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 An Extension of the Ordinary Variation

 In [2] Foran has introduced condition B(N) which for N = 1 is identical to the

 condition of bounded variation. Using condition B(N) we introduce the variation

 Vjj(F;E) of a function F on a set E which for N = 1 is identical to the

 ordinary variation of F on E. Then we show that there exist functions F on

 [0,1] for which Vz(F;[0,x] n C) = (|>(x) (C = Cantor's ternary set, <J> = Cantor's

 ternary function , x e C ) . Using this new variation we show that there exist continuous

 functions, satisfying Lusin's condition (N) on [0,1], which are B(N) on C for

 no natural number N.

 Definition . Given a natural number N and a set E, a function F will be said

 to be B(N) on E if there is a number M < oo such that for any sequence

 IA, . . . ,Iķ, . . . of nonoverlapping intervals with E n 1^ ? 0 there exist intervals

 Jkn » n = 1 , . . . , N , such that

 N N

 B(F;E n u Ik) C u u ( Ik x j ) and E E Ux I < M.
 k k n=l k n=l

 (Here B(F;X) is the graph of F on the set X.)

 We denote by Vjj( F ; E ) the infimum of the set of all numbers M appearing in

 the preceding definition.

 Lemma 1 . Let [aj,bj], i = 1,2,..., be a sequence of nonoverlapping

 intervals , b¿ ^ aļ+x. Let b = sup bļ and let F be a function which is B(N) on

 ą set E with E n [a1,bj] ¿ 0. Then

 oo

 E Vn(F;E n [a^bj.]) ¿ VN(F;E n [alfb]).
 i=l
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 Proof. Let Vļ < VN( F ;E n [a^bj]). Then there is a sequence of nonoverlapping

 intervals

 {Ik}k» 1^ n E / 0, I* c [ai.bi],
 such that for any intervals

 j£n, n = 1, . . . ,N,

 with

 N

 B(F;E n u I*) c u u ( x J^)
 k k n=l

 we have

 N

 (1) EE UÎ kn I * V 1 . k n=l kn 1

 Let M > Vfl(F;E n [aA,b]). There exist intervals

 (k - 1,2,..., i - 1,2, ... , n = 1 , . . . ,N )

 such that

 N

 B(F;E n u U 1^) c u u U ( I.1 x J1 )
 , k , k kn
 , ki , k x n=l

 and

 E E E IJ^I < M.
 k i n=l

 By (1) we have E Vi < M which easily implies our assertion.

 Let C denote the Cantor ternary set, i.e., C = {x : x = E Cj/31 with Cj

 taking the values 0 and 2 only} . Each point x e C is uniquely represented by

 E Cj(x)/3*. Let $, Fł and P2 be functions defined as follows: for each
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 X e C, <t>(x) =■ E Ci(x)/2i+1, Fa(x) = e c^-^x)/*1 and F2(x)

 = (l/Z) E c2ļ(x)/^. Extending <|>, F Ł and F2 linearly on each interval

 contiguous to C, one has <j>, FŁ and F2 defined and continuous on [0,1] (cf.

 (1)); <t> is the Cantor ternary function.

 Remark 1. By [1] we have

 (l/2)F2(3x), if x € [0, 1/3]
 FJx) = X - (1/6), if X 6 (1/3, 2/3)

 (1/2) + ( 1/2 )F^( 3x-2 ) , if X « [2/3, 1]

 Lemma 2. V2(FZ;C) = 1 and V2(FA;C) = 1.

 Proof. In [1] V. Ene has shown that for any interval [a,b], a,b e C, there

 exist two intervals J¿ and J2 such that

 (2) B(F2;C n [a,b]) c [a,b] x (j^ u ) and

 UJ + I CM * 4>(b) - 4>(a).

 By (2) it follows that

 (3) V2(F2;C) ¿ <t>(l) - <t>(0) = 1.

