Real Analysis Exchange Vol. 10 (1984-85)
H. ii. Pu, Department of Mathematics, Texas ÅM University, College Station, Texas 77843 and K. H. Pu, P. O. Box 1396, College Station, Texas 77841

Measurability of Real Functions Having
Symmetric Derivatives Everywhere

In 1928, Sierpinski posed the question whether there is a nonmeasurable function f whose symmetric derivative $f^{s}(x)$ $=0$ at every real number $x[5]$. Preiss gave a negative answer [4]. In fact, his result shows that a real function f having finite $f^{S}(x)$ at every x is continuous almost everywhere and hence measurable. This leads to a stronger form of this type of question [3]: Is f measurable if $f^{s}(x)$ exists (finlte or not) at every x ? An affirmative answer is contained in a general theorem proved by Uher [7]. Here, based on recent work done by Belna, Evans, Humke, Larson, and Thomson (see [1], [2], [3], and [6]), the authors give a new proof for the following.

Theorem. If a function f bas a symmetric derivative $f^{s}(x)$ at every x, then f is measurable.

Throughout this paper, let f be a real function for which $f^{s}(x)$ exists at every x, C the set of points where f is continuous, c^{3} the set of points where f is symmetrically continuous and D^{s} the set of points where f^{s} is finite. For
a set E of real numbers, $|E|_{i}$ denotes the interior Lebesgue measure of E while $|E|$ denotes the Lebesgue measure of E if E is measurable. Also, $\overline{\mathrm{E}}$ and F° denote the closure and the interior of E respectively. It should be noted that the sets $D^{s},\left\{x: f^{s}(x)=+\infty\right\}$ and $\left\{x: f^{S}(x)=-\infty\right\}$ are measurable since f^{S} is in the first Baire class [3].

Lemma. $\left|\left\{x:\left|f^{s}(x)\right|=\infty\right\} \cap I\right|<|I|$ for every interval I.
Proof. Let $A=\left\{x:\left|f^{s}(x)\right|=\infty\right\}$. For a given interval I, it is trivial that $|A \cap I!<|I|$ if A is not dense in I. We assume that A is dense in I. Let A_{+}and A_{-}denote the sets $\left\{x: f^{s}(x)=+\infty\right\}$ and $\left\{x: f^{s}(x)=-\infty\right\}$ respectively. If $\left(\bar{A}_{+}\right)^{\circ} \cap I \neq \varnothing$, then there exists an interval $I_{I} \subset I$ such that A_{+}is dense in I_{1}. Otherwise, A_{-}is dense in I. We prove for the first case only. (The second case is proved by considering -f.) Now, since f^{S} is in the first Baire class, A_{+}is dense in I_{1} implies that $\left\{x: f^{s}(x) \leqq 0\right\}$ is not dense in I_{1}. There exists an open interval $J \subset I_{1}$ such that $J \subset$ $\left\{x: f^{S}(x)>0\right\}$. Thus A_{+}is dense in J and $A \cap J=A_{+} \cap J$. Clearly it is sufficient to show that $\left|A_{+} \cap J\right|<|J|$.

If $\left|A_{+} \cap J\right|=|J|$, then $\left|D^{s} \cap J\right|=0$. There exists an open set G with $D^{s} \cap J \subset G \subset J$ and $|G|<|J| / 4$. For each $x \in D^{3} \cap J$, since $f^{S}(x)>0$ and $x \in G$, there is a $\delta_{x}>0$ such that

$$
f(x+h)-f(x-h)>0 \quad \text { whenever } 0<h<\delta_{x}
$$

and

$$
\left(x-\delta_{x}, x+\delta_{x}\right) \subset G
$$

For each positive integer n and each $x \in A_{+} \cap J$, since $f^{S}(x)$ $>\mathrm{n}$, there is a $\delta(\mathrm{x}, \mathrm{n})>0$ such that

$$
f(x+h)-f(x-h)>2 h n \quad \text { whenever } 0<h<\delta(x, n)
$$

Let $f^{\prime \prime}=\left\{[x-h, x+h]: x \in D^{s} \cap J, 0<h<\delta_{x}\right\}$. For each n, let $J_{n}^{\prime}=\left\{[x-h, x+h]: x \in A_{+} \cap J, 0<h<\delta(x, n)\right\}$ and $\mathcal{J}_{\mathrm{n}}=J_{\mathrm{n}}^{\prime} \cup J^{\prime \prime}$. Then, for each $\mathrm{n}, \mathcal{J}_{\mathrm{n}}$ is a symmetric full cover of J according to Thomson [6] and, by his Lemma 3.1, there exists $S_{n} \subset J_{r}$ such that $\bar{J}_{r}-S_{n}$ is countable and J_{n} contains a partition of $[c-x, c+x]$ for every x with $c+x \in S_{n}$, where J_{r} is the right half of J and c is the midpoint of J.

