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 Variational equivalence and generalized absolute continuity

 In [2] Kempisty introduced a generalization of Denjoy integral to functions

 of two variables. We want to discuss the relationship of his concept to the Hen-

 stock (generalized Riemann) integral. In particular, we show that, under some

 natural assumptions, the integral of Kempisty type is less general than the Hen-

 stock integral.

 In the process, we stress the significance of variational equivalence.

 1. 1. We start with a space X , which is either IR or IR2 , and a class of its

 subsets $ (in IR - closed intervals, in IR2 - closed intervals satisfying specific

 conditions, or triangles etc.), which is assumed to be at least a semiring (nono-

 verlapping intervals are treated as disjoint). $+ stands for the ring generated by

 $.

 Definition. A derivation base on Í is a class of subsets of the powerset of

 Xx$.

 We are following here the language and notation of [7].

 The notions of partition, integral (here called Henstock integral), dériva-

 tive, variation, a base that has the partitioning property, or local character, is

 filtering down, are defined just as in [7].

 1.2. Definition. We will say that a base B is compatible with the euclidean

 topology on X if for every set G open in that topology there exists a ßcB

 suchthat 0[C] C ß(G).
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 1.3. Definition. Let B be a derivation base. If F ' , F z : A'xí -> IR , we say

 that F J and F z are variationally equivalent on /ņ € $ if for every e > 0

 there is a ß&B and a superadditive function Q : $ -» IR (depending on ß) such

 that n(/0) Ś € and for every (x, I)eß(I o)

 (1) 'F'(x, /) Fz{.x, /) I š f](/).

 1.4. Theorem. If a base B has the partitioning property and is filtering

 down, then the following are equivalent:

 (1) F : Xx$ -* IR is Henstock integrable on I o',

 (ii) There exists an additive H : $ -» IR such that V(H - F , B (/ o)) = 0;

 (iii) F is variationally equivalent to an additive H : $ -» IR.

 Proof. Let us note analogous theorems in [l] (theorem 24.1, p. 40), [3]

 (theorem 4.14, p. 37), and [7] (lemma 4.4, p. 152).

 (i) implies (ii). Let e > 0. Choose a ß€B(I o) so that for each partition

 TT C ß of / o we have

 (2) I fdF- £ Fix, I) I še.
 70 (x J) en

 Let li c I o be an element of . Let tt1, rr2 be two arbitrary partitions of

 1 1, contained in ß. Since B has the partitioning property and $ is a semiring,

 there exist partitions of / o. tti, C ß(1 0) which extend tt1, tt2, i.e.,

 TT1 = T7j(/ 1), tt2 = nz(Ii). We can assume that 7Tj - rr1 = nz - tt2.

 From (2) we get

 (3) I 2 Fix, I)- 2 F(x, I) I =
 (xJ)gtc2

 I S F(x,I)~ Y, F{x. I) |śe.
 (xJJCTTj (2,/)€7T2

 Set

 (4) H (I ) = J^dF for / c/0, / e $.
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 From (3) we conclude that

 (5) ! H (I)- E F{x,I)'lkU
 (X,I)GI r

 whenever i'Cß is a partition of / c I0, I e $+.

 Now if /' and I" are nonoverlapping and contained in I q , then using (5)

 we get

 (6) I H (I' U/") - H (I') - H (I") I Ś 12e,

 so that H is additive.

 We will show now that

 (7) V(H - F,B(I0)) = 0.

 Take ß as before, and let ncß be a partition of Iq. Write

 (0) 7ť = [(xJ)eTT : H(I) - F(x. I) Ž 0], tt" = tt - tt',

 (9) E' = <t(T7'). E" =

 Using (5) we get

 (10) Y, 'H{I)-F(x,I)' =
 (xj)zir

 E 'H(I)-F(X,I)'- 2 'H(I)-F(x,I)' =
 (xj)erf (xj)eiī"

 I H{E')~ 2 F(x,I)' + 'H{E")~ E fil,/)! S 4t,
 (ar,/)€fť (x./Jcrr"

 so that y(.ff - Z', ß(Io)) £ 4e. and that proves (7).

 (ii) implies (iii). It suffices to set, for any ß €5 ,

 (11) n(/) = V(H - F , /?(/)), /e$.

 (iii) implies (i). Let e>0. Choose a /?€ß and a superadditive fi as in the

 definition of the variational equivalence. For any partition n C ß we then get

 (12) 'H(I0) - E = I E #(/) - E -
 (xj)£ii (arJTctr (xJJctt

 E |tf(/)-F(x./)| Š E W* n(/0) Š e.
 (xj)e.n (īi)cit
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 This completes the proof.