 Let [aļ , bļ] , i = 1 , . . . , 16 , be the closed intervals remaining after the 4th step in

 Cantor's ternary process. Let V = V2(F2;C). Since F2(x) = (l/16)F2(34(x-ai) )

 + f-',(aj) for each x e [aļ.bjj , it follows that

 (¿> V2(F2;[ai'V ° C) = <1/16>v-

 Now consider the closed interval (b7 ,a10] for which we have F2( [b7 ,a10] n C) c jł

 u J2 with JŁ = [F2(b7),F2(ba)] and J2 = [F2(a8) ,F2(a10)] . We have
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 (5) ¡¡J I + U2I = 2(1/16)

 and this sum is minimum . Applying Lemma 1 for the intervals [b7,a10 ]. [ai.bi],

 i e {1,2,..., 7} u {10,11, ... ,16}, by (¿) and (5), (14/16)V + (2/16) ¿ V.

 Hence V ^ 1 so that, by (3), V = 1. Since (2) is also true for FŁ , by Remark

 1 and Lemma 1 it follows now that V2(Fi;C) = 1.

 Remark 2 . Let

 , k^ = 1,2,3,4, i = 1,2, ...,n,
 i' " ' ' n

 be the closed intervals remaining after the 2n-th step in Cantor's ternary process

 ( numbered from left to right), and let

 *k , . . . ,k ~ , . . . ,k ' bk , . . . ,k ^ *
 i n i n i n

 Then for each x e C,

 X = I, . . n I, , . , , . n ...

 i(x) . . ^x(x),k2(x) , . , , .

 F (x) = (l/ün)F (9n(x-2L )) + F ía. ).
 2 2 K. , . . . , K. 2 K , . . . , K.

 i n i n

 Theorem 1. Fx and F2 are B(2) on C and for each x e C we have :

 V2(F2;[0,x] n C) = <D(x) and V2(Fi;[0,x] n C) = 4>(x) .

 Proof. By [1] it follows that F± and F2 are B(2) on C. By (2),

 V2(F2îf°,x] n C) £ <0(X). By Remark 2 and Lemma 2,

 W1*.
 i n

 Now by Lemma 1, V2(F2;[0,x] n C) ^ ki(x)/¿ + k2(x)/¿2 + ... = 4>(x). By (2),
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 Remark 1 and Lemma 1 it follows that V2(F1;[0,x] n C) = <t>(x).

 Remark 3 . Let iTq be a natural number . ^ 2. Then for each i =

 O,l,...,no-l we define

 oo Kn +i+i

 G.(x) = E c ( X )/2 ° , X e C.
 i , kn +iv , k=i o

 By an argument analogous to the proof of Theorem 1 one can show that G¿ is B(2)

 on C and v2(Gļ;[0,x] n c) = <|>(x) for each x e c.

 Theorem 2. There exist continuous functions satisfying Lusin's condition (N) on

 [0,1] which are B(N) oņ C for no natural number N.

 Proof. Let q e (2,4.) and let Pq be defined as follows: for each x e C,

 Fq(x) = E c2|ç(x)/qk, and extending Fq linearly on each interval contiguous to C

 one has Fq defined and continuous on [0,1]. Fq(C) can be covered by 2n

 closed intervals, each of length at most 2/qn. Hence IFq(C)| ¿ 2n(2/qn) so that

 |Fq(C) I = 0. Let [aj,bj], i = 1,2,3,4, be the closed intervals remaining after

 the second step of Cantor's ternary process. Suppose that Fq is B(N) on C for

 some N and let V = VN(Fq;C). We have Fq(x) = (l/q)Fq(9(x-ai) ) + Fq(aj) for

 each x e [aj,bj]. Then Vj = Vļj ( Fq ; C n [aj,bj]) = V/q. By Lemma 1, E Vj í V.

 Hence 4(V/q) ¿ V and q ^ 4, which is a contradiction.

 We are indebted to Professor Solomon Marcus for the help given in preparing this

 article .
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