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 1. Introduction. Recently ( [7], &] - [10] , [l3) a
 new theory of integration has been developed. It is

 more general than the Lebesgue integral but it

 retains the monotone and dominated convergence properties

 of that integral. Unlike the Riemann and Lebesgue

 integrals, it always retrieves a function from its

 everywhere finite derivative:

 b

 ļ F'(x)dx = F(b) - F(a) .
 a

 In fact, slightly more is true (see Theorem 2.1 below).

 This "new" integral is really not new - it is equivalent

 to the Perron and the restricted Denjoy integrals introduced

 early this century (08) and [7})» i.e., a function is
 integrable in the new sense iff it is Perron and restricted

 Den joy integrable, in which case the values of the integrals

 are all the same. What is new and remarkable is the

 définit. i on of this integral which is very elementary,

 namely, a slight modification of Riemann's. In accordance

 with present convention we shall refer to this integral as

 "generalized Riemann integral". The status of Lebesgue

 integrability is easiU^ described: f is Lebesgue integrable
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 iff both f and ļfj are generalized Riemann integrable,

 in which case the definite integral of f in its two meanings

 yields the same number. It follows that a non-negative real

 generalized Riemann integrable function is Lebesgue integrable.

 Since the new integral integrates every derivative while

 the Lebesgue integral does not, the class of Lebesgue

 integrable functions is a proper subset of the class of

 generalized Riemann integrable functions.

 Although this new approach was initiated by J. Kurzweil

 ļī6ļ , full credit for an independent discovery and extensive

 development of the theory must go to R. Henstock ( [7], [8]).

 2. Definition and an important property of the integral.

 We enunciate the theory for a real valued function of a real

 variable, although a corresponding theory holds in more

 general settings (e.g., for mappings of a closed interval

 into real Euclidean n-spaces).

 Let f(x) be defined on £a,b}, - œ -c a < b<0O.
 The Riemann integral of f may be introduced as follows:

 >

 If there exists a real number I so that, for each £ y O ,

 there is a constant 0 such that

 I1 ~ 2T f^tk^ack~xk-1^l ^ ^
 k=1
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 whenever a = xQ < x^ < . . . < xQ = b and. xk_>ļ tk^ x^ ,

 x^ - ^ & for k = 1, 2 , . . . , n , then such an I is

 unique and is the Riemann integral of f on [a, 3 •
 If instead of demanding that the partition be of

 constant 'fineness' as above, we allow the fineness to

 vary depending on the behaviour of the function, i.e., from

 point to point in £a,b¡ , we obtain the definition of the
 generalized Riemann integral: If there exists a real

 number I so that, for each € > 0, there is a positive function

 áç(t) on ¡>>3 such that

 |l " ¿í(tk)(xk"xk-l)| ^ £
 k=1

 whenever a = xQ < x^ < . . . < xQ ■ b and xk-/ļ ^ t^ 4«

 *k - xk-1 < (t^) for k = 1, 2, ..., n, then such

 an I is unique and is called the generalized Riemann integral

 b b

 of f oņ ļa,bj , denoted by^ļf(x)dx or^f .
 a a

 Here is a (known) sample of the theory of that integral.

 Theorem 2.1. Let < a < b and let F be a real function,

 continuous on [a, q and (finitely) diff erentiable on (a,b).
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 Then

 b

 (2.1) J^P'^dx = P(b)-P(a),
 a

 the integral being generalized Riemann, (F' is extended

 to ļa,bļ arbitrarily, e.g., by setting P' (a) = F'(b) = 0).
 Proof: Let € > 0 be given. Choose, for every t 6. (a,b),

 a number cQ(t) such that

 (2.2) ļ F(x) - F(t) - P' (t)(x-t)ļ < T'|x-t', €/(4+b-a),
 whenever 0 < |x-t| < c/g (t). Also choose for t = a and

 t = b, a number cQ(t) such that

 (2.3) ¡F00 - F(t)|< 7'_ , |ptt)(*-t)| < 'A.
 whenever ļ x-t I < cÇ(t), X € [a, 3-

 Let a = xQ ¿ x1 < . . . < xn » b and xk-1 4: tk ^ x^

 x^ - x^^ < f or k = 1 , 2, . . . , n. Let 1 ^ k ^ n.

 If a < tjc< b, then, by (2.2),

 (2.4) |F(xk) - F(Xļ£_^) - F'ítp^-x^)! £

 ÍPÍXfc) - ï(tk) - ī"(tk)(xk-tk)| + IfU^) - P(tk) -

 •i + '(Vxk-1) =

 If t^ is a or b, then the left-most member of (2.4) is
 less than 2"^by (2.3). Hence
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 n n

 I F(b) - F(a) - 2Zi,,(tk)(xk-xk^)|4-^lF(xk)-FCxk_i)-F.,(tk)(xk-xk_i)l
 k=1 k=1

 n

 + - e •
 k=1

 and (2.1) is proved.

 3. The integral in action; The usefulness of the property

 (2.1) can be seen from the following proof of a strong form

 of Taylor's theorem;
 (cU<iL.$W-3).

