P. Isaza, Department of Mathematics, Syracuse University, Syracuse, New York 13210

A SPACE OF REGULATED FUNCTIONS WHOSE FOURIER SERIES ARE EVERYWHERE CONVERGENT

1. Let f be a regulated function (i.e. $f(x) = \frac{1}{2}(f(x+0)+f(x-0))$ on the unit circle $T = [0, 2\pi)$, and I_1, \ldots, I_{2n} a cyclically ordered collection of contiguous intervals of length π/n , forming a partition of T. If $I_i = [a_i, b_i]$ we write $f(I_i) = f(b_i) - f(a_i)$. Let $V_n(f)$ be the supremum of the sums $\sum |f(I_i)|/i$ over such collections $\{I_i\}$, and let $V(f) = \sup V_n(f)$.

Let $x \in T$, $\delta > 0$. For a given n and $0 \le t < \pi/n$, let $I_i^+(t) = [x + t + \pi/n, x + t + (i+1)\pi/n]$ and $I_i^-(t) = [x-t-(i+1)\pi/n, x-t-i\pi/n]$, $i = 1, 2, \dots, N$, where $N = [n\delta/\pi]$. Define

$$V_{n}(f,x,\delta) = V_{n}(x,\delta)$$

$$= \sup \left\{ \max \left[\sum_{i=1}^{N-j} |f(I_{j+i}^{+}(t))|/i, \sum_{i=1}^{j+1} |f(I_{j+2-i}^{+}(t))|/i, \sum_{i=1}^{N-j} |f(I_{j+i}^{-}(t))|/i, \sum_{i=1}^{j+1} |f(I_{j+2-i}^{-}(t))|/i] :$$

$$0 \le j \le N, 0 \le t \le \pi/n \right\}$$

and $V(f,x,\delta) = V(x,\delta) = \lim \sup V_n(f,x,\delta)$.

We will consider the space of functions f for which $V(f,x,\delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x. Clearly, if f satisfies this condition, then $V(f) < \infty$, and it is easily seen that this space is a Banach space under the norm $||f|| = \sup|f(x)| + V(f)$.

71

2. A function f is said to be of ordered harmonic bounded variation (OHBV) on [a,b], if there is an M such that the sums $\Sigma | f(I_i) | / i < M$ for all finite collections $\{I_i\}$ of nonoverlapping intervals $I_i \subset [a,b]$ ordered from left to right or from right to left. Let V(f,[a,b]) be the supremum of such sums. For (a,b] let V(f,(a,b]) = lim V(f,[y,b]). Similarly $Y \rightarrow a^+$ V(f,[a,b)) = lim V(f,[a,y]).

We will show that the space $Y = \{f \in OHBV : V(f, (x, x+\delta]) \rightarrow 0$ and $V(f, [x-\delta, x)) \rightarrow 0$ as $\delta \rightarrow 0$ for all x $\}$ is properly contained in the space $X = \{f | V(x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x $\}$. It is clear that $Y \subseteq X$.

3. Definition. Let $[a,b] \subset (c,d) \subset (0,2\pi)$, d-b, a-c>b-a, and let φ be a function defined on (c,d) such that for some K, $|\varphi(I)| \leq K|I|$ for all intervals $I \subset (c,d)$, and $\varphi(x) = 0$ if $x \in (c,d)-(a,b)$. Let Q be a partition of T into intervals of length r < b-a, and I_1, \ldots, I_M those intervals of Q which intersect [a,b] ordered from left to right. Let $A_r(\varphi, [a,b])$ be the supremum of the sums

$$\sum_{i=1}^{M-j} |\varphi(I_{j+i})|/i \text{ and } \sum_{i=1}^{j+1} |\varphi(I_{j+2-i})|/i$$

