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 BILINEAR INTEGRATION OF AN EXTREME POINT MULTIFUNCTION

 By using a generalized theorem of Lebesgue-Nikodym, we show that under
 suitable restrictions the bilinear integrals of a multifunction and the
 corresponding extreme point multifunction are equal. Examples are given
 showing that the hypotheses of the main theorems cannot be weakened.

 1 . INTRODUCTION

 Various developments in mathematical economics, control theory and

 statistics have led to the study of measurable and integrable multifunc-

 tion . A beginning of what might be called a calculus of multifunctions

 can be found in R.J. Aumann's influential paper [2]. The integration of

 multifunctions has been studied extensively in recent years by numerous

 authors. The foundations were laid by R.J. Aumann [2], C. Castaing [7],

 G. Debreu [10], K. Kuratowski and C. Ryll-Nàrdzewski [19], C. Olech [20],

 A. Plis [22], and others. C. Castaing [8] and C.J. Himmelberg and
 F.S. van Vleck [16] showed that under suitable restrictions the measura-

 bility of a multifunction F implies the measurability of the multifunction

 ext F, where ext F(t) is the set of extreme points of F(t). The main

 purpose of this paper is to show, by using a generalized theorem of

 Lebesgue-Nikodym, that the bilinear integrals (in the sense of

 N. Dinculeanu [ 1 1 ] ) of these two multifunctions are equal. This extends

 corresponding results on the same topic, see remarks 4.8.

 Section 2 of this paper is reserved for some preliminary notes concerning

 notation, definition and remarks. The general reference for measure

 theoretic properties and the bilinear integral is [11 ].

 In Section 3 we present some results , most of which are known and stated

 therefore without proof. All of these will be used later.
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 Section 4 is concerned with the integration of multi functions . The main

 results are theorems 4.3 and 4.7.

 Section 5 is devoted to some examples showing that the hypotheses of

 the main theorems cannot be weakened.

 2. PRELIMINARIES

 Throughout this paper T will denote a non-empty point set on which no

 topological structure is required.

 2.1 MEASURES

 Let V be a fixed Banach space and C a ring of subsets of T. Recall

 that a 6-ring is a ring which is closed under countable intersections.

 Let m: C -» V be a measure. For every set A € C, let

 I m I (A) = sup £ Il m ( A . ) II ,
 J j€J 3

 where the supremum is extended over all finite classes {A.|j € j} of
 disjoint sets of C such that A = U A.. The number |m| (A) is called the

 3 i i
 variation of m on the set A. The function |m| i i is called the variation
 of m on C. If I m f (A) < » for every A € C, then |m| is of finite
 variation with respect to C. It is known that |m| is a finite measure
 on C. Extend the finite measure |m| on C by means of the Carathéodory
 method to a measure |m|* on the a-algebra P(|m|) of all 'm' -measurable
 sets. The class 2(|m|) = ÍE € P(|m|) |m|*(E) < <»} is the 6-ring of all
 ] m I -"integrable sets. The restriction of |m|* to 2(|m|) is denoted by
 |m|. If E £ 2(|m|) and |m| (E) = 0, then E is called 'm' -negligible .

 2.1.1 DEFINITION ( [l 1 ] , p. 179). Denote by C(|m|) the collection of all

 classes A = {A^|i € i} of disjoint |m| -integrable sets such that
 T - U A^ is I m I -negligible and such that for every set A € C there
 exists an |m| -negligible set N c A and an at most countable set J c I
 with A - N = U (A fi A. ) . We say that the measure Imi has the direct

 i€j i
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 sum property if C(|m|) ^0. A measure of finite variation is said to
 have the direct sum property if its variation has this property.

 2.1.2 SOME PROPERTIES . (a) The measure m on C can be extended to

 a measure, again denoted by m, on 2(|m|) (see [ll], p. 76).
 (b) If C is a a-algebra and if |m| is complete on C, then
 C=2(|m|) = P(|m|). (See Section 5).
 (c) If T is a countable union of sets of C, then |m|* is a a-finite
 and complete measure on P(|m|). Thus |m| on 2(|m|) is also complete.
 (d) Whenever m is supposed to be non-atomic, it must be understood that

 m is non-atomic on £(|m|), that is, the extended measure m is non-
 atomic. This convention is necessary, because the extension of a non-atomic

 measure need not be non-atomic, see [5], p. 2 or [30], p. 67 for examples.

 (e) If m is non-atomic on £(|m|), so is |m|.
 (f) If T is a countable union of sets of the 6-ring 2(|m|), then m
 has the direct s torn property. This follows from the fact that C e 2(|m|).

 2.2 MEASURABILITY

 Throughout this paper U will denote a Banach space.

 A function f: T -» U is 'm' -measurable if f * (C) € P(|m|) for every
 closed set C in U.

 A multifunction F: T -» U is a function whose domain is T and whose

 values are non-empty subsets of U. If A c u, then

 F~(A) - {t € T|F(t) il A # 0}.
 A multifunction F: T -» ü is 'm' -measurable ( weakly | m | -measurab le ) if
 F (A) € P ( J m I ) for every closed (open) subset A of U. This definition
 of |m|-measurability was formalized by C. Castaing [7], while the term
 "weak measur abi lity" was introduced by C.J. Himmelberg, M.Q. Jacobs and

 F.S. van Vleck [15].

 A function f: T -» U is called a selector for F if f (t) € F(t) |m|-a.e.
 on T. The set of all |m| -measurable selectors of F will be denoted by

 Sp. if f 6 Sp, consider the equivalence class

 f = {g: T -» u| g (t) = f (t) ļmļ-a.e. on t}. Write SF = {f ļ f € 5^,}.
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 Following R.T. Rockafellar [25], we way that a multifunction F: T -* U

 admits a Castaing representation if there exists a countable set

 M={f.|i£l}cS i' such that M(t) = {f. i' (t) li € i} is dense in i' F i'

 F (t) I m I -a. e - on T. (See [7], p. 116).