 1.5. Note that the condition V(F' - Fz. B(I o) = 0 is in fact another way to

 define the variational equivalence. The superadditive function of I in 1.3. is the

 variation V(F' - Fz, ß(I))-

 2. 1. We will consider ourselves with integration of functions of the form

 (13) F(x,!)=f(x)'(x).

 where ' stands for the volume of /, and / : /q -* IR for some /0 € $.

 We will start with a couple of results which apply to derivation bases in gen-

 eral.

 2. 1. Lemma. Let £ bea base possesing the partitioning property and hav-

 ing the local character. Let / o € $. Suppose H : $ -* IR is additive and

 / : I0 -» IR. F(x,I) = f(x)'(I). Define

 (14) E = 'x:DBHx(x) = f(x)'.

 Then

 (15) V(H -F, B [£■]) = 0,

 Proof. Let e >0 be arbitrary. For each x€E there exists a ßx€B such

 that whenever (x, I)€ßx['x]]

 (16) 'H(I)-F(x,I)' śeX(7).

 Since B has local character, there exists a ßeB such that /Sc/Sz[fx}]

 for each xeE. Let n be a partition contained in ß[E' Then

 (1?) 2 I H(I) - F{x, /) U e S Hf) Š eà(/0).
 (xj)zit (*./)€ TT

 Thus V{H - Ft ß[E]) ś c'(/q), and this proves (15).

 2.3. Exactly as it is done in [7] (lemma 2.4., p. 144) for the bases on the real

 line, it can be shown that also on IR2, for a base B that has local character, the

 function
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 (18) A *V(G§B[A]),

 where G : X x $ -> IR, is an outer measure.

 Therefore, by 1.4. and 2.2., the function F of (14) will be proved Henstock

 integrable to H t if we show that H and F are variationally equivalent on the

 complement of E.

 Since V(H - F , B[A]) Ś V(H, B[A]) + V(Ft B[A]) for any set At it is

 sufficient to prove that both H and F have their variations on A equal to

 zero.

 2.4. Given a derivation base B that has a local character, and a function

 G : Xx$ IR, the class of all sets A such that

 (19) V(G.B[A]) = 0.

 is a ex-ideal. Let us call it the G -zero-ideal.

 2.5. Again, exactly the way it is done in [7] (corollary 2.5, page 146) on the

 real line, one can show that if the base B has local character, then for a point

 function / : X -* IR, if K(A,j9[j4]) = 0 for some set A , then V(f't B'A]) = 0,

 simply because the domain of / is expressible as a union of a sequence of sets

 on each of which / is bounded.

 2.6. The most common base on the real line is the one whose elements are

 given as

 (20) ß0 = '(x,I) : I c(x - ô(x)t x + ô(x)) and x is an endpoint of I ],

 where ô is a positive function on IR. We will denote that base by D .

 For a function of the form (13), in this case the Henstock integral is the

 same as the Denjoy-Perron integral.

 That fact is the subject of [4]. It is our intention now to simplify the

 methods of that paper used to show that the Henstock integral includes the

 Denjoy-Perron integral.
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 We will present a simple method of proving that a real-valued function H

 whose arguments are subintervals of IR, which is ACG* (see [6], p. 231), is a

 Henstock integral (with respect to the base D), of a point function /, which is

 equal to the derivative of H a. e..

 By 2.2., 2.4. and 2.5., it suffices to show that any set A of measure zero

 such that H is AC • (see [6] p. 231) on A , is in the H -zero-ideal (the comple-

 ment of the set E of (15), or rather its apprapriate replacement for B = D, is

 of measure zero, and H is ACG • on it).

 Let A be such a set. Then H is AC « on the closure A~ of A, as well.

 Let e>0 be arbitrary. Let fxj, 12,13, ' • • J be the sequence of those points

 of A which are not both side cluster points of A. Since H is continuous, for

 each n € IN there is a /Sn € Z) such that

 (21) V(H,ßn['xn]])<e 2~n.

 Since D has local character, there is a ß€.D with jff[{xnj] c f°r all n.

 From (21) we get then

 (22) V(H. ß['xux 2, *3, ■■■]])<€,

 so that

 (23) V(H,Dttxhx2,x3, ■ • • j] = 0.

 Let us take an arbitrary e again. Let Ô be such a positive number that

 whenever /j, /2, ..., In are nonoverlapping intervals with endpoints in A~, and

 (24) £x(/i)<0.
 1 = 1

 then

 (25) fļosc(H, Ii) < e.
 t=i

 Let G be an open set containing A such that X(G) < ô (X extends natur-

 ally to open sets). Write G = (J (clí, bi).
 ielN
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 Let X €A - (xj, xz< X3, • • • j. Then there is an i e IN such that x € (a^, ò*).

