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 This article abstracts the contents of two talks

 delivered at the Ninth Annual Real Analysis Symposium in

 Louisville on June 13, 1985, under the title "The Uses of

 Analyticity . " The lectures addressed the following ques-

 tion: given a function or a measure on some appropriate

 space (such as Rn) , to what extent is it determined by
 its integrals over certain geometrically pleasant subsets

 (lines, planes, balls, etc.) of the space in question?

 This is a subject with an extensive literature. In an

 attempt to make the discussion manageable (and in line with

 my own research interests) , the talks focused on aspects of

 the problem in which harmonic analysis and complex function

 theory play a central role. Here an amusing personal

 coincidence may be mentioned. My interest in the subject

 was first aroused by reading a short paper [3] by one of

 the giants of twentieth century real analysis, Abram

 Samoilovich Besicovitch. (The problem considered in [3]

 turned out to have been solved years earlier, but that is

 where I first saw it.) Now it just so happens that I first

 learned complex variables from Besicovitch (at Dartmouth

 College in 1962-63) . Thus Besicovitch is, in a certain

 sense, doubly responsible for my activity in this area; and

 I think it appropriate to dedicate this paper to his memory.
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 We shall find it convenient to adopt vector notation.

 Thus, X = (x^, . . . ,xn) , = ( ļf 2''"' ' etc* In
 much of the following, n = 2.

 2
 1. Let f be defined on R and suppose that

 (*) f z f ds = 0
 for each line I. Must f vanish almost everywhere?

 When f e L', it is well-known that the answer is

 yes. The simplest proof of this fact [18] proceeds by intro-

 ducing the Fourier transform

 f(§) =' e"l(x~ }f(x)dx

 of f and observing (via Fubini's theorem and the unique-

 ness theorem for the one-dimensional Fourier transform)

 that f vanishes on a line Ï through the origin if and
 only if f satisfies (*) for almost all lines perpendicu-

 lar to Ï . In particular, if (*) holds unrestrictedly, f
 must vanish identically; and f = 0 a.e. by Fourier unique-

 2
 ness. Actually, since f is a continuous function on R ,

 it suffices for (*) to hold for almost every line belonging

 to an arbitrary dense set of directions. Thus, an integra-

 ble function f which satisfies (*) for almost every line

 in each of a dense set of directions must vanish almost

 everywhere .

 Without additional restrictions on f, no further

 improvement is possible. Indeed, let a be an arc of the
 unit circle and take D to be a disc contained in the

 angle subtended at the origin by a. Choosing a smooth
 A

 function (1) = 0 supported in D and putting f = <ļ>, we

 have, by Fourier inversion,

 f (Ç ) = I (?.) = (2tt) 2 (-|> =0
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 on any line through 0 whose direction does not belong to

 a. It follows that the integral of f vanishes along every

 line perpendicular to any direction not in a. Moreover,

 since <|> belongs to the Schwartz class S of smooth,

 rapidly decreasing functions, so does f. Thus, given any

 open set of directions there exists a nonzero function

 in 5 which satisfies (*) for all lines whose directions
 are not in

 When f vanishes off a bounded set, the situation

 changes dramatically. In that case, ê is real analytic
 2 2

 on R ; in fact, it extends to an entire function on <E .

 Such a function cannot vanish on an infinite collection of

 lines through 0 without vanishing identically. Thus, if

 f is integrable and has compact support and (*) holds for

 almost all lines in each of an arbitrary infinite set of

 directions then f = 0 a.e. It is easy enough to construct

 smooth functions of compact support whose Fourier transforms

 vanish on any finite collection of lines through 0; thus,

 the above result is sharp. On the other hand, the character-

 istic function of a convex set is (in general) determined

 by all integrals in four directions [7] . It would be inter-

 esting to have a proof of this fact based on Fourier analysis

 and complex function theory.

 The hypothesis that f has compact support can be

 viewed as the stipulation that f (x) be small for large

 values of x; alternatively, it can be taken to say that

 the support of f has a large complement. Each interpreta-

 tion suggests a natural generalization. In the first

 instance, suppose there exist constants k, c 0 such that

 |f(xi,x2)| < k e"~c ( I xi I + I x2 I ) .
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 A

 Then f will extend to a function holomorphic in a slab
 2 2

 about the real subspace fl <= C , hence real analytic on
 2

 R ; and the result of the previous paragraph again obtains.