 2.3 INTEGRABILITY

 Let W be a third fixed Banach space and consider a bilinear transformation

 (u,v) -» uv, defined on U * V into W such that II (u,v)ll< Hull .llvll .

 The vector integral being employed is the "bilinear" or "m-integral" of
 Dinculeanu. Let

 En(2(|m|)) = if: T -*■ u|f = £ x. 1 Xa ' x- 1 £ A- 1 ^ 2(|m|) and I i£l 1 Ai 1 1
 is a finite index set}.

 If f = £ X. 1 X» £ En(2(|m|)), then / f (t) dm = £ x.m(A.) 1 1 € W, |f| = i£l 1 i i€l 1 1

 I XA an(3 II fH r = f I f I (t) d|m|. The semi -norm II • II ^ defines on
 i€l i

 the vector space E^(2(|m|)) the topology of the convergence in mean.

 A function f : T -> U is m -integrable if there exists a Cauchy sequence

 (f ) in Er_(2(|m|)) such that f -> f Iml-a.e. on T. Then /f (t)dm € W.
 n U n

 The space of all m-integrable functions f : T -* U will be denoted by

 JC^(m). The set of all |m| -integrable selectors of F : T U will be
 denoted by I . Then I cz S . Write I = {f | f € I_}- If f £ F F F F F U

 and Aê P ( | m | ) # then fXA£¿ü(m) and / f (t) dm = /f (t)XA (t) dm. If
 A € P(|m|), then the integral of a multifunction F: T -» U over A is
 defined by

 /AF(t)dm = {/Af(t)dm|f € IF}.

 We observe that / F(t)dm exists, even if F is not |m | -measurable .

 Furthermore, / A F(t)dm may be empty, even if U = IR .

 2.3.1 SOME PROPERTIES, (a) If f is m-integrable, then f is

 I m I -measurable. This follows from the definition of m-integrability and
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 the theorem of Egorov [ 1 1 ] , p. 94.

 (b) [11 ], p. 122 : If f 6 jC^(m) and A € P( |m| ) , then f'A £ *

 (c) [ 1 1 3 , p. 125: Let f,g € jC^(m). Ihen /llf(t) - g(t)lld|m| = 0
 if and only if f (t) = g(t) ļmļ-a.e. In this case /f (t)dm = /g(t)dm.

 (d) jCy = Xy(ļm|) = {f: T -» u| f is | m ļ -measurable and
 Il f ( - ) II P € £* (m)}.

 iK

 Also, [ill, p. 218: f € if and only if f is |m¡ -measurable and
 il f (-)II e i* .

 (e) [ll],p. 218: If f : T -* U is ļm ļ -measurable and if there exists a
 positive function g £ ¿iL such that II f (t) II < g(t) ļmļ-a.e. on T, IR

 then f € JC^.

 A multifunction F: T U is said to be p -integrabty bounded, 1 < p <
 if there exists a k € jCp ( I m I ) such that IR

 sup {Hull I u € F (t) } <k(t) ļ m I -a .e. on T.

 If F: T -» U is 1-integrably bounded by k £ -C* (ļmļ), we say that F jR

 is integrably bounded by k.

 2.4 SCALARWISE MEASURABILITY

 Let P be a property possessed by some subsets of the Banach space U.

 A multifunction F: T -* U is said to be point-? if for every t € T, F(t)

 has property P. Denote the topological dual of U by U'.

 Following M. Valadier [28], we say that the point-compact convex multifunc-

 tion F: T -> U is soatarwise |m| -measurable {-integrable) if for every

 x~ 6 U', the function hx-:T ^ ' defined by
 h „ (t) = sup{<x,x~>|x 1 £ F (t) } x „ 1

 is |m I -measurable (-integrable).

 2.5 SIMPLE AND WEAK MEASURABILITY

 The definitions given here are all from [1.1 ] and are stated in general
 terms.
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 2.5.1 DEFINITION. If X is a Banach space and Z a subspace of X",

 then Z is said to be a noï*mùng subspace of X" if
 r|< x , z >| ļ

 llxll = sup <

 I II z 11 J

 Then, X can be imbedded isometrically in Z'.

 If X and Y are linear spaces, then the space of all linear trans-

 formations from X to Y will be denoted by L*(X, Y) .

 2.5.2 DEFINITION. Let X and Y be Banach spaces. We say that a

 function U: T -> L* (X, Y) is simply 'm' -measurable , if for every x £ X

 the function (p^: T -* Y, defined by = U(t)x, is |m| -measurable.

 2.5.3 DEFINITION. Let X and Y be Banach spaces and Z c Y' a norming

 subspace. We say that a function U: T L*(X,Y) is Z -weakly ļ m ļ -
 measurable, if for every x £ X and every z £ z, the function

 < p : T ]R, defined by (1) (t) = < i/(t)x,z >, is Im 11 I -measurable . X , Z X, z 11

 For the properties of simply and Z-weakly |m ļ -measurable functions, we
 refer to [11 ], pp. 101 - 106.

 2.6 OTHER NOTATIONS

 Denote by B^ the Borei a-algebra of U and by T(P(|m|) x B ) the
 a-algebra generated by the class

 P(ļmļ) X B^ = {a x B I A £ P ( I m I ) , B £ B^} .
 The graph of the multifunction F: T -► U is the set

 G(F) = { ( t , u) £ T x u I u £ F (t) } .

 A topological space is Polish if it is separable and metrizable by a

 complete metric; it is Suslin if it is metrizable and the continuous image

 of a Polish space.

 If F: T -» U is a multifunction, then the multifunction ext F: T U,

 defined for every t £ T by

 (ext F) (t) = {u £ F(t) I u is an extreme point of F(t)},
 is called the extreme point multifunction determined by F. Mul tif unctions

 will be denoted by the capitals F, G and H. If Acu, then co A

 denotes the convex hull of A.
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 3. SOME BASIC RESULTS

 We state the following propositions in forms which are adequate

 for the sequel.

