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 Topological ly Equivalent Measures in the Cantor Space II

 1. Introduction

 Consider pairs (X, y) where X is a topological space

 and y is a Borei measure in X. Two pairs (X, y) and (Y, v) are said to be

 isomorphic if there is a homeomorphism h from X onto Y such that y(B) = v( h ( B ) )

 for every Borei set B of X. If, in addition, X and Y are the same space,

 then y and v are said to be topol ogi cal 1,y equivalent measures in the space X.

 In [1] I began the study of such equivalences in the particular case that X is

 the Cantor space, and y and v are shift invariant product measures. In this

 article I propose to extend the study to other types of measure. However,

 in order to utilize an easily established result of strong geometrical flavor,

 the measures to be considered are not quite that different: they are of the

 form yf where fisa homeomorphism from the Cantor space to some product space

 and y is still a shift invariant product measure in this other space.

 2. C-pairs

 By a C-pair is meant a pair (X, y) where X is a space of the

 form

 oo

 X = n sn n i n
 n=l i

 with the product topology. Each factor S is finite and carries the discrete
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 topology, y is a Borei measure in X.

 It is well known, of course, that whenever (X, y) is a C-pair then X is

 homeomorphic to the Cantor space of infinite sequences of zeros and ones,

 and its topology is compatible with the metric d which, for any two points

 X = (xn) and x' = (x^), is given by the formula

 oo

 d(x, x') = I ( 1/2 ) "d ( x , x').
 n=l n n n

 By d is meant the metric on S which takes only the values 0 or 1. Further-
 ri n

 more, it can readily be seen that a countable basis for the topology of X

 consists of sets of the form

 ci'r i2> ••• » V = í(xn) e X: xj = ij for j = 1, 2, ... , m}.

 These sets are both open and closed and will be referred to as the special

 closed-open sets of X. They are obtained by fixing the first coordinate,

 the second coordinate, and so on, up to a finite number of coordinates.

 Definition

 Let t be an integer, t 2, and let pj, P2> ... , Pj. be non-

 negative real numbers such that Pj+P2+...+pt = 1. A C-pair (X, y) is said

 to be of type (t; p^, P2> ... , pt) if the following two conditions hold:

 (i) For each n, Sn is a set consisting of t elements which, for

 convenience, may be taken to be the integers 1, 2, ... , t.

 ( i i ) y is a shift invariant product measure y = if y with u (j) = p.
 n=l n n J

 for all n and j.

 Let (X, y) be a C-pair of type (t; p^, p^, ... , p^). X can be expressed
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 as a disjoint union

 t

 X = U <j>,
 j = l

 where u(<j>) = p. and diam(<j>) = 1/2. Each one of the special closed-open
 J

 sets <ij> can in turn be expressed as a disjoint union
 t

 <i i 1 > = U <i ļ 1 , j>,
 i 1 j = l ļ 1

 where y(<ij, j>) = Pn- Pj and diam(<ij, j>) = 1/4. By continuing this process

 a sequence of covers lij, U2, ... of X can be constructed with the following

 properties:

 (2.1) U = {U- • . : 1 * i. $ t, 1 í j í n}.
 n 12' ' n J

 The members of U are mutually disjoint non-empty closed-open sets of

 diameter less than 1/n.

 (2.2) For fixed ij, i2, ... , ip,

 (2-3) VvV

 Theorem 2.1

 Let X be a complete metric space and u a Borei measure in X.

 If there exist an integer t > 2, non-negative real numbers pj, p^, ... , pt

 with Pj+P2+- • . +pt=l , and a sequence of covers of X with properties (2.1),

 (2.2) and (2.3), then (X, u) is isomorphic to a C-pair of

 type (t; Pj, p2, ••• » Pt)-
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 Proof

 Put Y = n S , where S = {1, 2, ... , t), and let v = n v be the
 n=l n , n=l n

 product measure in Y given by '> (j) = p. for all n and j. Since X is complete
 » I J

 and lim(diam U. . . ) = 0, for every y = (i,, i?, Ů, ... ) in Y the
 n-*« 1 2" n

 intersection U. n u. . n u. . . n ... consists of a single point x
 h V2 ' 2n3 y

 of X. Thus, a function h from Y to X can be properly defined by setting

 h(y) = Xy for each y in Y. h is an onto function on account of the fact

 that the families Uj, U^, , ... are covers of X; and it is one-one

 because each cover consists of disjoint sets. Clearly, h(<ij, i 2 » ••• » i'n>) =

 U. . . and h"*(U. . . ) = <i., i9, ... , i >. Since the family of all
 1 2 n 1 L n

 sets U. . is a basis for the topology of X, and the family of special

 closed-open sets is a basis for the topology of Y, both functions h and h

 are continuous. Finally, for U = <iļ, ... » in>» it is the case that

 v(U) = P,- Pi

 is a disjoint union of countably many special closed-open sets. Hence, the

 equation v(U) = y ( h ( U) ) holds for every open set U of Y, and, consequently,

 for every Borei set as well.

