Stanislav Vaneček, Department of Math. Analysis, Charles University, Sokolovská 83, 186 00 Praha, Czechoslovakia

Solution of a Problem Concerning Functions of Harmonic Bounded Variation

It is known [3] that the space of all regulated functions for which the Fourier series converges for every change of variable (GW) contains the space of functions of harmonic bounded variation (HBV) and the space of all functions for which the Fourier series converges uniformly for every change of variable (UGW) contains the space of continuous functions of harmonic bounded variation (HBV_c). In [3, p. 17] and [4] the question is raised whether GW = HBV and UGW = HBV_c. In [5] it is pointed out that [1] contains the result HBV_c \subseteq UGW \rightleftharpoons GW_c, implying HBV \nRightarrow GW. The purpose of the present note is to prove that HBV_c \nRightarrow UGW. I would like to express my thanks to RN Dr. L. Zajíček for acquainting me with the problem.

The function $f : R \rightarrow R$ is said to be regulated if it has right and left limits at each point. The space of all regulated functions of period 2π will be denoted by P(2π). If X is a class of functions, then X_c will denote the continuous functions in class X.

The finite system of nonoverlapping intervals $\{I_i\}$ i = 1,...,n is said to be an ordered system if I_i is to the left of I_{i+1} for all i = 1,...,n-1, or if I_i is to the right of I_{i+1} for every i = 1,...,n-1.

If I = [a,b] \subset [- π , π] and f \in P(2 π), then we write f(I) = f(b) - f(a). For f \in P(2 π) we will say that f \in HBV if

$$\sup \sum_{i=1}^{n} |f(I_i)|/i = V_H(f) < \infty,$$

where the supremum is taken over all finite systems of nonoverlapping, closed intervals in $[-\pi,\pi]$. For $f \in P(2\pi)$ we will say that $f \in OHBV$ if

145

$$\sup \sum_{i=1}^{H} |f(I_i)| / i = V_{OH}(f) < \infty,$$

where the supremum is taken over all finite ordered systems of nonoverlapping, closed intervals in $[-\pi,\pi]$. For $f \in P(2\pi)$ we will say that $f \in GW$ if the Fourier series of $f \circ g$ converges everywhere for every homeomorphism g of $[-\pi,\pi]$ with itself, and $f \in UGW$ if the Fourier series of $f \circ g$ converges uniformly for every homeomorphism g of $[-\pi,\pi]$ with itself.

<u>Theorem:</u> UGW $\xrightarrow{2}$ HBV.

Proof: There exists [2] a function $f \in OHBV - HBV$. Let n be a nonnegative integer. Since $f \notin HBV$, there exists a system of nonoverlapping, closed intervals $\{I_i^n\}$, $i = 1, \ldots, m_n$ in $[-\pi, \pi]$ such that

$$\sum_{i=1}^{m_{n}} |f(I_{i}^{n})| / i > 2^{n} 10^{n}.$$

Let $V_{OH}(f) = c$ and let $I_i^n = [a_i^n, b_i^n]$, $i = 1, ..., m_n$. Define $h_n(x) = 0$ for $x \in [-\pi, \pi] - \bigcup_{i=1}^{m_n} (a_i^n, b_i^n)$, $h_n((a_i^n + b_i^n)/2) = |f(I_i^n)|$ for $i = 1, ..., m_n$ and extend h_n linearly to the remainder of $[-\pi, \pi]$. Clearly $|h_n(x)| \le c$ for all $x \in [-\pi, \pi]$, $V_H(h_n) \ge 2^n 10^n$ and $V_{OH}(h_n) \le 2c$. Let p_n be the increasing, linear mapping of $[2^{-n}, 2^{-(n-1)}]$ onto $[-\pi, \pi]$. Define the function $w_n \in P(2\pi)_c$ by setting $w_n(y) = 2^{-n} h_n(p_n(y))$ for $y \in [2^{-n}, 2^{-(n-1)}]$ and $w_n(y) = 0$ for $y \in [-\pi, 2^{-n}) \cup (2^{-(n-1)}, \pi]$. It is easy to see that w_n is continuous, $V_{OH}(w_n) \le 2c / 2^n$ and $|w_n(x)| \le c2^{-n}$ for all $x \in R$. Put $H = \sum_{i=1}^{\infty} w_i$. Evidently $H \in P(2\pi)_c$. Let $J_i^n = p_n^{-1}([a_i^n, (a_i^n + b_i^n)/2])$.