 For a generalization of the second sort, suppose f

 is supported in the first quadrant {(x^,x2):x^ ^ 0, x^ ^ 0}.
 Then

 A (xlSi"^x2 *^2 ^
 = e f (x1/x2)dx1dx2

 defines a continuous function bounded on { (S^, i of
 2^} and analytic on its interior. Since 1R^ is the

 distinguished boundary of the bidisc { **.$1 < 0} X 2 <
 the boundary values of - which agree with the

 ordinary Fourier transform of f - cannot vanish on a set
 2

 of positive measure on Iß without vanishing identically.
 /X

 Thus, f cannot vanish on a set of lines through 0 whose

 directions form a set of positive (linear) measures unless

 f = o a. e. It is not difficult to adapt this argument to

 functions whose supports lie in an angle of opening less than

 it. In summary, if the support of the integrable function f

 lies in an angle of opening less than it and (*) holds for

 almost every line in a set of directions having positive

 measure , then f = 0 a.e.

 The argument given above fails when applied to func-

 tions whose support is a half-plane. In that case, the

 Fourier transform can actually vanish on an open set. Indeed,

 put f(Xj,,X2) = g(xļ)h(x2), where the integrable function g
 satisfies g(x^) = 0 for x^ < 0 and h = $ , $ a smooth
 function of compact support. Clearly, f is supported on

 the half plane x^ 0. But
 A

 £(Ķ1,Ķ2) = g(Ç1)h(Ç2) = gíÇ^aíÇj) = 2-rrg (Ç^a (-?2) /
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 which vanishes off some horizontal strip. Nonetheless, the

 result of the previous paragraph remains valid. Since I

 cannot recall having seen this fact noted previously in

 print, let me give an indication of the proof. If

 f(xļ,x2) = 0 for < 0 , the integral
 -iix. Ç-+X-Ç,)

 f(ç1,Ç2) = e f (xļ,x2)dxļdx2

 defines a bounded analytic function of ç.. for ç. <0.
 A 1 1

 Thus, for fixed Ķ 2, g(Ç^) = f(Ç^,Ç2) the boundary value
 function of a bounded analytic function on a half-plane and

 thus cannot vanish on a set of positive (linear) measure
 A

 without vanishing identically. If f vanishes on a set of

 lines through 0 whose directions have positive linear

 measure, its restriction to any horizontal line in the plane

 other than the x -axis also vanishes on a set of positive
 A

 measure; hence f = 0 and f = 0. It follows that if the

 support of the integrable function f lies in a half-plane

 and (*) holds for almost every line in a set of directions

 having positive measure , then f = 0 a.e.

 Throughout our discussion it has been assumed that

 f e L'. Without some assumption of measurability , there is

 no possibility of concluding that f = 0 a.e., even if (*)

 holds as an absolutely convergent integral for all £.

 Indeed, according to a celebrated example of Sierpiński [12] ,
 there exists a nonmeasurable set E whose intersection with

 each line in the plane consists of at most two points. The

 characteristic function f = Xt? then satisfies (*) for all £

 I but does not vanish a.e. If a function of compact support

 with the same property is desired, it suffices to consider

 Xt, where D is a sufficiently large disc about the origin. ri D
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 Even if f is measurable, it can satisfy (*) for

 almost every line in each direction without vanishing identi-

 cally. Indeed, putting z = x^ + ix^ and setting fíx^^^)
 = l/zk (k _> 2) , we see that (*) holds for any line which
 does not pass through 0. Of course, this f fails to be

 locally integrable near 0 .

 Surprisingly, the question of whether a locally inte-

 grable function can satisfy (*) for all lines without

 vanishing identically does not seem to have been investigated

 until relatively recently. In [18], I constructed an example

 of an entire function with this property. This example may

 be viewed as an elaboration of the example of the previous

 paragraph in which the pole at 0 is pushed out to infinity.

 Here is a brief sketch of the construction. Let z = x^ +
 and put

 D = { z : I z I < 3} S = {xŁ + *2:x < X2 < x /X1 > ^
 U = D u S K = C/U

 An important theorem in approximation theory due to N. U.