 The purely topological content of Theorem 2.1, namely, that every

 compact metric space is the continuous image of the Cantor space, is a well

 known result. Theorem 2.1 was inspired by the proof that A. H. Schoenfeld [2]

 has supplied for this well known result.

 It is obvious to observe that the converse statement of Theorem 2.1

 is nearly true. Indeed, suppose that (X, y) is isomorphic to a C-pair

 (Y, v) through a homeomorphism h form Y to X. Since Y has a sequence of

 covers with properties (2.1), (2.2) and (2.3), h carries these covers to
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 covers of X with the same properties, except that there is no guarantee

 that a set of diameter less than 1/n in Y is carried by h to a set of

 diameter also less than 1/n in X.

 3. Consequences of Theorem 2.1

 A C-pair of a given type may well be

 isomorphic to a C-pair of a different type. In particular instances this

 can be established by appealing to Theorem 2.1. For example, the pair

 (X = n {1, 2} n , y) of type (2; 1/2, 1/2) and the pair ( Y = n {1, 2, 3} . v) n=l n n=l n
 of type (3; 1/2, 1/4, 1/4) are isomorphic. To prove this a sequence of

 covers Uj, l^, U^, ... of X will be constructed satisfying properties (2.1),

 (2.2) and (2.3) with t = 3, pj = 1/2, P2 = P3 = Let the f1rst cover U ^

 consist of the special closed-open sets Uj = <1>, U2 = <2, 1> and Ug = <2, 2>.

 These sets are mutually disjoint, of diameter less than 1, and y(Uj) = 1/2,

 uil^) = y(Ug) = 1/4. In general, if covers Uj, ... , Up have been

 constructed satisfying properties (2.1), (2.2) and (2.3), then the cover Un+^

 is constructed as follows. Let U. . . = <j,, j9, ... , j > be any of I 1 'o • • • • L «*• ¿ S 1 1 c • • • • n

 the special closed-open sets in U . Put U. . . , = <j, , j«, ... , j , 1>,
 n 1 2' ' n

 U i 1 ļ io* 2 • • i n 2 = <J1' J2' ••• ' js' 2' l> and U i 1 ļ i 2 « . . .i s 3 = j2' ••• * Js' 2' 2>- ļ 1 2 • • n 1 ļ 2 « . . s
 The cover U ,, is defined to consist of the special closed-open sets U. •

 n+i ,, 12'"' • n+1
 These sets are clearly disjoint and of diameter less than 1/n+l. Property (2.1)

 is satisfied, and the same is easily seen to be true of properties (2.2) and

 (2.3). The function h from Y to X defined, as in the proof of Theorem 2.1,

 using the covers Uļ5 U2, ... establishes an isomorphism between (X, y) and

 (Y, v ) . In fact, it is even possible to describe the action of h on the

 points (i^, i 2 > ••• ) Y. Put f(l) = 1; f ( 2 ) = 2, 1; f ( 3 ) = 2, 2. Then

 184



 h( i ļ , i 2 » • • • ) = (f(iļ). f(i2)> • • • )•

 Theorem 3.1

 Let (X, y) be a C-pair of type (s; qļf q2, ... , q$). In

 order for (X, y) to be isomorphic to a C-pair of type (t; Pj, p2, ... , Pt)

 it is sufficient that there exist disjoint special closed-open sets Uj,

 U^, ... , Ut in X such that X = u u ... u U^. and y(Uj) = Pj for all j.
 Proof

 Write IK = <jļS J2» ••• » Jn(j)> for J = !» 2» ••• » Then

 Pi = u ( U . ) = q. q. ...q. . Let U, 1 be the cover of X consisting of the J J Jļ J2 Jn(j) . 1
 special closed-open sets U^, U2, ... , U^. Suppose that covers Uļ, Ü2» ... ,