Then
$$\{J_{i}^{n}\}$$
 is a system of nonoverlapping, closed intervals in $[-\pi,\pi]$ and

$$\sum_{i=1}^{m} |H(J_{i}^{n})|/i = \sum_{i=1}^{m} |w_{n}(J_{i}^{n})|/i = \sum_{i=1}^{m} 2^{-n} h_{n}([a_{i}^{n},(a_{i}^{n}+b_{i}^{n})/2])/i = 2^{-n} \sum_{i=1}^{m} |f(I_{i}^{n})|/i \ge 10^{n}.$$
Consequently $H \notin HBV_{c}$. A necessary and sufficient condition for a function H to be in UGW is the following condition. (See [3], p. 15 or [1].)

(P) For every $\varepsilon > 0$ there is $\delta > 0$ such that for every ordered system of nonoverlapping, closed intervals $\{I_i\}$, $i = 1, \ldots, k$ in $[-\pi, \pi]$ for which diam($\bigcup_{i=1}^{k} I_i$) < δ the inequality $\sum_{i=1}^{k} |H(I_i)|/i < \varepsilon$ holds.

Let
$$\varepsilon > 0$$
 be given. Then choose a positive integer n for with
 $c/2^{n-2} < \varepsilon$. Put $f_1 = \sum_{i=1}^{n} w_i$ and $f_2 = \sum_{i=n+1}^{\infty} w_i$. Clearly f_1 is
a Lipschitz function. Let L be its Lipschitz constant. Put
 $\delta = \varepsilon/2L$. Let $\{I_1\}$, $i = 1, ..., k$ be an ordered system of closed, non-
overlapping intervals in $[-\pi,\pi]$ with diam($\bigcup_{i=1}^{k} I_i$) $< \delta$. Then
 $\sum_{i=1}^{k} |H(I_i)|/i \le \sum_{i=1}^{k} |f_1(I_i)|/i + \sum_{i=1}^{k} |f_2(I_i)|/i \le \sum_{i=1}^{k} L \operatorname{diam}(I_i)/i +$
 $+ \sum_{i=1}^{k} |(\sum_{j=n+1}^{\infty} w_j)(I_j)|/i \le L\delta + \sum_{i=1}^{k} \sum_{j=n+1}^{\infty} |w_j(I_i)|/i \le$
 $\le \varepsilon/2 + \sum_{j=n+1}^{\infty} \sum_{i=1}^{k} |w_j(I_i)|/i \le \varepsilon/2 + \sum_{j=n+1}^{\infty} v_{OH}(w_j) \le$
 $\le \varepsilon/2 + \sum_{j=n+1}^{\infty} 2c/2^j \le \varepsilon/2 + c/2^{n-1} < \varepsilon.$
147

Hence the condition (P) is satisfied and consequently $H \in UGW$. The Function H is in UGW but not in HBV.

REFERENCES

- [1] A. Baernstein and D. Waterman, Function whose Fourier series converge uniformly for every change of variable, Indiana Univ. Math. J., Vol. 22, No. 6, 1972, pp. 569-576.
- [2] C.L. Belna, On ordered harmonic bounded variation, Proc. Amer. Math. Soc., Vol. 80, No. 3, 1980, pp. 441-444.
- [3] C. Goffman, Lebesque equivalence, Real Analysis Exchange, Vol. 3, No.1, 1977-78, pp. 7-23.
- [4] D. Waterman, On the note of C.L. Belna, Proc. Amer. Math. Soc., Vol. 80, No. 3, 1980, pp. 445-447.
- [5] _____, New results on function classes invariant under change of variable, Real Analysis Exchange, Vol. 9, No. 1, 1983-84, pp. 146-153.

Received January 23, 1984