 Arakelyan allows us to construct an entire function g (z)
 such that

 |-3 - g(z) I < -3 z e K
 z 1 z I

 Clearly g is nonconstant; moreover, for z e K we have

 |g(z)| _< 2/ļzļ . A standard estimate using Cauchy's integral
 _ 2

 formula for derivatives gives g'(z) = 0 ( ļ z | _ ) along each
 line; hence g' is absolutely integrable on every line.

 Set f = g' and fix £. Then ds = cdz on H, so by the

 fundamental theorem of calculus and the fact that g(z) -+■ 0
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 as z -*■ 00 on i it follows that the integral of f over
 i vanishes. Thus (*) holds for all lines.

 To conclude this section, we pose the natural question

 of extending the previous example to higher dimensions. Fix

 n and k (0 < k < n) and suppose

 (**) fF f dx = 0
 for every affine k-flat F in Rn. If f L' ( Rn) , it
 follows as before that f = 0 a.e. What if f e C( Rn)
 and (**) holds as an absolutely convergent integral for

 each F, but no assumption of global integrability is made?

 A straightforward adaptation of the construction just given

 would require proving theorems about tangential approxima-

 tion by harmonic functions in space analogous to the results

 of Arakelyan used above. Recently, Shaginyan announced some

 results in this direction [11] ; but the degree of approxima-

 tion he obtains is not adequate for the applications envisaged

 above even in the case n = 3, k = 1. On the other hand, if

 f e C( Rn) and there exist two integers k and m,
 0<k<m<n, such that (**) holds in the sense of absolute

 convergence for all k-flats and all m-flats, it follows that

 f = 0. The simple proof of this result is left as an exercise
 for the reader.

 2. According to a well-known result of Cramer and

 Wold [5] , a probability measure on f*n is determined by its
 values on all half -spaces. More generally, if y is a

 finite complex Borei measure and y (H) = 0 for every half-

 space then y = 0. For absolutely continuous measures, this

 is easily seen to be equivalent to the result discussed at

 the very beginning of the previous lecture . The general
 case follows in routine fashion (or can be derived directly

 from essentially the same argument used to handle the
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 absolutely continuous case) . In this section, we shall be

 concerned with the consequences of replacing the condition

 y(H) =0 by y(B) = 0, where B ranges over a specified

 collection of balls. In this case, there is obviously no

 need for any global finiteness conditions on y; and, indeed,

 many of the most interesting results concern the case of
 measures whose total variation is infinite.

 The question to be considered makes sense, and is

 interesting, in a fairly general context. Let X be a

 metric space, y a measure on X. Suppose y (B) = 0 for

 all closed balls in X. Must y = 0? In general, the

 answer is no. Indeed, R.O. Davies has constructed a compact

 metric space X supporting distinct probability measures

 y^ and such that y^(B) = y2 (B) for every closed
 ball in X [6] .

 Predictably, Davies' example is highly nonhomogeneous .

 In those situations in which the space X exhibits a certain

 degree of homogeneity, an affirmative answer can be obtained.

 For instance, suppose the (locally compact metric) space X

 supports a uniform measure. This means that there exists a

 positive measure m on X such that m(B(x,r)) is indepen-

 dent of X and 0 < m(B(x,r)) < <» for all xeX, 0<r<®.

 Here, as usual, B(x,r) denotes the closed ball of radius

 r about the point x e X. Then if the (signed or complex)

 measure y satisfies y (B) = 0 for all closed balls B,

 it follows that y = 0 [4] . Here is a sketch of the proof.
 Set

 f m(B (x,e ) ) d{x'^ < e
 K (x,y) = <

 0 d (x,y) >_ e
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 and put

 (K <M (x) = K (x,y)<My) dm(y)
 Ł Ä C

 for <|) continuous and of compact support. One sees easily
 that

 x(K£<Í>) (x) dy (x) ->• Jx <P (x) dy

 as e ->■ 0. On the other hand, by Fubini's theorem,

 Jx (Kg.'M (x) d y (x) = 0

 for all e. Hence J ady = 0; and so y = 0, since y
 is arbitrary.

 It can also be shown that if X is finite dimensional

 (in the sense that there exists an integer n such that

 every ball in X can be covered by n balls of half its

 radius) then any measure which vanishes on all balls must

 vanish identically. There is also a large class of (infinite

 dimensional) Banach spaces for which this holds true, inclu-

 ding Hilbert space, spaces (1 < p <_ °°) , C (K) , Cq, etc.
 See [8] for further information on this topic.