 Un of X have been constructed satisfying properties (2.1), (2.2) and (2.3),

 each cover consisting of special closed-open sets. Let U. • • be any
 Y2...in

 member of Un, say Uļ . . =<kļt k2, ... , kr>. For fixed j, 1 « j ¿ t,
 1 Z'" n

 put u i ^ i 2 i j = <ki' k2' ' kr' ^1' ^2' ' "Mj)*' and define the
 cover U , to consist of the sets U. ■ • . These sets are disjoint

 12" n+1

 special closed-open sets of diameter less than 1/n+l. Properties (2.1) and

 (2.2) are satisfied, and since y(U, , • ■) = q. q. . ..q,, q, q, ...q.
 iļVV , • kļ k2 . ..q,, kr J1 J2 Jn(j)

 y(U- • • )p. = p. p. ...p- P-, property (2.3) is satisfied as well.
 1112* * * 1n J ' ^ nn J

 Thus, it is possible to construct a sequence of covers of X with the

 requirements of Theorem 2.1. Hence, (X, y) is isomorphic to a C-pair

 of type (t; Pj, p2, ... , p ).

 To illustrate theorem 3.1 consider a C-pair (X, y) of type (2; 1/3, 2/3).

 Put = <1>, U2 = <2, 1>, = <2, 2>. X is the disjoint union of these

 special sets and since y(Uj) = 1/3, y(U2) = 2/9, y(U3) = 4/9, (X, y) is iso-

 185



 morphic to a C-pair of type (3; 1/3, 2/9, 4/9). On the other hand, put

 Vļ = <1, 1>, V2 = <1, 2>, V3 = <2> . This time p( Vj ) = 1/9, y(V2) = 2/9,

 uiV^) = 2/3. Thus, (X, y) is also isomorphic to a C-pair of type

 (3; 1/9, 2/9, 2/3). Therefore, two C-pairs of types (3; 1/3, 2/9, 4/9)

 and (3; 1/9, 2/9, 2/3) are always isomorphic.

 Note that the condition in Theorem 3.1 that the closed-open sets Ih

 be special cannot be dropped. Indeed, let (X, y) be a C-pair of type

 (4; 1/4, 1/4, 1/4, 1/4). Put Uj = <1> and = <2> u <3> U <4>. Then

 X is the disjoint union of Uj and U2, and y(Uj) = 1/4, p ( ) = 3/4.

 However, (X, y) cannot be isomorphic to a C-pair of type (2; 1/4, 3/4), for,

 indeed, by an easy application of Theorem 3.1, (X, y) can be seen to be

 isomorphic to a C-pair of type (2; 1/2, 1/2). But, by Theorem 3.3 of [1],

 two C-pairs of types (2; 1/4, 3/4) and (2; 1/2, 1/2) cannot be isomorphic,

 and this in spite of the fact that both measures take values on closed-open

 sets which are dyadic rational s .

 Theorem 3.2

 If the requirement that the closed-open sets U. be special
 'J

 is dropped, then the condition for a C-pair to be isomorphic to a C-pair

 of a given type as stated in Theorem 3.1 is necessary.

 Proof

 Let h: X - >• Y establish an isomorphism between (X, y) and a

 C-pair (Y, v) of type (t; pj, p2, ... , pt). Put V. = <j> for j = 1, 2, ... , t.
 These are mutually disjoint closed-open sets of Y such that

 Y = Vļ u V2 u ... u Vt and v ( V j ) = p.. The sets Uj = h~ 1 ( V j ) are

 mutually disjoint closed-open sets of X such that X = Uj u 'J ... u

 and y(U.) = v(V.) = p.. Observe that while the sets V- are special, the
 J J J J
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 same is not necessarily true of the sets U..
 J

 Let (X, y) and (Y, v) be two C-pairs. Denote by C the Cantor space

 of infinite sequences of zeros and ones, and let f and g be homeomorphisms

 from C to X and Y, respectively. Put p^(B) = y(f(B)) and Vļ(B) = v(g (B) )

 for every Borei set B of C. Clearly, y^ and Vj are Borei measures which

 are topologically equivalent in C if and only if the C-pairs (X, y) and

 (Y, v) are isomorphic. Thus, the results of Theorem 3.1 and Theorem 3.2

 can be carried to measures in C of the form yf where fisa homeomorphism

 from C to some product space X and y is a shift invariant product measure

 in X.

 The author is grateful to Professor Robert Zink for his comments and

 suggestions .
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