 Theorem 3.1 ' Let - <z¿> < a < b < and let F be a real

 function .continuous b . Let n be a positive integer

 and let F have a (finite) nth derivative throughout (â.,b) W it'll F<hH)

 .Then, for some ^ , a < f b, we have

 (3.1) F(b) = >

 k=0 k! n! ;

 Note: Unlike the usual forms of Taylor's theorem, no

 differentiability condition is imposed on F at b^ which
 is natural, as no derivative of F at b of order greater

 than zero appears in (3.1).
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 Proof : We shall use some of the simplest facts about

 integrals. Consider the number

 b tQ t^ tg

 (3.2) I=Jļ ^ i,(n)(t1)dt1dt2...dtn
 a a a a

 b

 which, of course, means ļ I" (t^dt^ if n=1 .
 a.

 By repeated integrations and Theorem 2.1,

 (3.3) I = F(b)-^p(^a?(b-a)k
 k=o

 Taking F(x) = (x-a)n/nl, we have by (3.2) and (3.3)

 b t2

 (3.4) I0 . j ... j dtv..dtn - ÍLjÇi".
 a a

 Suppose I/IQ were smaller than every Fv y(x), a < x <. b.

 (ni
 Then '(x)-II ~ would be positive on (a,b) and we would get
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 b t ^ tp ^ y. p "ļ

 o.) V y. ļp(n)(t1)-II0"1J p "ļ dt., ... dtn> 0.
 aa a

 Thus I/Iq is ^ some F^n'o(), a <- *-< < b and.

 similarly is^ some F^n^(/^), a <-/3 < b. By
 the well known Darboux property of derivatives, there is

 f, a < ? < b, with I/I0 = F(n)(|). By (3-3) and (3.4)
 we have (3.1).

 4. Improper integrals. The new approach to integration

 may be used to characterize improperly Riemann integrable

 functions and a certain class of such functions for which

 very general quadrature formulas converge to the integral.

 By the usual convention, a real function f defined

 on (a,b] , with - <*í?<a<b<e',c> , is improperly Riemann

 integrable on (a,b] iff f is Riemann integrable on fs.bļ

 b

 for each s with a < s < b, and lim ' f exists (finite).
 s-*a+ )

 s

 Improperly Riemann integrable functions, while not

 necessarily Lebesgue integrable, are generalized Riemann

 integrable. In fact, the improper Riemann integral is

 exactly the generalized Riemann integral with t) non-

 decreasing on (a,bļ for each £>0 ( 0D , Theorem 2).

 91



 If in the definition of the generalized Riemann

 integral on C°3 > c^(t) has to be linear on (0,īļ -fol eachç^O,
 the integral so obtained is the dominated integral of

 Osgood and Shisha ( {lêjand Jl?])» 811 improper integral
 for which every sequence of 'reasonable' quadrature

 formulas converges to it ( [l2 ] , Theorem 1).
 A slight modification of the finite interval

 definition yields the generalized Riemann integral on

 [o,~>):
 If there exists an I so that corresponding to every

 € y 0 there is a positive function ¿ļ(t) on 15,0o)
 and a positive number B( € ) such that

 J * 1 - ¿í(tk)(xk-xk-1)l < € * k=1

 whenever 0 = xQ <. ... xQ , xn B( £ ) ,

 ssâ xk-i ^ ' é V xk_xk-i <

 for k = 1 , 2, ..., n, then I (necessarily unique) is

 called the generalized Riemann integral of f on Q),c*s).

 If in the last definition^ for every £>0, o^(t)
 is a constant, the resulting integral on |o,oe) is

 the simple integral of Haber and Shisha ( [Ã-] and [if]).
 Hence the relationship •" ^
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 of simple integrability to generalized Riemann

 integrability on [Ó , eo) is the same as the relation-
 ship of proper Riemann integrability to generalized

 Riemann integrability on intervals £a,b] , - c<5 < a< b ^ .
 Thus from the pei -pective of the generalized Riemann

 integral, the simple integral rather than the improper

 Riemann integral r seems to be the natural
 0

 extension of the Riemann integral to

 5. Concluding remarks. It is remarkable that the

 generalized Riemann integral was arrived at so late,

 particularly when one notes the great effort which was

 expended in the early years of the century to describe

 the Lebesgue integral as a limit of Riemann- type sums.

 A result in this direction was proved by Lebesgue in

 1909 when he showed that his integral could be

 approximated by such sums. Moreover, Borei in I91O ( [l]

 and £2^]), Hahn in 191 4 £¿3 , and others, defined integrals
 more general than Riemann's as limits of Riemann-like sums.

 For completeness it should be noted that a slight

 modification of the definition of the generalized

 Riemann integral yields the Lebesgue integral itself

 (04j and [15]).
 Due to both its power and simplicity, the generalized
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 Riemann integral should become thoroughly familiar to

 all real analysts. It can also be used as an easy

 method for initiating students to a serious study of

 integration.
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