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 BLACKWELL SPACES AND GENERALISED LUS IN SETS

 §0. Introduction

 By a separable space is meant a measurable (Borei) space (X, 6) whose

 o-algebra B is countably generated (e.g.) and contains all singletons

 drawn from X . If C is a sub-o-algebra of B , and A C X , then the

 notation C(A) = {B H A : B ē 0} will be used to denote the relative

 C-structure on A . The separable space (S, B) is standard (resp.

 analytic) if there is a complete (resp. analytic) separable metric topology

 on S for which B is the corresponding Borei structure.

 A separable space (X, B) has the Blackwell property if whenever C

 is a e.g. sub-o-algebra of B separating points of X , then perforce

 C = B . Say that (X, B) has the strong Blackwell property if whenever

 C C V are e.g. sub-o-algebras of B with the same atoms, then necessarily

 C = V .

 A reasonably extensive survey of results about the Blackwell properties

 is [1] . We content ourselves with a brief review.

 Fact 1: Let (X, B) be a separable space. Then the following state-

 ments are equivalent:

 1) (X, B) has the Blackwell property;

 2) whenever f is a one-one measurable real-valued function on

 (X, B) , then f is a Borei isomorphism of X onto its image f(X) .

 Visiting Professor from the Indian Statistical Institute, Calcutta.
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 Fact 2: Let (X, B) be a separable space. Then the following are

 equivalent:

 1) (X, B) has the strong Blackwell property;

 2) whenever f is a measurable real function on (X, B) , then

 f (X) C IR has the Blackwell property.

 Fact 3: Every analytic space has the strong Blackwell property.

 Fact 4: There is at least one co-analytic space without the Blackwell

 property.

 We shall obtain fact 3 as a corollary of our general theory: see

 proposition 5 infra. It is also worth mentioning that there are some

 rather pathological (not universally measurable) spaces with the strong

 Blackwell property.

 Proofs of all of the above facts and a short history of the subject are

 to be found in the monograph [1] . The question of whether there is a

 Blackwell space without the strong Blackwell property is unsettled except

 under some extra set- theoretic assumptions: this according to some un-

 published work of D. Fremlin, W. Bzyl and J. Jasiński.

 At the 1983 Oberwolf ach Conference on Measure Theory, the first author

 posed the problem of whether the construction of universally null Blackwell

 spaces is possible within ZFC. At present, the matter does not seem to have

 found resolution. However, Jakub Jasiński [;4] in Gdańsk has very recently

 shown that under the assumption of CH , there are some Lusin sets with the

 Blackwell property and some without. As he points out, his arguments apply

 also to their category analogue, the Sierpiński sets.

 The present paper is an effort to unify these results with other theorems

 about Blackwell spaces in a rather general framework. Many examples of Black-
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 well spaces may then be seen to arise as generalised Lusin sets with respect

 to a o-ideal of Borei sets. Vary the o-ideal, and different species of

 Blackwell spaces emerge. Additionally, our method gives a way of charac-

 terising such spaces, at least when the o-ideal is "uniform.isable11 .

 A preliminary section introduces the basic ideas, including the notion

 of uniformisability and degree of density with respect to a a-ideal. The

 main results, propositions 1 and 2, characterise generalised Lusin sets

 with the Blackwell property and prove that for these sets, Blackwell and

 strong Blackwell properties coincide. Applications to four types of

 a-ideal are given: countable sets, sets of measure zero, sets of first

 category, and a special type of a-ideal of sets avoiding a given set.

 There are some important open questions: we do not know whether the

 a-ideals for measure and category are unif orraisable. A result along these

 lines would involve some new theorem on measurable selections.

 §1. Preliminaries

 We assume that the reader is familiar with the elements of descriptive

 set theory and Borei structures as presented in [1] and [5] . Our notation

 and terminology conform in large degree to the paradigms in [1] .

 Until further notice, (S, B) will denote a fixed uncountable standard

 space. A (proper) a-ideal I in B(S) is continuous if it contains all

 singletons drawn from S . A subset X of S is I-Lusin if X is uncount-

 able, and the intersection of X with every member of I is countable. A

 subset R of S X S is I-reticulate if there is a set N in I such, that

 R C (N X S) U (S X N) . A subset T of S x S is an I-thread if

 1) T is the graph of a Borel-isomorphism between sets A and B

 in B ( S) ;
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 2) T is not I-reticulate.