over all $0 \le j \le M$ and all partitions Q. Let $A(\varphi, [a,b]) = \sup Ar(\varphi, [a,b])$. Ar is defined for all r and $Ar \rightarrow 0$ as $r \rightarrow 0$; r $Ar(w\varphi, [a,b]) = |w|Ar(\varphi, [a,b])$ and if $\psi(x) = vx+v$, $v \ne 0$, then $Ar(\varphi, [a,b]) = A(r/v)(\varphi^{\circ}\psi, [(a-v)/v, (b-v)/v])$. 4. We now construct a function $f \in X$ which does not belong to Y. Let $\varphi(x) = 0$ if $x \in [-1,0] \cup [1,2]$, $\varphi(x) = 2x$ if $x \in [0,1/2]$ and $\varphi(x) = -2(x-1)$ if $x \in [1/2,1]$. Choose $m_1 > 2$ and define f(x) = 0 if $x \in [\pi/2m_1, 3\pi/4m_1] \cup [\pi/m_1, 2\pi)$, and $f(x) = \varphi(4m_1(x-3\pi/4m_1)/\pi)/\log 2$ if $x \in (3\pi/4m_1, \pi/m_1)$. There is M_1 such that $|f(I)| < M_1 |I|$ for $I \subset (\pi/2m_1, 2\pi)$.

If m_2, \ldots, m_{k-1} have been chosen such that f is defined in $[\pi/2m_{k-1}, 2\pi)$ and there is M_{k-1} satisfying $|f(I)| < M_{k-1}|I|$ for $I \subset (\pi/2m_{k-1}, 2\pi)$, then we can choose $m_k > 4m_{k-1}$ such that $Ar(f, [3\pi/4m_{k-1}, \pi/2]) < 1/k$ for $r < \pi/m_k$, and define f in $[\pi/2m_k, \pi/2m_{k-1}]$ by f(x) = 0 for $x \in [\pi/2m_k, 3\pi/4m_k] \cup [\pi/m_k, \pi/m_{k-1}]$, and $f(x) = \varphi(4m_k(x-3\pi/4m_k)/\pi)/\log(k+1)$ if $x \in [3\pi/4m_k, \pi/4m_k]$. Then there is M_k such that $|f(I)| < M_k |I|$ for $(\pi/2m_k, 2\pi)$. Setting f(0) = 0, f is defined in $[0, 2\pi)$.

To prove that $V(f,x,\delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x, we first notice that f is of bounded variation in a neighborhood of each $x \neq 0$, and therefore it is enough to show that $V(0,\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

Let $\varepsilon > 0$ and s so large that $(4+A(\phi[0,1]))/\log s + 1/(s-1) < \varepsilon$. For $\delta < \pi/m_{s-1}$, choose n such that $\pi/n < \delta$, and let $I_1^+(t), \ldots, I_N^+(t)$ be as in §1. Let k be the smallest i such that $\pi/m_i \leq \pi/n$, then $\pi/n < \pi/m_{k-1}$. Only $I_1^+(0)$ can intersect $[0, \pi/m_k]$; and if it does, since $m_k > 4m_{k-1}$, $I_1^+(0) \cap [3\pi/4m_{k-1}, \pi/m_{k-1}] = \emptyset$. Let L_1, \ldots, L_t be the intervals $I_1^+(t)$ intersecting $[3\pi/4m_{k-1}, \pi/m_{k-1}]$. If $\pi/n \geq \pi/4m_{k-1}$, then $t \leq 3$. If $\pi/n < \pi/4m_{k-1}$, then all the L_i 's are contained in

$$(\pi/2m_{k-1}, 5\pi/4m_{k-1}). \text{ Also we have that } L_{i} \cap [3\pi/4m_{k-2}, \delta] = \emptyset.$$
Finally, let M_{1}, \ldots, M_{ℓ} be the intervals $I_{i}^{+}(t)$ intersecting $[3\pi/4m_{k-2}, \delta).$ Thus we have the estimate
$$\begin{array}{c} N-j \\ \sum \\ |f(I_{j+i}^{+}(t))|/i \leq 1/\log(k+1) + \\ i=1 \end{array} \stackrel{t}{\overset{}{=}} |f(L_{i})|/i + \\ i=1 \end{array} \stackrel{\ell}{\overset{}{=}} |f(M_{i})|/i \\ \leq 1/\log(k+1) + 3/\log k + A(f, [3\pi/4m_{k-1}, \pi/m_{k-1}]) + 1/(k-1) \\ \leq (4+A(\phi, [0,1]))/\log s + 1/(s-1) < \varepsilon.$$
The same estimate holds for $\sum |f(I_{i+2}^{+}, i(t))|/i.$ Hence

-j+2-i``'' i=1 $V(0,\delta) \rightarrow 0$ as $\delta \rightarrow 0$. However $f \notin OHBV$.

