Gabriela Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania

An Extension of the Ordinary Variation

In [2] Foran has introduced condition $B(N)$ which for $N=1$ is identical to the condition of bounded variation. Using condition $B(N)$ we introduce the variation $V_{N}(F ; E)$ of a function F on a set E which for $N=1$ is identical to the ordinary variation of F on E. Then we show that there exist functions F on $[0,1]$ for which $V_{2}(F ;[0, x] \cap C)=\Phi(x) \quad(C=$ Cantor's ternary set, $\phi=$ Cantor's ternary function, $x \in C$). Using this new variation we show that there exist continuous functions, satisfying Lusin's condition (N) on [0,1 , which are $B(N)$ on C for no natural number N.

Definition. Given a natural number N and a set E, a function F will be said to be $B(N)$ on E if there is a number $M<\infty$ such that for any sequence $I_{1}, \ldots, I_{k}, \ldots$ of nonoverlapping intervals with $E \cap I_{k} \neq \varnothing$ there exist intervals $J_{k n}, \quad n=1, \ldots, N$, such that

$$
B\left(F ; E \cap \cup I_{k}\right) \subset \cup_{k}^{\cup} \cup_{n=1}^{N}\left(I_{k} \times J_{k n}\right) \quad \text { and } \quad \sum_{k} \sum_{n=1}^{N}\left|J_{k n}\right|<M .
$$

(Here $B(F ; X)$ is the graph of F on the set X.)
We denote by $V_{N}(F ; E)$ the infimum of the set of all numbers M appearing in the preceding definition.

Lemma 1. Let $\left[a_{i}, b_{i}\right], i=1,2, \ldots$ be \underline{a} sequence of nonoverlapping intervals, $b_{i} \leq a_{i+1}$. Let $b=\sup b_{i}$ and let F be a function which is $B(N)$ on a set E with $E \cap\left[a_{i}, b_{i}\right] \neq \varnothing$. Then

$$
\sum_{i=1}^{\infty} V_{N}\left(F ; E \cap\left[a_{i}, b_{i}\right]\right) \leq V_{N}\left(F ; E \cap\left[a_{1}, b\right]\right) .
$$

Proof. Let $V_{i}<V_{N}\left(F ; E \cap\left[a_{i}, b_{i}\right]\right)$. Then there is a sequence of nonoverlapping intervals

$$
\left(I_{k}^{i}\right\}_{k}, \quad I_{k}^{i} \cap E \neq \varnothing, \quad I_{k}^{i} \subset\left[a_{i}, b_{i}\right]
$$

such that for any intervals

$$
J_{k n}^{i}, \quad n=1, \ldots, N
$$

with

$$
B\left(F ; E \cap \cup_{k} I_{k}^{i}\right) \subset \underset{k}{\cup}{\underset{n=1}{N}}_{u^{N}}\left(I_{k}^{i} \times J_{k n}^{i}\right)
$$

we have
(1)

$$
\sum_{k} \sum_{n=1}^{N}\left|J_{k n}^{i}\right| \geq v_{i}
$$

Let $M>V_{N}\left(F ; E \cap\left[a_{1}, b\right]\right)$. There exist intervals

$$
J_{k n}^{i}(k=1,2, \ldots, \quad i=1,2, \ldots, \quad n=1, \ldots, N)
$$

such that

$$
B\left(F ; E \cap u_{k}^{u} u_{i} \quad I_{k}^{i}\right) \subset \underbrace{u}_{k} \underset{i}{u} u_{n=1}^{N}\left(I_{k}^{i} \times J_{k n}^{i}\right)
$$