 Since Lebesque measure is a uniform measure on Rn,
 any (complex Borei) measure on Rn is determined by its
 values on all balls. However, in the Euclidean setting,
 much more is true.

 Fix r > 0 and let B = Br = B(o,r) = {x e Rn: | x|<r} .
 Then
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 y (B (x,r) ) = /B(x,r)dp = /xB(x,r)< y)dy(y)

 = /xB( y-x)dy(y)

 = JxB(x~ y)dy(y)

 = /xB * y (x) ,

 where x denotes the characteristic function of the set S.
 S

 Thus the condition y(B(x,r)) = 0 for all x is equivalent

 to the convolution equation

 XB ♦ W = 0.

 In case y is a finite measure, we may take Fourier trans-
 forms to obtain the relation

 XB(Ç)Î(Ç) = 0-

 A

 Now Xd' being the transform of a function of compact support,
 2 2

 is the restriction to R of an entire function on C and

 hence does not vanish on an open set. Since y is finite,
 2

 y is continuous on R . It follows that we must have y =0,

 hence (by Fourier uniqueness) y = 0. It should be noted that

 this argument has nothing to do with balls; it applies when

 B is replaced by any compact set of positive Lebesque

 measure .

 In case |y| (Rn) = °°, y does not have a Fourier trans-
 form in the classical sense and the above argument fails.

 Is this simply a failure of method, or does some genuinely

 new phenomenon arise in the general case? The question is
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 not idle. In fact, it has a connection with analytic func-

 tion theory. One version of Morera' s theorem says that if

 f e C' (D) and J „ f (z)dz = 0 for every circle T in D,
 2

 then f is holomorphic on D. Suppose D = R and

 J j, f(z)dz = 0 for each circle of fixed radius r^ . Must
 f be entire? The connection with our previous question
 is provided by Green's Theorem:

 / 1 f (z)dz = 2i//ff dxdy, 1 • A

 where A is the disc bounded by T . Now f will be analy-
 2f

 tic if 2^ = 0, but there is obviously no warrant for

 assuming jj j 2f j ¿X(ļy < „ át the outset.

 Let us return to our original question: for general

 (not necessarily finite) measures on Rn, does y(B) = 0
 for all balls of (fixed) radius r imply that y = 0? The

 answer turns out to be negative. There are various ways to

 see this, but one of the nicest is via the formula of

 Pizzetti [16, p. 342]. To simplify notation, let us take

 n = 2, so that we are working in the plane. Pizzetti' s

 formula then says

 /b(X J B(x'r) r»u(t)dt - 2"r k=0 Ï k' ! (f)2k+1 K¿J . J B(x'r) r»u(t)dt k=0 k' (k+1) ! K¿J

 i T
 for u real entire. Write t = (a,T) and put u(t) = e

 Then Au = -u, A u = (-1) u, whence
 oo k 2k+l

 /b(x, r)u(t)dt = 2ïïr k^0 k! (kH) ! (2J -u(x)

 = 2^r . (r) . u(x) ,
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 where is the Bessel function of order 1. It is well

 known that J., has an infinite number of positive real
 2

 zeros r^rj,... For each such r and all x e |R we
 have f B(x,r) u dt " °*

 In the opposite direction we have the following

 Theorem [15] . Let y be a complex Borei measure on R

 and suppose that y (B) = 0 for every ball having radius

 r^ or r2- Then y = 0 so long as is not equal
 to a quotient of zeros of the Bessel function

 This result is sharp in the sense that it no longer

 holds if rļ/r2 -i® a quotient of zeroes of Jn/2? this
 is already evident from the example of the measure y = udx

 constructed immediately above. It is also worth noting

 that the set of proscribed ratios forms a countable dense

 set. Thus, while almost any pair of numbers will

 give rise to an affirmative conclusion, a slight change in

 either r^ or r ^ (or both) can lead from a positive
 result to no result at all. This inherent instability places

 a severe limitation on the usefulness of the theorem in

 applications. A fairly complete discussion of this and

 related results can be found in [17] . Thus, we content

 ourselves with the remark that the proof is an easy (if

 somewhat unexpected) application of the theory of mean

 periodic functions of one variable to the pair of convolution

 equations xB *y=0, xB * y = 0.
 rl r2

 Analogous results obtain in spaces of constant curva-
 2

 ture. For instance, let S(n,-a ) denote the (unique, up

 to isometric equivalence) complete, simply-connected, n-

 dimensional Riemannian manifold of constant curvature
 2 2

 -a <0. Suppose y is a complex Borei measure on S(n,-a )
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 and y(B) = 0 for all (geodesic) balls of radius r^ and
 . Then y = 0 so long as the equations

