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 On Typical Bounded Functions in the Zahorski Classes II

 In [5], this author investigated properties of typical

 functions in terras of derived numbers. Here, we continue and

 extend our investigation to include typical properties stated in

 terms of intersections of graphs with straight lines.

 All functions will be real valued x^ith domain 1= 10,11 .

 Zahorski, in [6], defined a nested hierarchy of classes of functions,

 and showed that is the class of Darboux Baire 1

 functions ( VB and is the class of approximately continuous

 functions. For i=l,...,5, the class of bounded AL functions (bAL)

 is a complete metric space under the sup norm, so by a typical

 function we mean one belonging to a residual subset of bAŁ.

 The associated sets of a function, f, are sets of the forni

 {x| f(x)>a} and {x|f(x)<a} for a real. We let D^f(x) and D^f(x)
 denote the set of derived numbers of f at x on the left and right

 respectively. The Lebesgue measure of a set A will be A (A), and

 R (resp. R*) will mean the set of real (resp. extended real) numbers.

 By C (f,x) and C+(f,x) we mean the left and right cluster sets of

 f at x. Let t^ (resp. b^) be the supremum (resp. infimum) of the

 set C (f ,x)u C+(f ,x) .

 In [5], we showed that the typical bAL function has every

 extended real number as a derived number at every point. That is,

 D f (x)u D f (x)=R* for every x in I, the obvious modifications made
 L K
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 at Lhe endpoints 0 and 1. In Theorem 2 of this paper, we show

 that D_ f (x)=D f (x)=R* for all x in some residual subset of I.
 L K

 Theorem 6 is an answer to part of Query 137 (RAE Vol. 8 No. 1)

 arising from Bruckner and Petruska [1].

 Lemma 1 For each i, * the class of all f in bM. such that t£

 and br are nowhere monotonie is a residual Gr set in bM..
 r õ i

 Proof: Fix i. We show that E={f in bMj t^ is nondecreasing

 on some subinterval} is a first category F^ set, the other cases

 having similar arguments. Let {E^} be the closed subintervals of

 I with rational endpoints and E ={fļ t^ is nondecreasing on I }.
 CO

 Then E= u E . It is easy to see that, if f,->-f uniformly, then
 In . tC .

 tr ->tc uniformly. J If each f, is in a fixed E , then each t- is f, f J k n , f.
 k k

 nondecreasing on 1^, implying t^ is nondecreasing on 1^. Thus,
 each E is closed and E is an F set.
 n a

 Pick f in E and e>0. We can pick an interval [a,ß] in I so
 n n

 that a and ß are continuity points of f and the oscillation of f on

 [a,ß] is less than e/2. Thus, the restriction of f to [a,ß],

 f ļ [ čí , ß] , is contained in the closed rectangle, S, formed by the

 vertical lines x=a and x=ß and the horizontal lines y=f(a)+e/2

 and y=f(a)-e/2. We define g in bAŁ so that g=f on I-(a,ß) and

 g| [a,ß] is a sawtooth function contained in S.

 Then || f - g| ļ <e and g is decreasing on a subinterval of (a,ß).

 Since tg=S on (a,ß), g is not in E^. We then have E^ nowhere dense
 and E of first category. This completes the proof of the

 lemma.
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 Theorem 1 Let f be a Darboux function such that t^ and b^ are

 nowhere monotonie. Then zero is a left and right derived number on

 a residual subset of I.

 Proof: Suppose f is Darboux and t^ and b^ are nowhere monotonie.

 It suffices to show that the set, A, of x in [0,1) for which the

 lower right Dini derivative is positive, is first category in I.

 We let ^nļc=ix| Cf (z)-f (x) ) / (z-x) >l/k for x<z<x+l/n and z in I}.

 Then A is the countable union of all such A . .
 nk .

 Fix n and k and suppose G=int (cl(A^) Pick [a,g]cG so

 that g-a<l/n. We claim that b^ would then be nondecreasing on (a,ß).

 If b^ is not nondecreasing, we can pick x<y in (a,ß) with b^(x)=

 b^(y)+r for some r>0. Since A^ is dense in G and f is Darboux,

 we can then pick z in A ^ and w so that x<z<w<ß, f (z) >b^ (x)-r/2 ,

 and f (w)<b^(y)+r/2. Then z<w<z+l/n and (f (z)-f (w) ) / (z-w) <0 ,

 contradicting our choice of z. Thus b^ is nondecreasing on (a, ¡3),

 which contradicts our choice of f. We therefore have G=0. Thus

 each A^k nowhere dense and A is first category. This finishes

 the proof of the theorem.