and

$$
\sum_{k} \sum_{i} \sum_{n=1}^{N}\left|J_{k n}^{i}\right|<M .
$$

By (1) we have $\left[V_{i}<M\right.$ which easily implies our assertion.
Let C denote the Cantor ternary set, i.e., $C=\left\{x: x=\left[c_{i} / 3^{i}\right.\right.$ with c_{i} taking the values 0 and 2 only\}. Each point $x \in C$ is uniquely represented by $\Sigma c_{i}(x) / 3^{i}$. Let Φ, F_{1} and F_{2} be functions defined as follows: for each
$x \in C, \quad \Phi(x)=\left[c_{i}(x) / 2^{i+1}, \quad F_{1}(x)=\left[c_{2 i-1}(x) / 4^{i}\right.\right.$ and $F_{2}(x)$ $=(1 / 2) \sum c_{2 i}(x) / 4^{i}$. Extending Φ, F_{1} and $F_{\mathbf{2}}$ linearly on each interval contiguous to C, one has Φ, F_{1} and F_{2} defined and continuous on $[0,1]$ (cf . [1]); Φ is the Cantor ternary function.

Remark 1. By [1] we have

$$
F_{1}(x)= \begin{cases}(1 / 2) F_{2}(3 x), & \text { if } x \in[0,1 / 3] \\ x-(1 / 6), & \text { if } x \in(1 / 3,2 / 3) \\ (1 / 2)+(1 / 2) F_{2}(3 x-2), & \text { if } x \in[2 / 3,1]\end{cases}
$$

Lemma 2. $V_{2}\left(F_{2} ; C\right)=1$ and $V_{2}\left(F_{1} ; C\right)=1$.

Proof. In [1] V. Ene has shown that for any interval $[a, b], a, b \in c$, there exist two intervals J_{1} and J_{2} such that

$$
\begin{align*}
& B\left(F_{2} ; C \cap[a, b]\right) \subset[a, b] \times\left(J_{1} \cup J_{2}\right) \quad \text { and } \tag{2}\\
& \left|J_{1}\right|+\left|J_{2}\right| \leqslant \Phi(b)-\Phi(a)
\end{align*}
$$

By (2) it follows that

$$
\begin{equation*}
v_{2}\left(F_{2} ; C\right) \leqslant \phi(1)-\phi(0)=1 \tag{3}
\end{equation*}
$$

Let $\left[a_{i}, b_{i}\right], i=1, \ldots, 16$, be the closed intervals remaining after the 4 th step in Cantor's ternary process. Let $V=V_{2}\left(F_{2} ; C\right)$. Since $F_{2}(x)=(1 / 16) F_{2}\left(3^{4}\left(x-a_{i}\right)\right)$ $+F_{2}\left(a_{i}\right)$ for each $x \in\left[a_{i}, b_{i}\right]$, it follows that

$$
\begin{equation*}
v_{z}\left(F_{2} ;\left[a_{i}, b_{i}\right] \cap c\right)=(1 / 16) v . \tag{4}
\end{equation*}
$$

Now consider the closed interval $\left[b_{7}, a_{10}\right]$ for which we have $F_{2}\left(\left[b_{7}, a_{10}\right] \cap c\right) \subset J_{1}$ $\cup J_{2}$ with $J_{1}=\left[F_{2}\left(b_{7}\right), F_{2}\left(b_{8}\right)\right]$ and $J_{2}=\left[F_{2}\left(a_{9}\right), F_{2}\left(a_{10}\right)\right]$. We have

$$
\left|J_{2}\right|+\left|J_{2}\right|=2(1 / 16)
$$

and this sum is minimum. Applying Lemma 1 for the intervals $\left[b_{7}, a_{10}\right]$, $\left[a_{i}, b_{i}\right]$, i $\in\{1,2, \ldots, 7\} \cup\{10,11, \ldots, 16\}$, by (4) and (5), (14/16)v+(2/16)$\leq v$. Hence $V \geqq 1$ so that, by (3), $V=1$. Since (2) is also true for F_{1}, by Remark 1 and Lemma 1 it follows now that $V_{2}\left(F_{1} ; C\right)=1$.

