Gabriela Ene, Institute of Mathematics, str. Academiei 14, 70109 Bucharest, Romania

An Extension of the Ordinary Variation

In [2] Foran has introduced condition B(N) which for N = 1 is identical to the condition of bounded variation. Using condition B(N) we introduce the variation $V_N(F;E)$ of a function F on a set E which for N = 1 is identical to the ordinary variation of F on E. Then we show that there exist functions F on [0,1] for which $V_2(F;[0,x] \cap C) = \phi(x)$ (C = Cantor's ternary set, $\phi = Cantor's$ ternary function, $x \in C$). Using this new variation we show that there exist continuous functions, satisfying Lusin's condition (N) on [0,1], which are B(N) on C for no natural number N.

<u>Definition</u>. Given a natural number N and a set E, a function F will be said to be B(N) on E if there is a number $M < \infty$ such that for any sequence I_1, \ldots, I_k, \ldots of nonoverlapping intervals with $E \cap I_k \neq \emptyset$ there exist intervals J_{kn} , $n = 1, \ldots, N$, such that

$$B(F;E \cap \cup I_k) \subset \cup \cup (I_k \times J_k) \text{ and } \underbrace{\Sigma}_{kn} | J_k | < M.$$

$$k \quad k \quad n=1 \quad k \quad k \quad n=1$$

(Here B(F;X) is the graph of F on the set X.)

We denote by $V_N(F;E)$ the infimum of the set of all numbers M appearing in the preceding definition.

<u>Lemma 1</u>. Let $[a_i, b_i]$, $i = 1, 2, ..., be a sequence of nonoverlapping intervals, <math>b_i \leq a_{i+1}$. Let $b = \sup b_i$ and let F be a function which is B(N) on a set E with $E \cap [a_i, b_i] \neq \emptyset$. Then

$$\begin{array}{l} & \infty \\ & \Sigma \quad V_N(F;E \cap [a_i,b_i]) \leq V_N(F;E \cap [a_i,b]). \\ & i=1 \end{array}$$

<u>Proof</u>. Let $V_i < V_N(F; E \cap [a_i, b_i])$. Then there is a sequence of nonoverlapping intervals

$$\{I_k^i\}_k, \quad I_k^i \cap E \neq \emptyset, \quad I_k^i \subset [a_i, b_i],$$

such that for any intervals

$$J_{kn}^{i}$$
, $n = 1, \ldots, N$,

with

$$B(F;E \cap \cup I_{k}^{i}) \subset \cup \cup (I_{k}^{i} \times J_{kn}^{i})$$

k k n=1

we have

(1)
$$\sum_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} N |J_{kn}^{i}| \ge V_{i}.$$

Let $M > V_N(F; E \cap [a_1, b])$. There exist intervals

$$J_{kn}^{i}$$
 (k = 1,2,..., i = 1,2,..., n = 1,...,N)

such that

$$B(\mathbf{P}; \mathbf{E} \cap \cup \cup \mathbf{I}_{k}^{i}) \subset \cup \cup \cup \cup (\mathbf{I}_{k}^{i} \times \mathbf{J}_{kn}^{i})$$

k i k in=1

and

$$\sum_{k=1}^{N} \sum_{k=1}^{i} | < M.$$

Let C denote the Cantor ternary set, i.e., $C = \{x : x = \sum c_i/3^i \text{ with } c_i \}$ taking the values 0 and 2 only}. Each point $x \in C$ is uniquely represented by $\sum c_i(x)/3^i$. Let ϕ , F_1 and F_2 be functions defined as follows: for each $x \in C$, $\phi(x) = \sum c_i(x)/2^{i+1}$, $F_1(x) = \sum c_{2i-1}(x)/4^i$ and $F_2(x)$ = (1/2) $\sum c_{2i}(x)/4^i$. Extending ϕ , F_1 and F_2 linearly on each interval contiguous to C, one has ϕ , F_1 and F_2 defined and continuous on [0,1] (cf. [1]); ϕ is the Cantor ternary function.

Remark 1. By [1] we have

$$F_{1}(\mathbf{x}) = \begin{cases} (1/2)F_{2}(3\mathbf{x}), & \text{if } \mathbf{x} \in [0, 1/3] \\ \mathbf{x} - (1/6), & \text{if } \mathbf{x} \in (1/3, 2/3) \\ (1/2) + (1/2)F_{2}(3\mathbf{x}-2), & \text{if } \mathbf{x} \in [2/3, 1] \end{cases}$$

Lemma 2. $V_z(F_z;C) = 1$ and $V_z(F_1;C) = 1$.