 3.1 PROPOSITION ([19], p. 398). Let U be separable and

 F : T -* U point-closed and weakly | m | -measurable . Then F has
 an I m | -measurable selector .

 3.2 COROLLARY . Let U be separable and F: T -* U point-closed

 and I m | -measurable . Then F has an | m | -measurable selector .
 OO

 PROOF. If 0 is open in U, then O = U, C , where the C are

 all closed in U. Then F (O) = U„ F (C ) £P(|m|). 1 ' Thus, F is n=l n 1 '

 weakly |m| -measurable and proposition 3.1 holds. ^

 .3.3 PROPOSITION ([29], p. 868). Let T be a countable union of

 sets of the ring C, U separable and F: T -* U point-closed.

 Then the following conditions are equivalent:

 ( 1 ) F is I m I -measurable ;
 (2) F is weakly | m | -measurable ;

 (3) G(F) € T (P( I m I ) X By) ;
 (4) F admits a Castaing representation.

 Note that the assumption on T implies completeness of the mea-

 sure space (T, P([m|), |m|*) , see 2.1.2(c). This in turn implies
 that P(ļmļ) is a Suslin family (see [ 27 ], p. 50 or [ 29], p. 864),
 as is required for proposition 3.3 to hold. It is possible to

 show by means of a suitable example that the completeness of

 (T , P(ļm|), I m J * ) is indeed necessary, see for example [ 1 ], p. 27.
 A further requirement in [ 29 ], p. 868 is that U be Suslin, which

 it surely is since it is Polish. These remarks also apply to the

 proposition below, originally proved for a complete measurable

 space, a Suslin space U and where F need neither be closed-

 valued nor |m I -measurable. This proposition is a generalization
 of the so-called Von Neumann-Aumann selection theorem, see [ 3 ] or

 [ 21 ], p. 69.
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 3.4 PROPOSITION ([26], p. 7.11). Let T be a countable union of

 sets of C, U separable and F: T U such that G(F) £ T(P(|m|)
 x • Then F has an |m| -measurable selector.

 3.5 PROPOSITION. If F: T U is point-compact convex and |m|-
 measurable, then F is scalarwise | m | -measurable.

 PROOF. The function h . : T -> 3R defined in 2.4 is Iml-measura- 1 1
 ble, see [9], lemma 5, p. 231. Consequently, F is scalarwise

 I m I -measurable. ^

 3.6 PROPOSITION ([12], p. 439). A non-empty compact subset of a

 locally convex linear topological Hausdorff space has extreme

 points .

 We now employ a theorem of M. Benamara [ 4 ] which deals with

 (i) a point-compact convex F: T U" which is scalarwise | m ļ -

 measurable, i.e. if for every x £ U, the function ' h^: T IR ,
 defined by

 hx(t) = sup{< x',x> |x' E F ( t) }

 is I m I -measurable;
 (ii) a complete measure space.

 With remark 2.1.2(c) in mind, we now have:

 3.7 PROPOS ITION ([4], p. 1249). Let T be a countable union of

 sets of the ring C, U separable and F: T U' point-C(U",U) -

 compact convex and scalarwise |m| -measurable. Then the set

 ext Sp of all extreme points of Sp is non-empty and equal to the
 set 5 , _ .

 3.8 PROPOSITION ([ 16 ], p. 725) . If F: T -» IRn is point-compact
 convex and ļ m | -measurable , then G(ext F) € T(P(|m|) x 8 ).

 3Rn

 Furthermore , if T is a countable union of sets of the ring C,

 then ext F is ļ m | -measurable .
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 3.9 PROPOSITION. Let (F ) be a sequence of multifunctions,

 F : T -» U, with G(F ) € T ( P ( Imi ) x Br_) for all n. Define the
 n

 multifunctions G^:T-»U, i =1,2,3,4 by the respective equali-

 Hïï Gllt)=JoVt); G2(t,-nQoF„(t)'- G3(t> * Jo Ł Fk(t)
 and G . (t) = H. , U F, (t) . Then we have that

 G(Gi) £ T ( P ( I m I ) x 8U), i = 1,2,3,4.

 PROOF. It is a matter of routine to show that

 6(GJ 1 = nyn n=0 G< Fn), n G(G_) ¿ = n=ü Qn G(F n ). 1 n=0 n ¿ n=ü n

 Consequently, G(GJ 6 T(P(ļmļ) x 8^) , i = 1,2. The remaining
 two equalities follow immediately. y

 3.10 PROPOSITION ([24], pp. 166, 167). If dim U < then a

 compact convex subset A of U equals the convex hull of the set

 of its extreme points, in symbols A = co ext A.

 The two propositions below are stated in general terms.

 3.11 PROPOSITION. Let X and Y be linear spaces. If

 f 6 L*(X,Y) and if C is a non-empty convex subset of X and

 B an extreme subset of f(C), then f *(B) fi C is an extreme
 subset of C.

 3.12 PROPOSITION (M. Krein and D. Milman [ 18 ]) . If A is a com-

 pact subset of a locally convex linear topological Hausdorff space

 and E is the set of extreme points of A, then Ac co E, where

 co E denotes the closure of the convex hull of E. Consequently,

 co A = co E . If , in addition , A is convex, then each closed ex-

 treme subset of A contains an extreme point of A and . A = co E.

 4. MAIN RESULTS

 4.1 THEOREM. If U is separable and F: T -* U is integrably

 bounded, point-closed and |m| -measurable, then /^F(t)din ^ 0 for

 142



 every A € P ( ļ m ļ ) .

 PROOF. Corollary 3.2 asserts that F has an | m | -measurable se-
 lector f. If k € (|m|) the bounding function, then

 Il f (t) II < k(t) |m|-a.e. By 2.3.1(e), f £ ^(m) . Consequently,
 f € Ip, and so /AF(t)dm # 0 for every A € P(|m|) by 2.3. 1(b)

 D. Blackwell [6] extended Lyapunov's convexity theorem by proving

 that the ranges of certain vector integrals with values in IRn
 are compact and, in the non-atomic case, convex. The convexity

 part of Blackwell' s theorem was generalized by H. Richter [ 23 ].