 A a-ideal I is uniformisable if every set R in B ( S x S) which is not

 I-reticulate contains an I-thread. A subset X of S is I-dense (of

 order 1) if every B £ B(S) such that X n B = 0 is a member of I . Say

 that X is I-dense of order 2 if X x X meets every R in B(S x s) which

 is not I-reticulate. It is not hard to see that I-density of order 2 implies

 I-density of order 1.

 The explicit designation of I in the terms "I-Lusin" , 11 1-reticulatefl

 &c. will occasionally be suppressed.

 Suppose now that C and V are e.g. sub-o-algebras of 8(S) . Say

 that C is proper in V ("I-proper") if

 1) C C V , and

 2) if N £ I , then C(NC) ¿ P(NC) .

 Clearly, C is proper in V if and only if there is a set D in V not

 equivalent to any C-set modulo I , i.e. D a C £ I for any C in C

 If C is any e.g. sub-a-algebra of 8(S) , there is some real-valued

 function f defined on S such that C = = (f~*(B) : B C IR Borei} .

 We call any such function f a Marczewski function for C . If ,

 . is a sequence of sets generating C , then f may be defined as

 CO

 f(x) = I 2*IC (x)/3n ,
 n = 1 n

 where I is the indicator (characteristic) function of C .
 L»

 Given Marczewski functions f and g for any e.g. C and V with

 CCD, we define the set

 T(C, V) = {(s, t) G S x s : f(s) = f(t) and g(s) i g(t)}
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 The definition of T(C, V) does not depend on the particular choice of the

 Marczewski functions f and g . In the same context, we shall say that a

 subset X of S satisfies condition (J) or (J+) if:

 (J) whenever C is a e.g. sub-a-algebra of 8(S) which is proper in

 6(S) , then there is some C-atom C such, that C X contains at least two

 points (i.e. C dees not separate points of X ) ;

 (J+) whenever C and V are e.g. sub-o-algebras of B(S) with C

 proper in V , then there is some C-atom C such, that CHX contains

 two points separated by V

 Lemma 1: Let I be a uniformisable, continuous o-ideal. Then condition

 (J) implies that X is I-dense.

 Proof: If X is not dense in S , then there is some set B C S' X in

 B'I . Since I is continuous, 3 decomposes into two (necessarily uncount-

 able) disjoint set and B^ in B'I . The set B^ * B^ is not I-

 reticulate. By the unif ormisability of I , the set B^ x B^ contains an
 I-thread G . Now G is the graph of a Borel-isomorphism g between sets

 Cj and in B(S) . Define f : S S by the rule
 /
 g(s) s G C

 f(s) = ļ 1
 S s £ Cļ

 We claim that C = Bf is proper in B(S) . For each N G I , there is

 in G a point (s, g(s)) not in (N x S) U (s x N) . Then s and g(s)

 are points of NC not separated by C . So C(NC) ^ B(N°) .

 However, C separates points of X . The lemma follows by contraposi-

 tion.

 Q.F..D.
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 Lemma 2: If X is an I-Lusin subset of S , then the following

 lattice of implications obtains:

 X satisfies ( J+)

 X satisfies (J)

 Proof : We show that if X satisfies condition (J+) , then X is

 strongly Blackwell. The other "horizontal" implication runs entirely paral-

 lel, whilst the "vertical" ones are trivial. So suppose that C(X) C V(X)

 are e.g. sub-o-algebras of B(X) with the same atoms. Then there are e.g.

 o-algebras C C V C 8(S) whose relativisations to X are C(X) and

 V(X) . Condition (J+) implies that C is not proper in V . Therefore,
 c c

 there is some set N in Ï with C(N ) = 2?(N ) . Since X is an I-Lusin

 set, it follows that X r' N is countable.

 Let A be the union of all C-atoms C with the property that

 C ^ X n N 0 . There are only countably many such C-atoms, so that

 A £ C(S) • Since C(X n A) and V(X n A) have the same countable set of

 atoms, one has C(X n A) = V(X n A) . Now X n AC n N° , so that

 C(X n A°) = V(X n AC) . Given D in V , there are C-sets and

 such that

 D n X = (d n X n a) u (d n X n ac)

 = n X n a) u (c2 n x n ac)

 is a member of C(X) . So C(X) = V(X) .