<u>Proof.</u> In [1] V. Ene has shown that for any interval [a,b], $a,b \in C$, there exist two intervals J_1 and J_2 such that

(2)
$$B(F_2; C \cap [a,b]) \subset [a,b] \times (J \cup J_2)$$
 and

$$|J| + |J| \leq \phi(b) - \phi(a).$$

By (2) it follows that

(3)
$$V_{2}(F_{2};C) \leq \phi(1) - \phi(0) = 1.$$

Let $[a_i,b_i]$, i = 1,...,16, be the closed intervals remaining after the 4th step in Cantor's ternary process. Let $V = V_2(F_2;C)$. Since $F_2(x) = (1/16)F_{2(3}^{4}(x-a_i))$ + $F_2(a_i)$ for each $x \in [a_i,b_i]$, it follows that

(4)
$$V_{z}(F_{z};[a_{i},b_{i}] \cap C) = (1/16)V.$$

Now consider the closed interval $[b_7, a_{10}]$ for which we have $F_2([b_7, a_{10}] \cap C) \subset J_1$ $\cup J_2$ with $J_1 = [F_2(b_7), F_2(b_8)]$ and $J_2 = [F_2(a_9), F_2(a_{10})]$. We have 151

(5)
$$|J_2| + |J_2| = 2(1/16)$$

and this sum is minimum. Applying Lemma 1 for the intervals $[b_7, a_{10}]$, $[a_i, b_i]$, i $\in \{1, 2, ..., 7\} \cup \{10, 11, ..., 16\}$, by (4) and (5), $(14/16)V + (2/16) \leq V$. Hence $V \geq 1$ so that, by (3), V = 1. Since (2) is also true for F_1 , by Remark 1 and Lemma 1 it follows now that $V_2(F_1; C) = 1$.

Remark 2. Let

$$k_{1}, \ldots, k_{n}$$
, $k_{i} = 1, 2, 3, 4$, $i = 1, 2, \ldots, n$,

be the closed intervals remaining after the 2n-th step in Cantor's ternary process (numbered from left to right), and let

$$\mathbf{I}_{\mathbf{k}_{1}},\ldots,\mathbf{k}_{n} = \begin{bmatrix} \mathbf{a}_{\mathbf{k}_{1}},\ldots,\mathbf{k}_{n}, \mathbf{b}_{\mathbf{k}_{1}},\ldots,\mathbf{k}_{n} \end{bmatrix}.$$

<u>Then for each $x \in C$,</u>

$$\mathbf{x} = \mathbf{I}_{k_{1}}(\mathbf{x}) \cap \mathbf{I}_{k_{1}}(\mathbf{x}), k_{2}(\mathbf{x}) \cap \dots \qquad \underline{\text{and}}$$
$$\mathbf{F}_{2}(\mathbf{x}) = (1/4^{n})\mathbf{F}_{2}(9^{n}(\mathbf{x} \cdot \mathbf{a}_{k_{1}}, \dots, k_{n})) + \mathbf{F}_{2}(\mathbf{a}_{k_{1}}, \dots, k_{n}).$$

<u>Theorem 1</u>. F_1 and F_2 are B(2) on C and for each $x \in C$ we have : $V_2(F_2; [0,x] \cap C) = \phi(x)$ and $V_2(F_1; [0,x] \cap C) = \phi(x)$.

<u>Proof</u>. By [1] it follows that F_1 and F_2 are B(2) on C. By (2), $V_2(F_2;[0,x] \cap C) \neq \phi(x)$. By Remark 2 and Lemma 2,

$$V_{z}(F_{z};I_{k_{1}},...,k_{n} \cap C) = (1/4^{n}).$$

Now by Lemma 1, $V_2(F_2;[0,x] \cap C) \ge k_1(x)/4 + k_2(x)/4^2 + \ldots = \phi(x)$. By (2), 152 Remark 1 and Lemma 1 it follows that $V_2(F_1;[0,x] \cap C) = \phi(x)$.

<u>Remark 3.</u> Let n_0 be a natural number, $n_0 \ge 2$. Then for each $i = 0,1,\ldots,n_0-1$ we define

$$G_{i}(x) = \sum_{k=1}^{\infty} C_{kn_{0}+i}(x)/2, \quad x \in C.$$

By an argument analogous to the proof of Theorem 1 one can show that G_i is B(2)on C and $V_2(G_i; [0, x] \cap C) = \phi(x)$ for each $x \in C$.

Theorem 2. There exist continuous functions satisfying Lusin's condition (N) on [0,1] which are B(N) on C for no natural number N.

<u>Proof</u>. Let $q \in (2,4)$ and let F_q be defined as follows: for each $x \in C$, $F_q(x) = \sum c_{2k}(x)/q^k$, and extending F_q linearly on each interval contiguous to C one has F_q defined and continuous on [0,1]. $F_q(C)$ can be covered by 2^n closed intervals, each of length at most $2/q^n$. Hence $|F_q(C)| \leq 2^n(2/q^n)$ so that $|F_q(C)| = 0$. Let $[a_i,b_i]$, i = 1,2,3,4, be the closed intervals remaining after the second step of Cantor's ternary process. Suppose that F_q is B(N) on C for some N and let $V = V_N(F_q;C)$. We have $F_q(x) = (1/q)F_q(9(x-a_i)) + F_q(a_i)$ for each $x \in [a_i,b_i]$. Then $V_i = V_N(F_q;C \cap [a_i,b_i]) = V/q$. By Lemma 1, $\sum V_i \leq V$. Hence $4(V/q) \leq V$ and $q \geq 4$, which is a contradiction.

We are indebted to Professor Solomon Marcus for the help given in preparing this article.

References

- [1] V. Ene: On Foran's conditions A(N), B(N) and (M). Real Analysis Exchange, Vol. 9, No. 2(1984), 495-501.
- [2] J. Foran: An extension of the Denjoy integral.

Proc. Amer. Math. Soc., 49(1975), 82-91.

Received March 26, 1984