 By keeping proposition 3.12 in mind, we state Richter' s theorem

 in the following form:

 4.2 THEOREM ([ 23], p. 86) . (1) If F: T -» 3Rn and m is non-

 atomic, then /AF(t)dļm| is convex for every A 6 S(ļmļ).
 (2) Let T be a countable union of sets of C, m non-atomic

 and F: T -* 3Rn integrably bounded, point-compact convex and ļ m ļ -

 measurable. Then /AF(t)d|m| is compact and convex for every
 A € S(|m|) .

 4.3 THEOREM. Let T be a countable union of sets of C, m non-

 atomic and F: T -» IRn integrably bounded, point -compact convex

 and ļ m ļ -measurable . Then

 /AF(t)d|m|= /A (ext F) (t)d|m|

 for every A € 2 ( ļ m ļ ) .

 PROOF. (1) Let A € S(ļmļ) be arbitrary. Theorem 4.1 asserts

 that /AF(t)d|m| ^ 0 since ^ 0. The integrably boundedness
 of F implies that S = I . By proposition 3.5, F is scalar-

 r r

 wise I m I -measurable. Since dim(IRn) < », we may conclude from

 proposition 3.7 that ^ext F ^ 0. Since ext F is also integrab-
 ly bounded, it follows that S = I . Consequently,

 6XL s 6XL r

 / (ext F) (t)d|m| ^ 0. If |m| (A) = 0, we obviously have that

 /AF(t)d|m| = {0} = /A (ext F) (t)d|m| .

 Henceforth, we suppose that |m| (A) > 0. Since C c2(|m|) by
 our construction in 2.1, it follows from the assumption on T and

 143



 2.1.2(f) that I m I , and hence m, has the direct sum property. By
 theorems 4.1 and 4.2, / F(t)d|m| is non-empty, compact and convex.

 A

 Proposition 3.6 asserts that the set ext / F(t)d|m| of all ex-
 A

 treme points of /AF(t)d|m| is non-empty.
 (2) Let X £ ext / F(t)d|m| i i . Then there exists a function f € I A i i p

 such that X = / f(t)d|m|. Furthermore, / f(t)d|m| cannot be
 written as a proper convex combination of any two distinct members

 of /, F(t)d|m|. 1 1 We show that /_ f(t)d|m| 1 1 6 ext /_ F (t) d Imi 1 1 for A 1 1 E 1 1 E 1 1

 every set E € 2(|m|), E c: a. We notice that / f(t)d|m| € £

 /ĒF(t)dļm| for every set E 6 S(ļmļ), E c A. For such E we
 also have that / F(t)d|ml is compact and convex, consequently £

 ext / F (t) d ļmļ ¿ 0; see part (1) above. Consider an arbitrary £

 subset E 6 2(|m|), E c A. We suppose that |m| (E) > 0. That
 there are |m| -integrable subsets of A with positive measure
 follows from the non-atomicity of m, hence of ļmļ (2.1.2(e)).

 Consider the multifunction F^,: T -♦ 3Rn defined by the equality

 rF (t) if t € E

 FE(t) = 1
 Ho} if t € T - E.

 Let C be an arbitrary closed subset of HR11 . If 0 € C, then

 F~(C) = (F~(C) fi E) U (T - E) 6 P(|o|);
 Ej

 if 0 £ C, then

 F~(C) = F~(C) n E e P( ļ m I ) . £

 Consequently , F is ļmļ -measurable. Furthermore , F is inte- £ £

 gr ably bounded and point-compact convex. We now have that

 I- = S . Corollary 3 . 2 and theorem 4 . 1 show that I_ and
 r" F _ r'
 EE _ E

 /F (t)d|mļ are non-empty, respectively. We show that £

 (*) J* Fg (t) d |m| = /EF(t)d|m| .

 Let X € /F (t)d|m| . Then there exists a function f € Ip such
 £

 that X = /fE(t)d|m| . Define the multifunction G: T -* IR by the
 equality

 r{f (t) } if t e E

 G (t) - { E
 F ( t) if t e T - E.
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 Then G is clearly | m | -measurable and point -compact. Another

 application of corollary 3.2 shows that G has an |m| -measurable

 selector g: T -» 3Rn . Then g € = Ip and by 2.3.1(b), gxß £

 jG^n. But, g(t)x„(t) = f_(t) ļmļ-a.e. on T. By 2.3.1(c) we IR £ £

 now have that

 X = /fE(t)d|m| = /g(t)xE(t)dļm-ļ" = /Eg(t)dļm| € /EF(t)d|m| .

 Conversely, if y € / F(t)d|m|, then there exists a selector f € S

 I such that y = / f(t)d|m|. But fx« E € / and so, FE E F

 y = /Ef(t)d|m| = /f(t)xE(t)d|m| € /FE (t)d|m| .
 We therefore have that

 / Fß ( t) d I m I = /£ F(t) d ļmļ .

 Suppose now that

 /£ f ( t) d I m I ř ext /EF(t)d|m| = ext /FE(t)d|m| .

 It follows then that there exist two distinct elements /g^ (t)d|m|,
 /g2(t)d|m| € /FE(t)d|m| and an a 6 (0,1), where ^ *F >

 E
 such that

 /Ef(t)d|m| =a/gt(t)d|m| + (1 - Ot) /g2(t)d|m|. (i)
 We have that

 /gļ(t)d|m| =/Eg1(t)d|m| + /T_E¡g1 (t)d|m|

 = /Egi (t)d|m| . (ii)
 Similarly,

 /g2(t)d|m| = /Eg2(t)d|m| . (iii)
 Hence ,

 ^Egi(t)d'm' ^ J"Eg2(t)dlml •

 It follows from (i) , (ii) and (iii) that

 /g f ( t) d I m I = a /Egļ (t)d|m| + (1 - a) /Eg2(t)d|m|. (iv)

 Define the functions h^: T -> 3Rn , i = 1,2, by
 eg. (t) if t € E

 h w -Í1 eg.
 Lf(t) if t € T - E; i = 1,2.
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 The functions and are clearly |m| -measurēible and since

 F is integrably bounded, we also have that € <C^n(|m|).
 Furthermore, h,,h0 € I . We now have that X Z r

 ^hj (t)d|m| =/Eh1(t)d|m| + (t)d|m|

 = /Eg1(t)d|m| + /A_£f (t)d|m| ,

 and similarly,

 •fAh2(t)d'm' = •fE52(t)dlml + /A_Ef (t)d|m| .