 Q.E.D.
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 § 2 . The Main Results.

 Proposition 1: Suppose I is continuous and unif ormisable. X be

 a subset of S • Then the following are equivalent:

 1) X is I-dense of order 2 in S ;

 2) X satisfies condition (J+) ;

 3) X satisfies condition (J) .

 Remark: The implications 1. ■* 2. 3. are true for general a-ideals I .

 Continuity and uniforiuisability are used in the proof that 3. implies 1. .

 Demonstration: 1, implies 2,: Assume that C C V are e.g. sub-a-alge-

 bras of 8(S) with C proper in V . Let T = T(C, V) be as previously

 defined.

 Claim: T is not I-reticulate.

 Suppose to the contrary that there is a set N in I with

 T C (N X S) u (S X N) . Since C is proper in V , one has C(N°) ^ P(N°) .

 Since N £ B(S) is strongly Blackwell, it follows that there are points
 e

 s , t in N separated by V , but not by C . Thus (s, t) e T , a

 contradiction. The claim is established.

 Since X is I-dense of order 2, one has (X x X) n T ^ 0 . So there are

 points x and xf in X separated by V , but not by C . Condition

 (J+) holds.

 2. implies 3. : Trivial.

 3. implies 1. : Here, we will assume that S = ]0, 1[ and will employ

 the usual linear ordering on ]0, 1[ . This is justified since all uncountable

 standard spaces are Borel-isomorphic.

 Assume that X is not I-dense of order 2, so that there is some nonreti-

 culate set R in B ( S x S) with R C (S x s) '(X * X) . Since I is assumed

 unif ormisable , R contains a thread G . Define
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 A= {(s, s) : s £ S}

 A+ = {(s, t)GSxS:s<t}
 A = {(s, t) G s X S : s > t}

 From lemma 1, it follows that G n A is reticulate, and so we may assume with-

 out loss of generality that G n A is a thread. In fact, there is an

 e > 0 such that G n A (e) is a thread, where

 A (e) = {(s, t)£SxS:s-e>t}.

 Also, there is some open interval 0 of length e such that

 G n â (e) D (0 X S) is a thread. This set is the graph of a Borei isomorphism

 h defined on a Borei subset D of S .

 Noví, whenever s and t are elements of D , then h(s) < s - e < t ,

 so that h(D) D = 0 . Define g : S -»■ S by the rule

 ļ h(s) for s G D
 g(s) -

 s for s £ D

 Since G H (X X X) is void, it follows that g is one-one on X .

 Put C = B g - (g-1(A) : A S B(S)} . We claim that C is proper in

 B(S) . Suppose that N e I . Since graph(h) = G n A (e) n (0 x s) is not

 reticulate, there is some point (s, h(s)) not in (N x S) U (S x N) . Thus

 s and h(s) are distinct points in N not separated by C . So C is

 proper in B(S) , yet C separates points of X : thus condition (J) fails.

 Q.E.D.

 Proposition 2: Suppose I is a continuous, uniformisable a-ideal. Let

 X be an 7-Lusin set I-dense in S . The following n re equivalent:

 1) X is I-dense of order 2;
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 2) X is strongly Blackwell;

 3) X is Blackwell.

 Note: The implication 1. implies 2. does not require 7 to be unif ormisable

 or X to be I-dense; 3. implies 1. does not require I to be continuous or

 X to be 7-Lusin; 2. implies 3. needs no condition on 7 or X .

 Demonstration: 1. implies 2.: This follows from proposition 1 and

 lemma 2.

 2. implies 3.: Trivial.

 3. implies 1.: We show that condition (J) is satisfied. Suppose that

 C is a e.g. sub-a-algebra of B(S) with C(X) separable. Let f be a

 Marzcewski function for C ; if X is Blackwell, then C(X) = B(X) , and f

 is a Borel-isomorphism when restricted to X . From Kuratowski [5; p. 436],

 it follows that the restriction of f to X extends to a Borel-isomorphism

 g on a Borei set B1 3 X . Putting B = B1 H {s : f(s) = g(s)} , we see

 that f is also a Borel-isomorphism on the Borei set B 3 X . Since X is

 dense, S'B £ 7 . This implies that no e.g. sub-a-algebra can be proper

 and still separate points of X . Condition (J) obtains.