Let $S=\cap S_{n}$ and $J_{r r}$ be the right half of J_{r}. Clearly $J_{r}-S$ is countable and $J_{r r} \cap S \neq \varnothing$. If $b \in J_{r r} \cap S$, then $b-c$ $\left|J_{r}\right| / 2=|J| / 4$. For each n, J_{n} contains a partition of $[a, b]$, say $J_{1}^{n}, J_{2}^{n}, \cdots, J_{k_{n}}^{n}$, where $a=2 c-b$. Let $f([a, b])$ $=f(b)-f(a)$. Then

$$
f([a, b])=\sum\left\{f\left(J_{k}^{n}\right): k=1, \cdots, k_{n}\right\}
$$

$$
=\sum\left\{f\left(J_{k}^{n}\right): J_{k}^{n} \in J_{n}^{\prime}\right\}+\sum\left\{f\left(J_{k}^{n}\right): J_{k}^{n} \in J^{\prime \prime}\right\}
$$

Noting that $J_{k}^{n} \in f^{\prime \prime}$ implies $J_{k}^{n} \subset G$ and $|G|<|J| / 4<b-c$ $=(b-a) / 2$, we see that there must be $a k \in\left\{1, \cdots, k_{n}\right\}$ such that $J_{k}^{n} \in J_{n}^{\prime}$. Since $f\left(J_{k}^{n}\right)>0$ for $J_{k}^{n} \in J^{\prime \prime}$ and $f\left(J_{k}^{n}\right)>n\left|J_{k}^{n}\right|$ for $J_{k}^{n} \in J_{n}^{\prime}$, we have, for every n,

$$
\begin{aligned}
f([a, b]) & >n \sum\left\{\left|J_{k}^{n}\right|: J_{k}^{n} \in J_{n}^{\prime}\right\} \\
& =n\left|[a, b]-U\left\{J_{k}^{n}: J_{k}^{n} \in J^{\prime \prime}\right\}\right| \\
& >n(|[a, b]|-|G|) \\
& >n\left(\frac{1}{2}|J|-\frac{1}{4}|J|\right)=\frac{n}{4}|J|
\end{aligned}
$$

This is a contradiction to the fact that $f([a, b])$ is finite. The lemma is proved.

Proposition. C is the complement of a σ-porous set.
Proof. Firstly we show that C is dense. Let an
interval I be given. By the lemma, $\left|D^{s} \cap I\right|>0$. Belna proved [I] that $\left|C^{S}-C\right|_{i}=0$. Noting that $D^{s} \cap I-C$ is a measurable subset of $C^{s}-C$, we have $\left|D^{s} \cap I-C\right|=0$ and hence $\left|D^{s} \cap I \cap C\right|>0, I \cap C \neq \varnothing$.

By a theorem of Belna, Evans and Humke [2], $f^{\prime}(x)$ exists at every x except on a o-porous set. Thus it suffices to show that the sets $B_{+}=\left\{x: f^{\prime}(x)=+\infty, x \notin C\right\}$ and $B_{-}=\left\{x: f^{\prime}(x)=-\infty, x \notin C\right\}$ are σ-porous. In fact, they are countable. For x with $f^{\prime}(x)=+\infty$, we have

It follows that

$$
B_{+} c\left\{x: \lim _{t \rightarrow x_{-}} f(t)<\lim _{t \rightarrow x_{+}} f(t)\right\} \cup\left\{x: \lim _{t \rightarrow x_{-}} f(t)<\lim _{t \rightarrow x_{+}} f(t)\right\}
$$

and B_{+}is countable. Analogously, B_{-}is countable. The proof is completed.

Since a σ-porous set is of measure zero, the Theorem follows immediately.
[1] C. I. Belna, Symmetric continuity of real functions, Proc. Amer. Dath. Soc., 87 (1983), 99-102.
[2] C. L. Belna, in. J. Evans and P. D. Humke, Symmetric and ordinary differentiation, Proc. Amer. Math. Soc., 72 (1978), 261-267.
[3] L. Larson, The symmetric derivative, Trans. Amer. Math. Soc., 277 (1983), 589-599.
[4] D. Preiss, A note on symmetrically continuous functions, Časopis Pěst. Math. 96 (1971), 262-264.
[5] W. Sierpiński, Sur une hypothèse de M. Niazurkiewicz, Fund. Math., 11 (1928), 148-150.
[6] B. S. Thomson, On full covering properties, Real Anal. Exchange 6 (1980), 77-93.
[7] J. Uher, Symmetrically differentiable functions are differentiable almost everywhere, Real Anal. Exchange 8 (1982), 252-261.