 We deduce that

 /^^1 (t)dļmļ ¿ /Ah2(t)d|m| .

 Thus, by using (iv) , it follows that

 /Af(t)d|m| =/Ef(t)d|m| + / A_E f ( t) d ļ m ļ

 - o /Egļ(t)d|m| + a /A_Ef(t)d|m|

 + (1 - oc) /Eg2(t)d|m| + (1 - a) /A_Ef(t)d|m|

 = a /Ahi(t)d|m| + (1 - a) /Ah2(t)d|m|.
 This shows that

 /Af(t)d|m| I ext /AF(t)d|m|,
 which is an absurdity. Consequently,

 J"E f ( t) d ļ m I € ext /EF(t)d|m|

 for every E € S(ļmļ), E e a.

 (3) Consider the multifunction FA: T -» 3Rn defined by

 ļ-F(t) if t € A
 FA(t) = 1

 40} if t € T - A

 for A € 2 ( ļ m I ) . We have that

 /AF(t)d|m| = / FA(t)d|m| ,

 hence that

 ext /AF(t)dļm| = ext /F^CtJdļmļ .

 By the same procedure used to establish (*) in part (2) , one can

 show that 24 £



 / (ext F) (t)d|m| = Í (ext F ) (t)d|mļ ;
 A A

 the only difference of significance being that we do not apply

 corollary 3 . 2 but proposition 3.8 to show that ext F and ext Fft
 are | m | -measurable and proposition 3.7 to show that 5^^ # 0
 and S ^ „ ï 0 . We now show that

 ext ^ „ F
 A

 ext /AF(t)d|m| c (ext F) (t)d|m| ,

 or equivalently, that

 ext /FA(t)d|m| <= / (ext F ) (t)d|m| .

 Suppose that x 6 ext /AF(t)d|m| - / (ext F) (t)d|m| . Then there
 exists a function f € I such that x = /. f(t)d|m|. 1 1 But then F A 1 1

 x = /f (t)XA(t)d|m| £ ext /FA(t)d|m|

 and

 I f (t)XA(t)d|m| / (ext Fft) (t)d|m| .

 This means that fx, ? I . _ . Since ext F is integrably
 A 6XU r _ n

 A _

 bounded, we have that I . _ = S . _ . For the same reason,
 ext . _ F„ ext . F_ _ A A

 I_ = S . By proposition 3.7, we have that
 fa fa

 I = S = ext S = ext I .
 ext F„ ext F„ F„ F
 A A A A

 It now follows that fx, ř ext I , and hence, fx 9- ext I_ .
 A fa , a fA

 Since . fxa £-Ip , we deduce that there exist- two classes- A, 1 2 € . ~ ^ A 1 2
 and an a € (0,1) such that

 FA

 fXA= aīļ + (1 - a)ī2.
 This means that

 fXA = aÄ! + Í1 - a)l2

 where and Consequently, differs from A

 on a set of positive |m| -measure. Since ^ ^F ' ^°^^ows
 that A

 /T-AÄ'l(t)dlmf = ° -'T-AÄ2{t)dH-

 We now deduce from [ 11 ], p. 188, corollary 2 that there exists a

 set E j € 2(|m|) where E^ c A and |m[ (E^) > 0 such that
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 /E ^(tjdlml í fE í.2(t)d|m|.

 We have that % x„ , ¿-X- 2 € ^ / where F_ : T -> IRn is the mul-
 1 Ei 2 Ei fE1 E1

 tif unction defined in the same fashion as the multifunction

 in part (2) of the present proof. It follows that

 /f(t)xE (t)d|m| = /£ f(t)dļmļ=a/E A^tīdļmļ
 11 1

 + (1 - a) /_ Ä, (t)d|mj 11 . 2 11

 Consequently,

 / f (t)d |m| ř ext /F (t)dļmļ = ext / F(t)dļmļ.
 E1 E1 E1

 By what has been achieved in part (2) , we deduce that

 X = /Af(t)d|m| ř ext /AF(t)d|m| ,

 which contradicts the fact that x € ext /AF(t)d|m|. Consequently,
 x 6 / (ext F) (t)dļmļ , and so,

 ext /AF(t)d|m| c / (ext F) (t)d|m| .

 (4) By theorem 4.2(1), / (ext F) (t)d|m| is convex. From propo-
 sitions 3.10 and 3.12 and the results obtained above, we now have

 that

 / F(t)d|m| = co ext / F(t)d|m| c co / (ext F) (t)dļmļ
 A Ä A

 = / (ext F) (t)dļmļ .

 Since

 /A (ext F) (t)d|m| c /AF(t)d|m| ,

 we obtain the desired equality, namely

 /AF(t)d|m| = /A (ext F) (t)d|m| . ^

 4.4 THEOREM ([ 11 ], p. 263) . If m: C -» V c L(U,W) has the di-

 rect sum property and z is a norming subspace o£ W, then there

 exists a function U : T -* L(U,Z") having, among others, the fol-

 lowing properties:

 (1) ''U (t)ll = 1 Iml-a.e. on T;
 m - -
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 (2) < U f,z > is Imi -integrable, and
 m -

 < /f (t)dm,z > = /< U (t) f (t) ,z > dlml ,
 m

 for f € JCyôn) and z E Z;

 (3) We can choose U (t) £ L(U,W) for every t € T in the case
 - - - - m _____

 that W = Z'.