 Q.E.D.

 § 3. Applications

 Example 1 : Let 7 be the a-ideal of all countable subsets of the

 uncountable standard space S . Then 7 is continuous, and the 7-Lusin

 sets are precisely the uncountable subsets of S . The notions of 7-reticu-

 late set, 7-thread, and 7-density coincide with those of "reticulate set",

 11 thread11 and "Borel-densi ty" as used in [10], [11], and [12] . Results in

 [3], as well as an argument in Sarbadhikari 1 s note [8] show that this

 a-ideal is unif ormisable .
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 Proposition 2 therefore applies to prove the following result (compare

 [11]):

 Proposition 3: Let X be a subset of a Polish space S such that

 S'X is totally imperfect. Then the following are equivalent.

 1) X is Blackwell;

 2) X is strongly Blackwell;

 3) X is Borel-dense of order 2.

 Example 2: Let X be a fixed uncountable subset of X . Define I(X)

 to be the a-ideal consisting of all B in B(S) with B n X countable.

 Then I(X) is continuous, and X is I (X) -dense of order 1.

 Proposition 4: Let A be an analytic subset of S . Then A is

 I(A)-dense of order 2 in S .

 Demonstration: Let R be a member of B(S x S) disjoint from A x A .

 Then = R n (S * A) is an analytic set whose projection onto the first

 factor is disjoint from A . Lusin's first separation principle implies

 that there is some e B ( S) such that A = 0 and c (N^ * S) .

 Now R2 = R' (N^ x S) is a member of B(S x s) whose projection onto the

 second factor does not meet A . Thus there is some ^ e B(S) such that

 N2 n A = 0 and R2 C (S x . Then N = G I (A) , and
 R C (N x S) U (S x N) .

 Q.E.D.

 Lemma 3; Let A be an analytic subset of S . The sets R in B(S x 5)

 which are not I (A)-reticulate are precisely those for which R n (A x A) is

 not contained in a countable union of horizontal and vertical sections.

 Proof: Clearly, any R with this property is not I (A)-reticulate. Con-

 versely, if R (A x A) is contained in a countable union of sections, then

 by removing these sections from R , we obtain a Borei set Rq disjoint from
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 A X A . From proposition 4, Rq is I (A)-reticulate. So also is R .
 Q.E.D.

 Proposition 5: If A is analytic, then the o-ideal 1(A) is uniformis-

 able.

 Remark: This result, when combined with propositions 2 and 4, shows

 that every analytic space is strong Blackwell. A strengthening of this face

 will be proved in proposition 7.

 Demonstration: Suppose that R is a member of B(S x S) not 1(A)-

 reticulate. Then from lemma 3, R n (A x A) is not contained in a countable

 union of sections. It follows from [3; Theorem 4.4] or [8] that

 R n (A X A) contains an uncountable standard set T each of whose horizontal

 and vertical sections is at most a singleton. See also the discussion in [12] .

 Thus T is an I(A)-thread.

 Q.E.D.

 If X is any uncountable subset of S , then certainly X is an I (X)-

 Lusin set. However, there may be a great many other I(X)-Lusin sets essen-

 tially larger than X .

 Proposition 6: Let A be an analytic subset of S . Then the 1(A)-

 Lusin sets are those uncountable subsets Y of S whose intersection with

 each constituent of the co-analytic set S'A is countable.

 Demonstration: If X is an I(A)-Lusin set, and C is a constituent of

 S'A , then C £ 1(A) , so that X n C is countable. On the other hand, suppose

 X intersects each constituent of S'A in a countable set. Given N in 1(A) ,
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 we know that N^A is countable, so. that N n A is Borei and contained in

 a countable union of constituents (boundedness theorem) . This forces X n N

 to be countable.

 Q.E.D.

 Proposition 7: Let A be an analytic subset of S and suppose that Y

 is a set whose intersection with each constituent of S'A is countable. Then

 A U y is strongly Blackwell.