 P n^(cosh ar. ) =0 P (cosh ar„) = 0
 z 1 z z

 háve no common solution z e (C. Here p~n/2 (x) ±s the
 z

 associated Legendre function of the first kind. Again these
 results are sharp. It is amusing to observe [1, p. 122]

 [17/ p. 170] that if we scale the preceding equations by an
 appropriate factor and let the curvature tend to zero, we

 obtain formally the condition that the equations

 Jn/2(r'z) = 0 Jn/2(r2z) * 0

 have no common nonzero solution. This is just the require-

 ment that r]/r2 not be a quotient of zeros of Jn/2 ° ^
 the theorem above (which corresponds to a = 0) .

 2
 The spaces of constant positive curvature S(n,a )

 are simply the ordinary spheres Sn(l/a) of radius 1/a
 n+

 in R .In this case, all spaces are compact, all measures

 are necessarily finite, and the corresponding results have a

 somewhat simpler character. Let y be a measure on Sn(l/a)
 such that y (B) = 0 for every geodesic ball (= spherical

 cap) of fixed radius r^. Then y = 0 so long as r^ is
 not a zero of any of the functions C,ín+^ ^ (cos ar)

 f 4.1 W9

 m = 1,2,3,... Here the C^11 f 4.1 W9 are Gegenbauer poly-
 nomials. (This result can also be stated in terms of the

 - n / 9

 associated Legendre polynomials pm+n/2*^
 All these results extend to a much more general

 situation, viz . to the case of rank one symmetric spaces.

 For a detailed treatment, including a general overview of

 the subject and a discussion of the previous literature,
 see [2] .
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 We conclude this paper with a brief discussion of the

 Pompeiu problem. A compact set E c jRn of positive Lebesque
 measure is said to have the Pompeiu property if, whenever

 y(a(E)) = 0 for all rigid motions a of Rn, it follows
 that y = 0. We have already observed that balls fail to

 have the Pompeiu property; in fact, the only compact sets

 which are known not to have the Pompeiu property arise in

 fairly simple fashion as differences of balls. Is the ball

 the only element of its homeomorphism class which fails to

 enjoy the Pompeiu property? This natural question has

 proved surprisingly refractory. It has an entertaining

 reformulation as a free boundary problem in PDE, which we
 state for the case n = 2.

 Let E be a Jordan domain and suppose there exists

 a number X > 0 (an "eigenvalue") such that the boundary

 value problem

 Ay. + Ay = 0 on E
 (P)

 ļjL = c = 0 on 3 E

 has a solution. Must E be a disc?

 2 2 2

 When E = { (x^ ,x2) rx^ + *2 - R functi°n u(x^,x2)

 = J Q ( Vx (x* + Ą) ) satisfies (P) if X = (y/R)^ for
 some zero y of J^(z). Thus, in this case, there are an
 infinite number of eigenvalues. Conversely, my colleague
 Carlos Berenstein has shown that if E is a domain for

 which (P) has infinitely many eigenvalues, then E must

 be a disc. See [17] for further references.

 When y is a finite measure, the conclusion y = 0

 follows already from the requirement that y(x(E)) = 0 for

 all translations. Indeed, this last condition is equivalent
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 to the convolution equation x ^ * H = 0# which, as we have
 ""¿i ^

 seen earlier, has y = 0 as its only solution. Of course,

 for finite y there is no longer any need to restrict

 attention to bounded sets. If E is unbounded, but lies

 in a half-space, it is still true that the condition

 y(a(E)) = 0 for- all Euclidean motions implies y = 0 [13].

 On the other hand, in a remarkable paper [9] , P.P. Kargaev
 has constructed a set E of finite measure in Rn and

 distinct probability measures such that y^(a(E))
 = y2(cr(E)) for every rigid motion of Rn. Thus, for
 unbounded sets, the Pompeiu property can fail in the strong-

 est possible sense.

 Further results on determining sets for various .classes

 of measures may be found in the interesting survey article [14] .
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