 By replacing, if necessary, a» by inf (A~ n (°i. b')) and 6» by

 sup(A~ p) (dļ, bi)), we can assume that €A~, b ^ €A~. Let <5(x) be a positive

 number such that

 (26) (x - <5(x), x + 6(x)) C (a», bi),

 such a number can be found since x is not isolated on any side in A .

 Now let ir be a partition contained in ß[A - {xi. x2, • • • }]. where ß is

 defined via the function ö(x) above. Let [a^, óť ], .... [a^, ö^] be those of

 [ai, òi] intervals for which there is an (x,/)e 77 suchthat /c[oi, 6<]. Then

 (27) t (6^ - o^) < <5
 k= 1

 so that

 (28) 2 'H(I)' Š S ose (H , [o^. bi ]) < e.
 (ïi)€* k=l

 Thus

 (29) V(H, D [A - (xi. x2, • • • }]) = 0.

 Combining (23) and (29) completes the proof.

 3.1. Definition. We will be saying that a function //:$-> IR is absolutely

 continuous in the sense of Kempisty on a set E ( ĄCK on E ). if for every e>0

 there is a á>0 such that whenever n is a partition contained in ß[E ] for some

 ßcB , and such that

 (30) V '(I) < 6,
 (arj)€ff

 then

 (31) S W)l<<-
 (xj)ett

 H will be termed ACGK if it is additive, B- continuous (see [7] p. 172) and

 its domain is expressible as a union of a sequence of sets on each of which H is
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 ACK.

 3.2. The above concepts are based on the definitions of Kempisty in [2]. To

 make that relationship clearer, let us define a base on IR2 which will be denoted

 by Bp.

 It is given as follows:

 (32) the class $ consists of intervals I of regularity r(l) (the ratio of width to

 the length) not less than a fixed positive number p'

 (33) ß€-Bp if there is a positive function ò : IR2 -> IR such that ( x,I)€ß

 whenever x€.I, Ic disk (x,<5(ar)), / € $.

 ACK and ACGK with respect to the base Bp are related to what Kempisty

 defines as ACt and ACGr functions, although they are slightly different. How-

 ever, Kempisty* s definition of ACt simply does not apply to sets contained in

 degenerate integrals. The difficulties caused by that will be considered by the

 author elsewhere.

 3.3. Definition. A function /: Iq -* IR, where To £ $ will be called integrable

 in the sense of Kempisty if there exists an ACGK function H such that

 DßH'(x) = f (x) a.e. (i.e., except on a set E such that V(X, B'E~') = 0), X

 stands for the two-dimensional volume.

 The definition, just as the one of the ACGK class, is based on the one in [2].

 However, Kempisty adds an additional condition of H being It (see [2] p. 26).

 As it turns out, even without that condition, his integral is included in the

 corresponding Henstock integral.

 3.4. Theorem. Let S be a derivation base on X that has local character,

 possesses the partitioning property, and is compatible with the euclidean topol-

 ogy.

 Suppose / : I0 -* IR is integrable in the sense of Kempisty. Then
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 F(x, I) = f (x)X(I) is integrable in the sense of Henstock and both integrals

 coincide.

 Proof. Let K be the set of all x€/0 where DßH'(x) exists but does not

 equal f (x) or does not exist.

 By 2.2., 2.4., and 2.5. it suffices to show that V(H, B'K]) - 0.

 It is enough to prove that V(H, B [¿4]) = 0, whenever H is ACK on A and

 A is of measure zero.

 Let c>0 and let <5 be the number given by the condition of H being

 ACK on A . Since A is of measure zero, there exists an open set U contain-

 ing A, and such that X(U)<6.

 Since B is finer than the euclidean topology, there exists a ß€.B such

 that for every ( x , I) € ß{U ], I cU.

 Let TT be a partition contained in ß[A ] . We have then x €A for (x, I) € n

 and 2 A (/) < <5, so that
 (í./)€TT

 (34) S
 (ïi)cn

 This shows that V(H , B [A]) = 0, as desired.

 3.5. An easy argument similar to the one in [3] (p. 22) shows that Bfi has

 the partitioning property. It satisfies the other hypotheses of 3.4., as well. Thus

 3.4. holds for Bp.

 It also holds for the base that is used in [3] (p. 21).

 The same applies to the newly introduced base in [5], which is somewhat

 related to Bp.
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