 Demonstration: From proposition 4, the sets A and A U Y are 1(A)-

 dense of order 2. Proposition 6 says that A U Y is I(A)-Lusin. Proposition

 1 ensures that A U Y satisfies condition (J+) . The result now follows

 from lemma 2.

 Q.E.D.

 In the case of non-analytic Blackwell spaces, a weaker form of proposition

 7 is available :

 Proposition 8: Let X be an uncountable Blackwell subset of S . If

 Y is an I(X)-Lusin set, then X U Y is also Blackwell.

 Demonstration: The proof of proposition 2 (3 implies 1) shows that

 X U Y satisfies condition (J) for I = 7(X) . Clearly, X U Y is

 I(X)-Lusin so that lemma 2 applies to prove X <-» Y Blackwell.

 Q.E.D.
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 Define a uniformisable set to be a subset X of an uncountable standard

 space S for which I(X) is unif onnisable. We have shown that every analytic

 set is uniformisable. If X is such that S'X is totally imperfect, then

 results in [3] and [8] show that X is a uniformisable set.

 Proposition 9: Let X be a subset of S which is Blackwell, but not

 strongly Blackwell. Then X is not a uniformisable set.

 Demons tration : As mentioned, X is certainly an I(X)-Lusin set

 I(X)-dense of order 1. The result is immediate from proposition 2.

 Q.E.D.

 In some unpublished work, D. Fremlin, 'Jě Bzyl and J. Jasiński use

 axioms CH and (MA and not - CH) to construct Blackwell spaces without

 the strong Blackwell property. Whether such a space may be proved to exist

 in ZFC is not known.

 Conjecture 1: The existence of a non- uniformisable set may be demon-

 strated in ZFC .

 §4. The construction of I-Lusin sets

 The following result is patterned after Lusin's original construction

 [6] and the work of Jasiński [4] . In view of lemma 2, a variety of Blackwell

 spaces may now be produced, one for each a-ideal on S .

 Proposition 10: (CH) Suppose that I is a continuous a-ideal in

 B(S) • Then S contains an I-Lusin set I-dense of order 2.

 Demonstration: List the members of I in transfinite series

 I0 Ii I2 ••• *a ••• a < anc* non~I~reticulate members of 8(S * S)

 aS Ro R1 # # * Ra ' * # a < **1 # For each a < ' put Ja = U : ® < #
 Choose points (x , y ) from R '( J x J ) for each a < N . Then the

 cl o. a aa 1

 set X = {x , y : a < N } intersects each I in a countable set., ' and a a i a '

 X * X meets each R , as desired.
 a Q.E.D.
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 §5. Measure and Category

 Example 3: Let m be a continuous probability measure on S and

 define I = I (m) to be the collection of all m-null sets in 8(S) . Then

 I is continuous, and the I-Lusin subsets of S are the classical Sierpiński

 sets [2] . A subset X of S is I-dense if and only if ra*(X) = 1 •

 Conjecture 2: The a-ideal I (m) is unif ormisable.

 To prove this conjecture would seem to require a new result in measurable

 selection theory. To facilitate a discussion of the conjecture, it becomes

 convenient to introduce the following set function, defined on subsets R

 of S x S :

 pR = inf ÍidA + mB : R C (A x S) U (s x B) ; A, B G B(S)} .

 Lemma 4: A set R C S x S is I (ra)-reticulate if and only if 'iK = 0 .

 Proof : One direction (only if) is obvious. If yR = 0 , choose sets

 A , B in 8(S) with RC (A x S) U (S x B ) and mA + mB < 2~"n . Put
 n n n n n n

 A = lim sup A^ and B = lim sup B^ . Then R C (A x s) U (S x b) , and,

 from the Borei-Cantelli lemma, mA = mB = 0 . So R is I (m)-reticulate.

 Q.E.D.

 Lemma 5: Suppose that (S x s) 'R is a countable union of Borei rectangles

 (e.g. if S is metric and R is closed). Then pR e if and only if there

 is a measure v on B(S x s) both of whose marginals equal m such that

 vR _> e

 Proof : This is essentially a result of Strassen [13] , discussed and ex-

 tended for the measurable setting in [9] .

 Q.E.D.

