the following:

 2.6. THEOREM: Let A and B be of the second category and

 have the property of Baire, and E = A x B. Then R(f,E)° =1= <j>

 for every linear continuous f ' 0 .

 PROOF : The proof is only a modification of the one in

 [6, p. 21] . Let A = GAP and B = HAQ, where G and H are open

 and P,Q are of the first category. Since A and B are of the

 second category, G,H are not empty and so there exist nonempty

 open intervals I and J such that I CG and J c H.

 Now let m =1= 0; then we have for every c s 1,

 (c+mA) n B

 = (c+ (mGAmP) ) 0 (HAQ)

 3 (c+ (mG-rnP) ) 0 (H~Q) where A~B = A Ob1

 = (c+mG) 0 (c+mP) 1 HhOQ'

 = (c+mG) fl H n (c+mP) 'HQ'

 = (c+mG) fi H ~ ( (c+mP)UQ) .
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 But then we have (c+mG) z> (c+ml) and H 3 J, and so we obtain

 (c+mA) p B ^ (c+ml) H J ~ ( (c+mP) IJQ) . As on P. 21 of [6]

 it follows that there exists an open interval 0 such that

 for every c € 0 the set (c+ml) T J contains a nonempty interval.

 Hence the set (c+mA) n B contains a nonempty open interval minus

 a set of the first category, i.e. for every c 0 the set

 (c+mA) ,r| B is of the second category, or the set A 0 ^B~c^

 is of the second category as well. Since the latter set is

 A fi f ^ (B) we have
 c

 0 c {c : A fi f ^ (B) is of second category}

 i.e. Oc R ( f ,E) . Hence the theorem.

 2.7. REMARK: Answering a question raised in [1]/ Roy 0.

 Davies [2] constructed with the help of continuum hypothesis a

 linear set A of the second category such that A x A has full

 planar outer measure and P(f,AxA)° = $ for every linear f;

 Martin's Axiom is employed by Tomasz Katkaniec [4] to give a

 linear set A of the second category for which R(f,AxA)° = <(>

 for every linear f. These sets cannot have the property of

 Baire by Theroem 2.6. In the same issue of the Real Analysis

 Exchange (p. 230) it is remarked that a Besicovitch Borei set
 2 o E c ]R 2 of full plane measure has the property P(f,E)° o = $ for

 each f. However, it is relatively easy to find such a set for

 which P(f,E)° = <t> for a dense set of functions:
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 Let us recall that the space of all continuous linear

 functions may be identified with H.

 2
 2.8. THEOREM : There exists a residual set E in 3R with

 full measure such that P(f,E) has empty interior for a dense

 set of linear functions f.

 PROOF : Let Q denote the set of rationals; we define

 the complement E' of E. For each m € ]R, r € Q let

 L = { (x,y) : X € H, y = mx + r } .
 m / 1

 For each fixed m, the set L =U{L : r Ç Q} is of the
 m m,r

 2
 first category in ]R and has measure zero. Define

 E' =U{Lm : m € Q}. Then E' has both these properties, and
 2

 so E is residual in ]R with full measure. For each m £ Q the

 set E' contains a dense set of lines each parallel to y = mx

 and so P(f,E)° = <ļ> for every f € Q, by Proposition 1.4. Hence

 the theorem.

 2.9. COROLLARY: There exists a dense G„ set E with full
 _____ o

 2
 measure in JR which contains no measurable rectangle A x b with

 A and B satisfying any one of the following properties:

 (i) dense G . ,
 0

 (ii) positive measure,

 (iii) property of Baire and of the second category.

 PROOF : Let E be the dense G „ set constructed in Theorem

 2.8. In case E contains a rectangle A x b where A and B possess
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 property (i), (ii) or (iii) then we have P(f,E)° 4= <f> for every

 f ķ 0, by Corollary 1.2, Theorem 2.3 and Theorem 2.6 respective-

 ly. This contradicts Theorem 2.8.
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