Remark 2. Let

$$
I_{k_{1}, \ldots, k_{n}}, \quad k_{i}=1,2,3,4, \quad i=1,2, \ldots, n
$$

be the closed intervals remaining after the $2 n$-th step in Cantor's temary process (numbered from left to right), and let

$$
I_{k_{1}, \ldots, k_{n}}=\left[a_{k_{1}}, \ldots, k_{n}, b_{k_{1}}, \ldots, k_{n}\right] .
$$

Then for each $x \in C$,

$$
\begin{aligned}
& x=I_{k_{1}}(x)^{n} I_{k_{1}}(x), k_{2}(x) \cap \ldots \quad \text { and } \\
& F_{2}(x)=\left(1 / 4^{n}\right) F_{2}\left(9^{n}\left(x-a_{k_{1}}, \ldots, k_{n}\right)\right)+F_{2}\left(a_{k_{1}}, \ldots, k_{n}\right) .
\end{aligned}
$$

Theorem 1. F_{1} and F_{2} are $B(2)$ on C and for each $x \in C$ we have : $V_{2}\left(F_{2} ;[0, x] \cap C\right)=\Phi(x) \quad$ and $\quad V_{2}\left(F_{1} ;[0, x] \cap C\right)=\Phi(x)$.

Proof. By [1] it follows that F_{1} and F_{2} are $B(2)$ on C. By (2), $V_{2}\left(F_{2} ;[0, x] \cap C\right) \leq \Phi(x) . \quad B y$ Remark 2 and Lemma 2,

$$
v_{2}\left(F_{2} ; I_{k_{1}}, \ldots, k_{n} \cap C\right)=\left(1 / 4^{n}\right)
$$

Now by Lemma $1, \quad V_{2}\left(F_{2} ;[0, x] \cap C\right) \geq k_{1}(x) / 4+k_{2}(x) / 4^{2}+\ldots=\Phi(x) . \quad B y(2)$,

Remark 1 and Lemma 1 it follows that $V_{2}\left(F_{1} ;[0, x] \cap C\right)=\Phi(x)$.

Remark 3. Let n_{0} be a natural number, $n_{0} \geqslant 2$. Then for each $i=$ $0,1, \ldots, n_{0}^{-1}$ we define

$$
G_{i}(x)=\sum_{k=1}^{\infty} c_{k n_{0}+i}(x) / 2^{k n_{0}+i+1}, \quad x \in C .
$$

By an argument analogous to the proof of Theorem 1 one can show that G_{i} is $B(2)$ on C and $V_{2}\left(G_{i} ;[0, x] \cap C\right)=\Phi(x)$ for each $x \in C$.

Theorem 2. There exist continuous functions satisfying Lusin's condition (N) on $[0,1]$ which are $B(N)$ on C for no natural number N.

Proof. Let $q \in(2,4)$ and let F_{q} be defined as follows: for each $x \in C$, $F_{q}(x)=\Sigma c_{2 k}(x) / q^{k}$, and extending F_{q} linearly on each interval contiguous to C one has F_{q} defined and continuous on $[0,1]$. $F_{q}(C)$ can be covered by 2^{n} closed intervals, each of length at most $2 / q^{n}$. Hence $\left|F_{q}(C)\right| \leq 2^{n}\left(2 / q^{n}\right)$ so that $\left|F_{q}(C)\right|=0$. Let $\left[a_{i}, b_{i}\right], i=1,2,3,4$, be the closed intervals remaining after the second step of Cantor's ternary process. Suppose that F_{q} is $B(N)$ on C for some N and let $V=V_{N}\left(F_{q} ; C\right)$. We have $F_{q}(x)=(1 / q) F_{q}\left(9\left(x-a_{i}\right)\right)+F_{q}\left(a_{i}\right)$ for each $x \in\left[a_{i}, b_{i}\right]$. Then $v_{i}=V_{N}\left(F_{q} ; C \cap\left[a_{i}, b_{i}\right]\right)=V / q$. By Lemma $1, \quad \Sigma v_{i} \leq V$. Hence $4(V / q) \leq V$ and $q \geq 4$, which is a contradiction.

We are indebted to Professor Solomon Marcus for the help given in preparing this article.

References

[1] V. Ene: On Foran's conditions $A(N), B(N)$ and (M).

Real Analysis Exchange, Vol. 9, No. 2(1984), 495-501.
[2] J. Foran: An extension of the Denjoy integral.
Proc. Amer. Math. Soc., 49(1975), 82-91.

