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An Extension of the Ordinary Variation

In (2] Foran has introduced condition B(N) which for N = 1 is identical to tﬁé
condition of bounded variation. Using condition B(N) we introduce the variation
VN(F;E) of a function F on a set E which for N =1 is identical to the
ordinary variation of F on E. Then we show that there exist functions F on
[(0,1)] for which V,(F;[0,x] n C) = ¢(x) (C = Cantor's ternary set, ¢ = Cantor's
termmary function, x € C). Using this new variation we show that there exist continuous
functions, satisfying Lusin’'s condition (N) on [0,1], which are B(N) on C for
no natural number N.

Definition. Given a natural number N and a set E, a function F will be said

to be B(N) on E if there is a number M < o such that for any sequence

I,,...,Ix,... of nonoverlapping intervals with E n Igx # @ there exist intervals
Jkn» h =1,...,N, such that
N N
B(F;GENnulI )< v u (I xJ ) and L L 131 <M.
x K knsa & K0 K n=1 <"

(Here B(F;X) 1is the graph of F on the set X.)

We denote by VN(F;E) the infimum of the set of all numbers M appearing in

the preceding definition.

Lemma 1. Let [aj,bj], i = 1,2,..., be a sequence of nonoverlapping

intervals, bj < aj4,. Let b =sup bj and le¢ F be a function which is B(N) on

a get E with E n [aj,bj] # #. Then

[0 4]
L VN(F;E n [aj,bi]) = VN(FZ;E n [a,,b]).
ic1
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Proof. Let Vi < VN(FZ;E N [ai,bi]). Then there is a sequence of nonoverlapping

intervals
i i 1
such that for any intervals
i
Jkn’ n=1, ,N,
with
i N
B(F;E n U Ik) cC U u (Ik x Jkn)
3 k n=1
we have
N i
(1) C L 13, | 2V_.
K n=1 kn i

Let M > VN(F3E n [a,,b])). There exist intervals

i .
Jkn (k =1,2,..., 1 =1,2,..., n=1,...,N)

such that
i N i i
B(F;EN U U Ik) C U U u (Ik x Jkn)
k i k i n=1
and
N i
L L L IJknl<u
k i n=1

By (1) we have [ Vj < M which easily implies our assertion.
Let C denote the Cantor ternary set, i.e., C = {x : x = [ cj/31 with cj
taking the values 0 and 2 only). Each point x € C is uniquely represented by

L ci(x)/3i. Le¢ ¢, F, and F, be functions defined as follows: for each
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x € C, &(x) = [ cj(x)/2its, Fo(x) = [ Cai-j(x)/4l  and F,(x)
= (1/2) [ czi(x)/Ai. Extending $, F, and F, linearly on each interval
contiguous to C, one has ¢, F; and F, defined and continuous on [0,1] (cf.
[1]); ¢ is the Cantor ternary function.

Remark 1. By [1] we have

(1/2)Fz(3x), if x e (0, 1/3]
Fl(x) = x - (1/6), if x € (1/3, 2/3)
(1/2) + (1/2)?2(3::-2), if x e [2/3, 1]

Lemma 2. V_(F,;C) =1 and V,(F,;C) = 1.
Proof. In [1] V. Ene has shown that for any interval [a,b], a,b € C, there
exist two intervals J, and J, such that

(2) B(F_;C n [a,b]) € [a,b] x (J U J ) and

13 1+ 13,1 £ 6(b) - o(a).

By (2) it follows that
(3) VZ(FZ;C) £ ¢(1) - ¢(0) = 1.

Let [a;,bj], i1 =1,...,16, be the closed intervals remaining after the 4th step in
Cantor's ternary process. Let V = V,(F,;C). Since F,(x) = (1/16)F,(3*(x-a;))

+ F,(aj) for each x € [aj,bj], it follows that

(4) V(F,i[a,,b.] nC) = (1/16)V.

Now consider the closed interval ([b,,a,,] for which we have F,([b,,a,,} nC) € J,

UJ, with J, = [Fy(by),P,(bs)] and J, = [F,(ag),F,(a,5)]. We have
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(5). v |_JZ| +""le = 2(1/16)

and this sum is minimum. Applying Lemma 1 for the intervals [b,,a,,], [aj,bi],
ie{,2,...,7) u {10,11,...,16}), by (4) and (5), (1l4/16)V + (2/16) = V.
Hence V 2 1 so that, by (3), V = 1. sSince (2) is also true for F,, by Remark
1 and Lemma 1 it follows now that V,(F,;C) = 1.

Remark 2. Let

k; =1,2,3,4, - i=1,2,...,n,

be the closed intervals remaining after the 2n-th step in Cantor's ternary process

(numbered from left to right), and let

—
b
=
L[}

P
=
;;-d
*

Then for each x € C,

X Nn ... and

=1 NI
k (x) 7 Tk (x),k,(x)

— n n -
Fpl3) = QAP (300 L DA )

Theorem 1. F, and PF, are B(2) on C and for each x € C we have :

V,(F,;[0,x] n C) = &(x) and V,(F,;[0,x] n C) = &(x).

Proof. By ([1] it follows that F, and PF, are B(2) on C. By (2),

V,(F,;[0,x] n C) £ ¢(x). By Remark 2 and Lemma 2,

n
vz(Fz;Ikl,...,kn nNC)=(1/4 ).

Now by Lemma 1, V,(F,;[0,x] n C) > k,(x)/4 + kp(X)/42 + ... = &(x). By (2),
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Remark 1 and Lemma 1 it follows that V,(F,;[0,x] n C)

o(x).

Remark 3. Let ng be a natural number, ng

14

2. Then for each i =

0,1,...,n5-1 we define

© kn +i+1

fe)
Gi(x) = L[ ckn +i(x)/2 , x € C.
k=1 [o}

By an argument analogous to the proof of Theorem 1 one can show that G; is B(2)

on C and V,(Gj;;[0,x] n C) = ¢(x) for each x € C.

Theorem 2. There exist continuous functions satisfying Lusin's condition (N) on

[0,1] which are B(N) on C for no natural number N.

Proof. Let q € (2,4) and let Fq be defined as follows: for each x € C,
Fq(x) = T cyr(x) /q", and extending Fq linearly on each interval contiguous to C
one has Fq defined and continuous on [0,1]. Fq(C) can be covered by 2n
closed intervals, each of length at most 2/qM. Hence IFq(C)l = 2D(2/q") so that
IFg(C)! = 0. Let [aj,bj], i =1,2,3,4, be the closed intervals remaining after
the second step of Cantor's ternary process. Suppose that Fq is B(N) on C for
some N and let V = VN(Fq;C). We have Fq(x) = (1/qQ)Fq(9(x-aj)) + Fq(aj) for
each x € [aj,bj]. Then V; = VN(Fq;C n [aj,bj]) = V/q. By Lemma 1, L Vj £V,

Hence 4(V/q) £V and q > 4, which is a contradiction.

We are indebted to Professor Solomon Marcus for the help given in preparing this

article.
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