 An iTnmediate result of Theorem 1 and Lemma 1 is the following.

 Corollary 1 For each i, the class of all f in bM^ such that

 zero is a left and right derived number on a residual subset of I,

 is a residual subset in bM..
 i

 Let g be a continuous function on I. Observe that the map

 $:bM^-*bilL defined by $(f)=f+g is then a homeomorphism on bM^. This

 useful observation gives us our next theorem.
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 Theorem 2 For each i, Che class of all f in bíL such LhaL

 D f(x)=D f(x)=R* on some residual subset of I, is a residual set
 L R

 in bM . .
 i

 Proof: Fix i. Let S_ be the set of f in bM. with 0 in
 0 i

 D^f (x) nDRf (x) for all x in V(f,0), a residual subset of I. Then

 Sg is residual in bM^ by Corollary 1. For each integer n, let

 S^={f (x)+nx| f in Sq}. By our observation above, each is residual
 oo

 in bM., and thus so is S= n S . For ö g in S , 0 g (x) = f (x)-t-nx for i n . ö n , 0
 n=-°°

 some f in Sn, so n is in D g(x)nD g(x) on V(g,n)=V(f ,0) . Thus, U L K

 if f is in S, every integer is a left and right derived number
 oo

 on n V(f,n), a residual subset of I. Since f is Darboux, every
 n=-ro

 extended real number is a left and right derived number on a

 residual subset of I. This finishes the proof of the theorem.

 The remainder of this paper deals with functions in bM_j.

 related to the graphs of straight lines, rather than questions

 concerning derived numbers.

 Our next two theorems follow immediately from results of Garg

 (Corollary 3.3 and Theorem 6 of [3]) and the fact that the typical

 b¡VL function has a dense set of discontinuities (Lemma 2 of [5]).

 Theorem 3 For each i, the class of all f in bM^ so that f(x)+rx

 is nowhere monotonie for all r in R is a residual GP set in bM.. 6 i

 Theorem 4 For each i, » the class of all f in bM. so that, » for

 every countable set HcR, there is a residual set KcR so that the

 line y=mx+d intersects the graph of f in a dense in itself set for

 all m in H and d in K, is a residual set in bM^.
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 Ceder and Pearson [2] observed that the two previous results

 hold for bM^.

 Theorem 5 Let f be in bM^ such that f has every extended real

 number as a derived number at every x in I. Then the set of all

 (m,d) such that the line y=mx+d fails to intersect the graph of f

 2
 in a dense in itself set is a null first category set in R .

 Proof: We consider the empty set to be dense in itself.

 Suppose f is in bM^, D^f (x)uD^f (x)=R* for all x in I, and gnf

 has an isolated point, where g(x)=mx+d. Observe that, since f

 is in bM^, f>g or f<g near the isolated point of gnf.

 It suffices to show that the set of all (m,d) such that there

 is a z and a 6>0 so that f (x)>g(x)=mx+d on (z-Ô,z+ó)-{z) and

 2
 g(z)=f(z), is a null first category set in R .

 We let W be the possibly larger set of all (m,d) such that

 there is an x , and a 6>0 so that f (x)>g(x)=mx+d on (x ļ-6,x ,+ô)
 m , d m , cl in , d

 and g(x ° ,)=f(x ,). We show that W is a null first category ö J set. ° m, d m, d ö J

 Let W be the set of (m,d) in W for which the corresponding 6 is
 00

 greater than or equal to 1/n. Then W= u W .
 n=l

 Lemma 2 Each W is closed.

 Proof: Suppose (tīk ,d_. )->(m,d) where each *n a fixed

 W . Let x.=x . We can then assume that (x . ,b^ (x . ) )->(x^,y^) .
 n . j mj,d . J . f j . 0,Jf0
 Since b^ is lower semicontinuous , b^Cx^^y^. For any 0<e<l/n,

 pick k so that ļ x^-Xq| ,ļ m^-m| , and | d^-dļ are each less than e.

 Then, for any x in (x^-l/n+e ,XQ+l/n-e) , ļ (m^x+d^)- (mx+d) [ <2e .