 4.5 REMARKS. (a) In the proof of theorem 4.4, the function U

 is defined in such a way that for every u € U and for every

 z E Z, the function d> : T -» 3R , defined by 1 d> (t) = < U (t)u, ru,z , 1 Tu,z m
 z >, is locally |m| -integrable, that is, <J) x* *-s ļmļ-inte-

 Uf Z A

 grabie for every set A € C, see [ 11 ], p. 163, definition 1. Ac-

 cording to 2. 3. 1 (a) , (ļ) X is then | m | -measurable for every set
 U; Z A

 A £ C. By [ 11 ], p. 100, corollary, (1) xa A |m| -measurable. Uf Z A

 (b) Suppose now that W = Z'. Then, by theorem 4.4(3), we have

 that U : T -» L(U,W). Definition 2.5.3 and (a) above then show
 m

 that U is Z-weakly |m| -measurable. Suppose further that Z',
 and hence W, is separable. Then is simply |m| -measurable,
 see [ 11 ], p. 105, proposition 22. If now f: T -> U is |mļ -mea-
 surable, then the function g: T -» Z' = W, defined by g(t) =

 U^( t)f(t), is I m I -measurable, see [ 11 ], p. 102, proposition 16.
 By theorem 4.4(1), we now have that

 ''U ( t) f ( t) II < ''U ( t) II . II f ( t) II = II f ( t) II Iml-a.e. on T.
 m m

 If f € JE A (m) , then U f £jC*(|m|) ' 1 by 2.3. 1 (d) , (e) . Under the u m w ' 1

 conditions sketched above and from theorem 4.4(2) we obtain, for

 f € ■'-¿(nO and every z € Z, that

 < / f (t)dm,z > = / < U (t)f(t),z > dlml
 m

 = < fU (t) f (t)d|m| ,z >.
 m

 The second equality above follows from [11], p. 123, corollary to

 the proposition 7. We then have that

 If (t)dm = SU (t)f(t)d|m|.
 m

 4.6 THEOREM. Let T be a countable union of sets of the ring

 C, U separable and F: T -» U integrably bounded, point-compact
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 and ļmļ -measurable. If W is separable, W = Z" where Z is a
 norming subspace of W", m: C -* V c L( U,W) and Ž7 : T -» L( U,Z') =

 L(U,W) is the function whose existence is guaranteed by theorem

 4.4, then

 /. F(t)dm = /_ U (t) F(t)d|m| 1 , for every A € P( Imi 1 ) .
 A Am 1

 PROOF. We observe first that the assumption on T, together with

 2.1.2(f) implies that m has the direct sum property. Consequent-

 ly, the function U : T -» L(U,W) satisfying the properties of

 theorem 4.4 exists. Let k € £ (|m|) be the bounding function. JR

 Consider the multifunction U F: T -* W, where
 m

 U (t) F (t) = { U (t)u| 1 u € F (t) } , for every t € T. m m 1

 It is clear that U F is point-compact and that U (. t)F(t) #0

 for every t € T. If for an arbitrary t € T, w € U ( t)F(t) then

 there exists an element u € F(t) such that w = U (t)u. Hence,
 m

 llwll = Hi/ (t)ull <11 U (t) II. Hull = Hull < k(t) ļml-a.e. «i on T. m m «i

 This shows that U F is also integrably bounded by k. We now
 m

 show that U F is Imi -measurable. Since U is separable by as-
 m

 sumption, we may apply proposition 3.3 and deduce that there ex-

 ists a countable set M = {f^ļ i € i} of ļmļ -measurable selec-
 tors of F such that, for every t € T, F(t) = M(t) . Since W

 is separable and W = Z', we obtain from remark 4.5(b) that every

 function g. = U f. is 11 I m I -measurable. It follows from the de- mi 11

 finition of U^F that every such is an ļmļ -measurable selec-
 tor of U F. For every t 6 T, we háve that U (t)M(t) c U (t)M(t) .
 m mm

 The converse inclusion follows from:

 U (t)M(t) e U (t)F(t) =«► U (t)M(t) c U (t)F(t)
 mmmm

 = ŁMt)F(t) = ÍMt)M(t) .
 m m

 Combining these two inclusions, we have that the countable set

 M = U M = {U f . I 1 i € l} of I 11 m I -measurable selectors of U F m m m i . 1 11 m

 has the property that

 M (t) = U (t)M(t) = U (t)M(t) = U F(t) , for every t 6 T.
 mm m m

 The space W is separable. From the equivalent conditions (1)

 and (4) of proposition 3.3, applied to T -» W, we see that
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 U F is I m I -measurable . Let f £ S_. Then U f is Iml-measu- 1 1 m . F m 1 1

 rabie by remark 4.5(b) and so U f € STr . Conversely, let g £ m u e
 m

 S., . We show that there exists a function h £ S such that U F . F
 m

 g(t) = if ( t)h(t) |m|-a.e. on T. Define the mul tif ione tion
 G: T -» U by the equality

 G(t) = {u € F ( t) I U (t)u = g(t)}, for every t € T.
 m

 Then G is point -closed . In order to show that G is ļmļ -mea-
 surable, consider the function k: T x U -* W defined by k(t,u) =

 U { t)u, for every (t,u) 6 T x U. For every t € T, the function

 k(t, •) = U ( t) ( - ) : U -* W is continuous on U. By remark 4.5(b),
 m

 the function if is simply ļmļ -measurable. Consequently, for
 every u 6 U, the function k(-,u) = U (*)u: T -» W is Imi 1 1 -mea- m 1 1

 surable. Since U and W are both separable, we may apply [ 7 ],

 p. 97, lemma 3.1 and its corollary to the function k and deduce

 that k is T(P( I m I ) x B^) -measurable. Since g: T -» W is also
 ļmļ -measurable, we have that the set

 {(t,u) € t x u| k (t,u) = g(t) } = { (t,u) € T x u|

 U^( t)u = g(t) }

 is T ( P ( ļmļ ) x By) -measurable. Proposition 3.3 asserts that
 G(F) 6 T(P( |m|) x By), and so,

 6(G) = G(F) fi { (t,u) € T x uf 1 U ( t) u = g(t) } 1 m

 € T ( P ( I m I ) x ßj.

