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 SINGULAR SETS AND BAIRE ORDER

 I. Singular Sets.

 We are interested in separable metric spaces X which are of

 countable Baire Order (defined below) and their relationship with

 those spaces which have certain "singularity properties" such as

 those discussed in Sec. 40 of Kuratowski's Topology Vol. 1 and

 more recently in the expository articles [BrCo82] and [Mi84]. In

 particular, we will be interested in those properties included in

 the following diagram of implications (we assume X is a subspace

 of the reals R):

 con Ł

 y ' 0
 L-*v - *0V- op- *c" - »• C - >UQ

 (I) disc - » count^ ^^(s^) - » TI
 ' X*
 S - *

 "N y
 The AFC - > FC implication requires that X have no isolated points.

 The properties are defined as follows: "disc" = discrete, "count"

 = countable, "L" = Lusin (i.e. every nowhere dense in R set

 intersects X in a countable set), "v" = every nowhere dense in X

 subset of X is countable, "cv" = countable union of v spaces,

 "con" = concentrated about a countable subset Y of R (i.e. every

 open set containing Y contains all but countably many points of X,

 "P" = concentrated about a countable subset of X, " C" " = for

 every system {U(x,n) | xeX and n=l,2,...} of open sets such that
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 xcU(x,n) for every x and n, there exists a sequence Xj,X2,...

 of elements of X such that X Q U(x^ , 1) U UCxj , 2) U • • • » " C " =

 strong measure zero (i.e. for every sequence tjjtj»... of

 positive numbers, there exists a sequence XjjXj,... of

 elements of X such that X Q. N(x^ , t^ ) U N(x2 , ^2) U . . . , where

 N(x,t) denotes the t-neighborhood of x, "Uq" = universal null
 (i.e. of measure zero with respect to the completion of every

 continuous Borei measure on R) , " Łq" = of Lebesgue measure

 zero, "S" = Sierpiński (i.e. every *q subset of X is
 countable), "a" = every relative Fo subset of X is a relative
 G. , "x" = rarified (i.e. every countable subset of X is a G
 0 6

 relative to X), "a'" = the union of X and any countable subset of

 R still has property X, "FC" = first category, "AFC" = always

 first category (i.e. for every perfect subset Y of R, XÌÌY is

 first category relative to Y), "(s^)" = Marczewski null (i.e.

 every perfect subset Y of R contains a perfect subset Z such that

 XOZ=4>), MTI" = totally imperfect (i.e. X contains no perfect

 subset ) .

 II. Countable Baire Order.

 Let Gq , Gj , ... , Gq , Ga+j , ... denote the usual
 transfinite sequence with union the class of relative Borei

 subsets of X, where Gq denotes the relative open subsets of X,

 Gj the relative G¿ sets, G2 the relative G5o sets, etc.
 The space X is said to be of "Baire (or Borei) Order a" if o is

 the first ordinal for which G = G , . We denote this a by 3 a a + , l . 3

 " o r d ( X ) " . If a is a countable ordinal, we denote the property (or

 class) of spaces X for which ord(X) < a by "Ba", and "B" will
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 just denote the property of having countable Baire order. The

 question of whether there exist spaces of every countable order

 was raised by Banach and Mazurkiewicz. It would appear from

 reading the papers [Sz30] and [Po30] that Banach had conjectured

 that the answer was "no" and that Mazurkiewicz had conjectured

 that the answer was "yes". It is easy to see that BO = disc and

 that B1 = a. It was shown in [Si30] that count - B1 , in [Sz30]

 that uncountable S spaces have order = 1 (so S - ► Bl), and in

 [Po30] that uncountable L spaces have order = 2 (so L - *B2).

 This last result was extended from property L to property ov in

 [Br77]. Since it follows from CH that there are uncountable S

 spaces and uncountable L spaces, we had a positive CH-solution to

 the Baire Order Problem for a = 0, 1, and 2 in 1930. The problem

 remained essentially at that stage until 1979 when Miller and

 Kunen (see [Mi79]) showed under CH that Ba 4= Bß for every
 countable <*< ß , and Miller showed in [ Mi 79 3 that it is also

 consistent that B1 = Ba for every countable ordinal <*>1.

 Theorem: B - *■ ( s^) .

 This theorem, together with the above stated results, shows

 that the countable Baire Order properties fit properly with the

 singularity properties of (I) as follows:

 con *n 0
 y con " -M ^ *n 0

 L - ► v - ► ° v - ► P - C "

 (II) B0=disc -* count B1

 ' 1 ^
 S

 ^ X » FC
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 III. Soné open problems.

 First, we ask if there might be some improvements possible in

 the implications which are indicated in (II). Can we improve on

 the implications going from the upper row to the middle row? It

 was shown in [Br77] that under CH, P -f* B2 and it was shown in

 [ Mi 7 9 ] that it is consistent that P-ļ-^B. (PI): Is it the

 case that under CH, P- ļ-> B ? Can we establish implications going

 from the middle row to the upper or lower rows? It was naively

 conjectured in [Br77] that B2 - ». ov might be the case, but it was

 pointed out in [Ga78] that if (under CH) X is the union of an

 uncountable L subspace of [0,1] and an uncountable S subspace of

 [1,2], then X satisfies B2 but is neither FC nor î,q. It has
 been shown in [FlMi80] that it is consistent that there be a B1

 set which is con. Since con and a' are incompatible, it follows

 that it is consistent that B1 - f* X1 , but (P2): we do not know

 whether Bl- ļ* x' is the case under CH. Finally, consider the

 implications which go from the bottom row to the middle row. It

 was shown in [MzSz37], using an dimension argument, that under CH

 it is the case that X- |*B1. That dimension argument does not

 carry over to show X' - f*Bl, but an alternative dimension argument

 is given in [Wa84] to show this. The result of [MzSz37] was

 drastically improved in [Mn77], where it was shown that under CH,

 X- B. (P3): Can it be shown under CH that X1 - B?

 It was shown in Sec. IX of [BrCo82] that certain properties

 in the upper row of (I) were incompatible with certain properties

 in the lower row, but that other compatibilities were possible.

 For example, it was shown that "L*FC is not possible" (by this we
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 mean that there is no uncountable set which is both L and FC) but

 under CH , v*FC is possible. ovAAFC is not possible but under CH,

 PAAFC is possible [FrTa80]. (P4): Is (ord(X)=2) AAFC possible

 under CH? Concerning (P4), we note that it was shown in [Mi84]

 that it is consistent that (ord(X)=a)Ax be possible for every a.

 PAx is not possible, but under CH, conAX (or even conABl [Mi84])

 is possible. (P5): It is unknown whether C"AX is possible

 under CH. conAX 1 is not possible, but UqAX ' is possible (even
 in ZFC [Si45]). (P6): it is unknown whether CAX ' is possible

 under CH (this will not be answered in ZFC because it has been

 shown in [La76] that C - *■ count, called Borel's Conjecture, is

 consistent) .

 Finally, we state a general problem. (P7): Determine the

 combinatorial properties of the Ba spaces. In other words,

 investigate whether the properties Ba are preserved (1) in

 subspaces, (2) in finite or countable intersections, unions, or

 products, or (3) under continuous, measurable, or other types of

 transformations. For example, it was shown in [BrGa79] that the

 increasing countable union of B2 spaces is B3, but this result can

 probably be improved. There will be CH counterexample to certain

 conjectures which might be necessary, and the techniques of Miller

 and Kunen might make construction of these examples more

 tractable now.
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