 Thus, f(x)>mx+d-2e on (x^-l/n+e , x^+l/n-e) , so f(x)>mx+d on

 (x0-l/n,x0+l/n). Since we also have b^ (xq) <yg, b^ (xq)=Yq atl<^
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 :it is easy J to see that y =mx~-f-d. Thus, (m, d) is in W and VI J J0 0 n n

 is closed. This finishes the proof of the lemma.

 2
 We now have W an F set in R .

 a

 Lemma 3 (i) For each n and d, the set of all m such that (m,d)

 is in W is finite,
 n

 (ii) For each n and m, the set of all d such that (m,d)

 is in W is finite,
 n

 Proof: We prove part (i), a similar argument applying to

 part (ii). Fix n and d. If (i) is false, then P={x J (m,d) is in W }
 m>a' n

 is infinite. We can then pick r<s with x^ ^ and xg ^ in Pn(0,l)

 so that I xr ¿ļ"xs ¿' <l/n. Then ^)<sxr contradicting the

 definition of xg Thus P is finite. This finishes the proof of
 the lemma.

 oo

 Since W= u W * by Lemma 3 we have each d-section and m-section
 i n n=l i

 of W countable. Since W is measurable and each section has measure

 zero, A(W)=0. Since W is an F^ set and int(W)=0, W is first

 category. This finishes the proof of the theorem.

 From Theorem 5 and the fact that the typical bM^ function has

 every extended real number as a derived number at every x in I

 (see [5]), we immediately have the following.

 Corollary 2 For each i and all f in a residual subset of bM^,

 the set of all (m,d) such that the line y=mx4-d fails to intersect

 the graph of f in a dense in itself set is a null first category

 2
 set in R .
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 Bruckner and Petruska [1] showed that the typical function

 in bMļ (also bM<. and the class of bounded derivatives bA) has f "^(y)

 nowhere dense and of Lebesgue measure zero for all y. Mustafa [4]

 has announced that this is also the case for bM^ where i=2,3,4. It

 turns out that the measure analogue for cl(f "^"(y)) fails in a

 strong way, as our next result shows.

 Theorem 6 For each i, the class of all f in bjlL such that

 A(cl(f ^*(y)))>0 for all y in some open set is a residual set in bM^-
 Proof: Fix i. Let Z be the set of functions in bM. such

 i

 that X(cl(f ^(y)))>0 for all y in some open interval. We show

 that Z contains a dense open set and is thus residual. Pick g

 in bjir and e>0. Let a<0 be two continuity points of g so that the

 oscillation of g on [a,ß] is less than e/4.

 Define to be equal to g on I-[a,ß], g(a) on [a,(a+ß)/2],

 and linear on [(a+ß)/2,ß] so that g^ is continuous on [a, ¡3].

 Then g^ is in bM^ and ļļg-g^ļ| <e/4. Let u be an upper semicon-

 tinuous function in bM<- such that 0<u<e/4 on I, u=0 on I-(a,ß),

 u=0 on a dense subset of I, and X(T)>0 where T={x[ u(x)=e/4} , a

 perfect set. Zahorski [6] constructed such bM<_ functions. Then

 g2=gļ+u- is in bl'Ł and '*e have ļ| g-^H <^/2. Observe that both

 cl(g2"L(g(a))) and cl (g^ (g (a)+e/4) ) contain T. Since g 2 is

 Darboux, cl(g2^(y)) contains T for any g(a)<y<g(a)+e/4. This

 follows from the fact that b =g (a) <g (a)+e/4=t on T.
 §2

 Now suppose f is in bM^ and within e /16 of g2- Then

 b^<g(a)+e/16<g(a)+3e/16<t^ on T. If g (a)+e/16<y<g (a)+3e/16 and

 T^cl(f "^"(y)) then there is a relative subinterval, TT, of T,
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 where rr'-Tn(Y,6) and cl(f 1(y))nTł=0. By our observations on

 and tf on T, we would then have f ^ n (y, and
 f ^(y>r-°)n(y,ô)^0, violating the Darboux property of f. Thus,

 Tccl(f ^(y)) for all g (a)+e/16<y<g (a)+3e/16 . This gives an

 e/16-neighborhood, N, of g ^ such that NcZ and N is contained in

 the e-neighborhood of g. Thus, Z contains a dense open set in

 bAL. This completes the proof of the theorem.

 Following the proof of Lemma 2 in [5], it is easy to show

 that the typical bounded derivative has a dense set of discon-

 tinuities. With this, it is easy to see that our results in

 Theorems 1-6 hold with bAK replaced by bA. The proofs of the

 necessary lemmas and the theorems remain unaltered.
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