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 Measurability of Real Functions Having

 Symmetric Derivatives Everywhere

 In 1928, Sierpiński posed. the question whether there is

 a nonmeasurable function f whose symmetric derivative fs(x)

 = 0 at every real number x [51. Preiss gave a negative

 answer [4]. In fact, hia result shows that a real function

 f having finite f (x) at every x is continuous almost every-

 where and hence measurable. This leads to a stronger form

 of this type of question C 33 s Is f measurable if fs(x)
 exists (finite or not) at every x? An affirmative answer is

 contained in a general theorem proved by Uher [73. Here,

 based on recent work done by Belna, Evans, Humke, Larson,

 and Thomson (see [1], [2], [3 3, and [63)f the authors give a

 new proof for the following.

 Theorem. If a function f has a symmetric derivative

 fs(x) at every x, then f is measurable.

 Throughout this paper, let f be a real function for

 which fs(x) exists at every x, C the set of points where f

 is continuous, Cs the set of points where f is symmetrically

 continuous and D3 the set of points where fs is finite. -For
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 a set E of real numbers, lEl^ denotes the interior Lebesgue
 measure of E while I E ! denotes the Lebesgue measure of E if

 E is measurable. Also, E and E° denote the closure and the

 interior of E respectively. It should be noted that the

 sets Ds, {x : fs(x) = +00} and {x : fs(x) = - 00} are measurable

 since fs is in the first Baire class [3].

 Lemma, j {x : | fs(x) I = 00} f' 1 1 < 1 1 ļ for every interval I.

 Proof. Let A={x: ļ f 3 ( x ) ļ = 00}. Por a given interval

 I, it is trivial that ļ A O I ! < 1 1 1 if A is not dense in I. We

 assume that A is dense in I. Let A and A denote the sets
 + -

 {x : fs(x) = + 00 } and {x : fs(x) = - 00 ) respectively. If

 (A+)°n I¿0, then there exists an interval Iļ^-I such that

 A+ is dense in 1^. Otherwise, A_ is dense in I. We prove

 for the fi^rst case only. (The second case is proved by

 considering -f.) Now, since fs is in the first Eaire class,

 A+ is dense in I1 implies that {x: fs(x) ê 0) is not dense in

 Iļ. There exists an open interval JCI^ such that J c

 {x : fs(x) > 0} . Thus A+ is dense in J and A r' j = A+nj.

 Clearly it is sufficient to show that (A+A J I < I J I .

 If |A r>J| = !J|, then |DSA j| =0. There exists an open

 set G with Dsn Je G c J and ļG I < I J 1/4. Por each x e Dsr' J,

 since f (x)>0 and x€G, there is a 6 >0 such that
 À
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 f(x+h) - f(x-h)> 0 whenever 0<h<6

 and

 (x- 6X , x + Ôx) C G.

 Por each positive integer n and each, x e A+r'J, since f3(x)
 > n, there is a 6(x,n)>0 such that

 f (x + h) - f (x - h) > 2hn whenever 0<-h^6(x,n).

 Let {[x-h,x+h]:xé Dsr' J , 0< h<^ 6 } . Por each
 Ä

 n, let j'' = ([x-h, x+h] : xe A+nj, 0<h<'6(x,n)) and

 Cf n = Then, for each n, fn is a symmetric full cover

 of J according to Thomson [6] and, by his Lemma 3.1, there

 exists S^C J such that J - is countable and f contains n r r n n

 a partition of [c - x , c + x] for every x with c + x e s , where

 Jr is the right half of J and c is the midpoint of J.

 Let S= f'Sn and Jrr be the right half of Jp. Clearly

 Jr-S is countable and JrrAS/0. If b<r«JrrAS, then b-c >

 I J 1/2 = I J I /4 . Por each n, contains a partition of

 [a , b] , say jļ, • • • » » where a = 2c - b. Let f ([a , b] )

 = f(b) - f(a). Then

 f([a,b]) = ICf(jJ) : k=l, ••., kn}
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 = I{f(j£) i Jn } + : Jjćy"}.

 Noting that € ~f" implies J^CG and |Gļ < !J|/4<b-c

 = (b-a)/2, we see that there must be a ke(l, •••, 1^) such

 that Since f (jJ) > 0 for j£ € f',ģ and f(j£)>n|j£|

 for j£ € we have, for every n,

 f([a, b]) > nlCljgl : j£ 6

 = nlCa, b] - UCJJ:

 > n( I [a , b] i - I G i )

 >n(ì|Jl - = -S-i Ji .

 This is a contradiction to the fact that f([a, b] ) is finite.

 The lemma is proved.

 Proposition. C is the complement of a a-porous set.

 Proof. Firstly we show that C is dense. Let an

 interval I be given. By the lemma, ¡Dsf'I|>0. Belna

 proved [1] that I Cs - C |± = 0. Noting that DS A I - C is a

 measurable subset of Cs - C, we have | J)3ft I - C | = 0 and

 hence I Dsn IAC|> 0, I ft C ¿ 0.
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 By a theorem of Belila, Evans and Humke [2], f ' (x)

 exists at every x except on a c-porous set. Thus it

 suffices to show that the sets B+ = {x : f'(x) = +<.<.>, C)

 and B_ = {x : f ' (x) = - oo , x/C) are o-porous. In fact, they

 are countable. Por x with f'(x) = +<*>, we have

 lim f(t) ? lim f(t) s f(x) ã lim f(t) s lim f(t).
 t-*x- t ->x- t-»x+ t-*x+

 It follows that

 B c {x : lim f ( t) < lin f ( t) } U {x : lim f(t)< limf(t))
 + t -*x- t-*x+ t ->x- t ->x+

 and B+ is countable. Analogously, B_ is countable.

 The proof is completed.

 Since a a-porous set is of measure zero, the Theorem

 follows immediately.
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