 The I(ra)-threads are, roughly speaking, partial functions which do not

 change too many m- null sets. Conjecture 2 seems to be a statement that
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 supporti? of "m-doubly stochastic" measures contain graphs of isomorphisms non-

 trivial for m .

 Even without uniformisability of I (m) , proposition 10 and lemma 2 imply

 that there are classical Sierpiński sets with the strong Blackwell property,

 at least under the aegis of CH . Jasiński [4] has constructed (CH) a

 Sierpiński subset of S such that if X2 3 X^ is another Sierpiński set,

 then automatically X£ is strong Blackwell. In his example, m*(X^) = 1 .

 We see that if conjecture 2 holds, such behavior is actually quite typical.

 Proposition 11 (Conjecture 2) : Suppose X^ and X£ are I (m)-Lusin

 sets ("m-Sierpiński sets") with X^ C X£ and m*(X^) = m*(X2) . If X^

 is Blackwell, then X2 is strongly Blackwell.

 Demons trat ion : Choose B 3 X^ with B € B(S) and mB = m*(X2) . We

 know that m*(X2) > 0 , so that n = m/m(B) is a continuous probability on

 the standard space (B, 6(B)) . Since X^ is I(n)-dense in B , proposition

 2 implies that X^ is I(n)-dense of order 2 in B . So also is X2 , and the
 result follows.

 Q.E.D.

 The following two results relate to the minimality and maximality of

 Sierpiński sets with and without the Blackwell property with respect to

 m-outer measure.

 Proposition 12 (CH and Conjecture 2) : Let X^ be an I(m)-Lusin subset

 of S with the Blackwell property. Then there is an I(m)-Lusin set X2 C X^

 without the Blackwell property and such, that m*(X2) = m*(X^) .

 Demonstration: By the usual isomorphism tricks, one may assume that

 S = ]0, 1[ and that m is Lebesgue measure. Also, there is no loss of

 generality in assuming that m*(Xļ) = 1 . Using CH , arrange the non-m-null

 members of 8(S) in tranfinite series B B. ... B . .. a < K, . ola ... . .. 1
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 Choose points x , x. ,..., x from X. by the rule x 6 (B O X. ) ' o , 1 ot i ai

 {1 - x„ : ß < a} '{l/2 } . Put X = {x , x. , . . . } . Then X is I(ra)-dense,
 ß ¿ol L

 but X2 * X^ does not meet the I(ra)-thread y = 1 - x in S x S . Therefore

 X2 is not I(m)-dense of order 2 and so lacks the Blackwell property (proposition

 2) .

 Q.E.D.

 Proposition 13 (CH): Let X^ be an I(m)-Lusin subset of S without the

 Blackwell property. Then there is an I(m)-Lusin set X£ 3 X^ with the Black-

 well property and such, that m*(X^) = ra*(X2) .

 Demonstration: Choose a set B in 8(S) with X^ C B and m*(B) = m(B) .
 Under CH , use proposition 10 to obtain an I(m)-Lusin subset Y of B I(m)-

 dense in B of order 2. Then X^ = X^ U Y is also such a set, and is by lemma

 2 strongly Blackwell. Clearly, ra*(X2) = m*(X^) .

 Q.E.D.

 Since the existence of I(m)-Lusin sets is presumed in proposition 12 and

 13, it may be that CH can be relaxed for the proofs.

 Example 4: Let t be a Polish topology on S generating the Borei struc-

 ture B(S) . Define I = I(x) to be the collection of all T-first category sets

 in 8(S) . Then I is continuous if and only if x has no isolated points, which

 we will assume. Then the I-Lusin subsets of S are the classical Lusin sets [2] .

 Conjecture 3: The a-ideal I(x) is uniformisable. As in the case of con-

 jecture 2, a proof would involve some new result in measurable selection theory.

 Although similar findings have been reported ([3], [7]), they do not seem to

 apply here.

 Assuming conjecture 3, it becomes possible to prove analogues to propositions

 11-13. Given the unsettled position of the conjecture, it seems wise to leave

 their formulation to the reader's fancy.
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 Added in proof: Results along the lines of proposition 8 have been obtained

 by Jakub Jasiński (unpublished) .

 The authors thank the referees for their helpful remarks.
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