 Proposition 3.3 asserts that G is |m| -measurable and corollary
 3.2 in turn that G has an | m | -measurable selector h, say.
 Since h(t) € G(t) |m|-a.e., it follows that h(t) £ F(t) |m|-
 a.e. and so U (t)h(t) = g(t) |m|-a.e. ,ł Since F cuid U F are m ,ł m

 both integrably bounded, we have that S = I ćind STI = Ir, . F r U r U F
 m m

 We show that /F(t)dm = fU (t)F(t)d|m|. 11 Let x £ /F(t)dm. There m 11

 exists a function f € Ip such that x = /f(t)dm = fU^(t) f (t)d |m|
 £ SU (t)F(t)d|m| ii-1 by remark 4.5(b) and since U f £ !.. Conver- m ii-1 m u F

 m

 sely, if y £ /i/m(t)F(t)dļmļ then there exists a function g £
 ījj p such that y = /g(t)d|m| . By what has been shown above,

 m

 there exists a function h £ 1„ such that [/ ( t)h(t) = g(t) |m|-
 r ni 11
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 a. e. From 2.3.1(c) and remark 4.5(b) we have that y = /g(t)d|m| =
 SU (t)h(t)d|ml = /h(t)dm € /F(t)dm. This shows that

 m

 /F(t)dm = /i/ (t)F(t)d|m|.
 m

 Let A be an arbitrary set in P(ļmļ) and define F : T U by
 A

 rF(t) if t € A

 F (t) = '
 HO} if t € T - A.

 Then

 rU (t)F(t) if t € A

 U i t)F (t) = ' m
 Ho} if t € T - A.

 Now, F is integrably bounded, point-compact and F (t) ^ 0 for
 H Ä

 every t € T. Also, F^ is ļ m ļ -measurable , as shown in the proof
 of theorem 4.3. We may repeat the above procedure to show that

 /F (t)dm = SUA t)F A (t)d|m| 1 1 . A m A 1 1

 As established in the proof of theorem 4.3/ we have the equalities

 /_F(t)dm = /F_(t)dm and
 A A

 JA0;(t)F(t)d|m| = /i/m(t)FA(t)d|m|.
 We conclude that

 / F(t)dm = / U (t)F(t)d|m| A Am

 and this completes the proof. ^

 Wa now extend theorem 4.3 to the case that the integration is per-

 formed with respect to the vector measure m.

 Suppose that U = IRn , V = 3RP , W = 3Rnp , f G £ 1 (m) and
 D 2Rn m: C -» 3R D . We write

 / f (t)dm = (/f (t)dm. , /f(t)dm_, ..., /f(t)dm ) € IRnp ,
 1 ¿ p

 where m = (m^ »n^, . . . /m^) . We have that dim L(3Rn, IRnp) = n^p.

 We may consider 3RP c L(IRn, 3Rnp ) and the natural bilinear trans-
 formation B: 3Rn X TSp -* 3Rnp, where B(u,v) = v(u) , u 6 3Rn ,

 v £ IR^ c L(3Rn, IRnp) . We shall follow this line of thought in
 the theorem below. .
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 4.7 THEOREM. Let T be a countable union of sets of the ring

 C, F: T -» mn integrably bounded, point-compact convex and ļ m ļ -

 measurable and let m : 2 ( ļ m ļ ) -» IR^ be non-atomic . Then

 /^F ( t) dm = / (ext F) (t)dm, for every A £ 2(|m|).

 PROOF. (1) Put Z = 3Rnp ; hence Z is a norming subspace of
 (3Rn^) * = 3Rn^ . Consider 3R^ <= L (3Rn, 3Rnp) ; hence m: 2(|m|) -»
 TR9 c L(JRn, IRnp) . It is clear that m has the direct sum pro-
 perty. Since all the conditions of theorem 4.4 are satisfied,

 there exists a function U : T -» L(lRn, Z') = L(]Rn, ]Rnp) having
 m

 all the properties mentioned in that theorem as well as in remarks

 4.5. As was seen in the proof of theorem 4.6, the multifunction

 U F: T -* 2Rnp is integrably bounded, point-compact, [m| -measura-
 ble and U { t)F(t) ^ 0 for every t € T. It also follows that

 U F is point-convex, since F has this property. We now apply

 theorem 4 . 3 to U F and we obtain
 m

 IV (t)F(t)d|m| = / (ext U F) (t)dļmļ, Am A m

 for every A € 2 ( | m | ) .

 This equality combined with the equality obtained in theorem 4.6

 shows that

 / F(t)dm = / Í/ (t)F(t)d|m| 1 1 = / (ext U F) (t)d|m| 11 , A Am 1 1 A m 11

 where A € 2 ( | m | ) .

 (2) In order to show that J"AF(t)dm c / (ext F) (t)dm for an ar-
 bitrary A € 2(|m|), it suffices to show that / (ext U^) (t)d|m|
 e / (ext F) (t)dm for such A. We may suppose that |m| (A) > 0.
 Now, I . _ = S ^ 0 and I . . , _ = S . „ „ / 0 by 1 the ext . F _ ext F ext . U . , F _ ext . U „ F „ 1

 m m

 integrably boundedness of ext F and ext i/^F, respectively, and
 by proposition 3.7.

 (3) Let f £ I . „ „. We show that there exists a function h £
 ext . U „ „. F

 m

 I . _ such that U (t)h(t) = f(t) Imi -a. e. on T. Now, f £
 ext F m 11

 I . _ implies that f(t) £ (ext U F) (t) for every t £ T - N, ext . U _ F m
 m

 where N c T and |m| (N) = 0. This means that {f(t)} is a clo-
 sed extreme subset of U (t)F(t) for t £ T - N. Define the mul-

 in

 tifunction G: T -> 3R by the equality
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 G ( t) = {u € F(t) I 1 U (t)u = f(t)}, for every t £ T. 1 m

 It is clear that G is point-closed. For every t € T - N we

 have that G(t) ^ 0, G(t) is an extreme subset of F(t) by pro-

 position 3.11 and G(t) fl (ext F) (t) 0 by proposition 3.12. To

 see that G (G) € T(P(|m|) x B n ) » we refer to the proof of theorem
 jR

 4.6 and the definition of the multifunction G in that theorem.

 Proposition 3.8 asserts that G(ext F) 6 T(P( |m|) x 8 n). Consi-
 JLR

 der the multifunction H: T -* 3R , defined by the equality

 H(t) = G ( t) D (ext F) (t) , for every t € T.

 Then,

 G(H) = Giù) fl G(ext F) € T(P( |m|) x 8 n)

 by proposition 3.9. Also, H(t) ¿ 0 for every t € T - N. Put

 Tj = T - N and = H|t^. Consider the a-algebra P(T^,|m|) of
 all I m I -measurable subsets of T^. We now have that

 G(H ) € T (P (T. , |mļ ) x 8 « ) e T(P(|m|> x 8 ).
 * i IK 3R

 It is clear that H^(t) ^ 0 for every t € T^ and that the mea-
 sure space (T^, P(T^,|m|), |m|*) is a-finite and complete. An
 application of proposition 3.4 leads to the existence of a P(T^,
 ļ m I ) -measurable function h^ : -» 3Rn such that h^(t) € H^(t)
 for every t € T^. Let xq be an arbitrary element of IRn and
 define the function h: T -» lRn by

 (h (t) if t € T
 h(t) = ' ^x if t € N.

 o

 Then h(t) € H(t) for every t 6 T^ and h is clearly ļ m ļ -
 measurable. It follows that h€S ^ = I ^ „ and that

 ext ^ F ext ^ F „

 U (t)h(t) = f(t) Iml-a.e. on T.
 m 1 •

 (4) Suppose now that x £ /_ (ext U F) (t)d|m|. 11 Then there exists A m 11

 a function f € ^ext y p such that x = f ( t) d ļmļ . By what has
 m

 been shown in part (3) above, there exists a function h Ç I _
 ext _ F

 such that i/m(t)h(t) = f(t) ļmļ-a.e. on T. Consequently,

 x = /A f (t)d|m| = /Ai/m(t)h(t)d|m|

 = /i/m(t)h(t)xA(t)d|m|
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 = /h(t)XA(t)dm

 = /. h(t)dm € J (ext F) (t)dm
 A A

 by using the observations made in remark 4.5(b) . This shows that

 /_ F(t)dm = /, (ext U F) (t)d|m| 1 1 c / (ext F) (t)dm. A A m 1 1 A

 Since the converse inclusion

 / (ext F) (t)dm c / F(t)dm
 n A

 obviously holds , we now have the required equality

 /AF(t)dm = /A (ext F) (t)dm. y

 4.8 REMARKS. Theorem 4.7 has also been proved by:

 (a) A. Dvoretzky, A. Wald and J. Wolfowitz [ 13 ] for the case that

 F: T -> 3Rn+* is such that F(t) = A for every t 6 T, where A
 is an n-dimensional simplex; (b) S. Karlin and W.J. Studden [17]

 for the case that F: T -> 3Rn is such that F(t) = C for every
 t 6 T, where C is a fixed compact convex subset of 2Rn ;
 (c) C. Castaing [ 8 ] for the case that T is a compact metric

 space and F: T X c: 3Rn point-compact convex where X is a
 non-empty compact convex metrizable subset of IRn , and

 (d) M. Valadier [ 28 ] for the case that F is scalarwise integra-

 ble (see 2.4), and |m| = |m. ļ + ļnuļ + ... + |m | where m =
 ' z, p

 (m, / m0, m ). In each of the cases (a) -(d), the measure with 12 / p
 respect to which the integration is performed is vector-valued and

 non-atomic .

 5. EXAMPLES

 The main purpose of this section is to show by means of illustra-

 tive examples that parts of the hypotheses of theorems 4.3 and 4.7

 cannot be weakened.

 5.1 EXAMPLE. Let T = {t }, 2 = {0,t} and m: 2 -» 3R be defi-

 ned by m(T) = 1, m (0) = 0. Then m is an atomic measure and

 m = I m I . Define F:T-*IR by F(t)=[l,2]. Then F satisfies
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 the conditions of theorems 4.3 and 4.7. Furthermore,

 (ext F) (t) = {1,2} = / (ext F) (t)dm.

 If f: T -» 3R is defined by f(t) = 1 then f € I and
 1

 ff (t)dm = 1 j € /F(t)dm. Thus,

 /F(t)dm ^ f (ext F) (t)dm.

 5.2 EXAMPLES. Let T = [0,1], S be the Lebesgue Cf-algebra of

 subsets of T and m the Lebesgue measure on T. Then m is

 non-atomic and m = ļmļ . (a) Define F: T -+ 3R by F(t) = IR
 for all t € T. Then F is point-convex, but neither integrably

 bounded nor point-compact. Clearly, (ext F) (t) = 0 for all

 t € T and

 / (ext F) (t)dm =0 7^ /F(t)dm.

 (b) Define F: T -» 1R by F(t) = (0,1) for all t € T. Then F

 is integrably bounded and point-convex but not point-compact. As

 in (a) above we have that

 / (ext F) (t)dm = 0 ^ /F(t)dm.

 5.3 EXAMPLE. The space cq is the Banach space of all sequences
 X = (xß) converging to zero. The space cq is infinite dimen-
 sional and the closed unit ball A of cq is non-compact and
 convex. Let T, S and m be as in 5.2 and consider c = L(3R,

 O

 c ). Define F:T-*c by F(t)=A for all t € T. Then F is
 O o

 clearly ļ m | -measurable and integrably bounded. Since ext A = 0
 (see [ 14 ], p. 709) , we have that

 / (ext F) (t)dm = 0 ^ /F(t)dm.
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