We have mentioned that if $V(f, x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x, 5. then $V(f) < \infty$. However, the converse is not true.

Consider the sequence $\varphi_1, \varphi_2, \ldots$ defined by $\varphi_1(\mathbf{x}) = \varphi(\mathbf{x})$, $\phi(\mathbf{x})$ as in §4 and $\phi_{\texttt{i}}(\mathbf{x})=0$ if $\mathbf{x}\in[-1,0]\cup[1,2]$, and $\varphi_{i}(x) = \varphi(ix-j)$ if $j/i \le x \le (j+1)/i$, j = 0, 1, ..., (i-1). Let $A(\phi_1, [0,1]) = A$. We can easily see that

$$\sum_{i=1}^{2k} 1/i \le A(\phi_k) \le A(\phi_{k-1}) + A, \quad k = 2, 3, \dots$$

Then there is a subsequence $\{\varphi_k\}$ such that $jA \le A(\varphi_k, [0,1]) \le (j+1)A$. Let $\psi_i = \varphi_k$. For each k there is a rational $r_k = P_k^{\prime}/q_k < 1$ and contiguous intervals I_1, \ldots, I_m of length r_k in (-1,2) such that

(*)
$$\sum_{i=1}^{M} |\psi_{k}(I_{i})|/i > A(\psi_{k}, [0, 1])/2$$
.

We define now f following the inductive procedure of §4, choosing m_k as before, but also a multiple of p_k , say $m_k = p_k \ell_k$ and defining $f(x) = \psi_k (4m_k (x-3\pi/4m_k)/\pi)/k$ if $x \in [3\pi/4m_k, \pi/m_k]$. We can see as in §4 that $V(f) < \infty$. However, for $\delta > 0$, if we let s be so large that $\pi/m_s < \delta/2$, by (*) there are continguous intervals J_1, \ldots, J_m of length $(\pi/4m_s) (p_s/q_s) = \pi/4q_s \ell_s$, in $(\pi/2m_s, 5\pi/4m_s) \subset (0, \delta)$, such that $\sum_{i=1}^{M} |f(J_i)|/i = \frac{1}{s} \sum_{i=1}^{M} |\psi_s(I_i)|/i > A(\psi_s)/2s \ge sA/2s = A/2$.

Therefore for $n = 4q_s \ell_s$, an appropriate value of $0 \le t < \pi/n$ and some j we will have that

$$\sum_{i=1}^{N-j} |f(I_{j+i}^{+}(t))|/i \ge \sum_{i=1}^{M} |f(J_{i})|/i > A/2,$$

and thus $V_{4q_s\ell_s}(0,\delta) > A/2$. Since we can take s, and therefore m_s , arbitrarily large, and $n = 4q_s\ell_s \ge 4p_s\ell_s = 4m_s$, it follows that for arbitrarily large values of n, $V_n(0,\delta) > A/2$. Hence $\lim_n \sup_n V_n(0,\delta) \ge A/2$ for all δ .

6. Theorem. If $V(f,x,\delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x, then the $n\frac{th}{t}$ partial sum of the Fourier series of f at x, $s_n(f,x) \rightarrow f(x)$ for all x. If f is continuous on a closed interval I, the convergence is uniform on each interval J contained in the interior of I.

Proof. For h(t) = h(x,t) = f(x+t) + f(x-t) - 2f(x) and $\delta > 0$,

$$s_{n}(f,x)-f(x) = \frac{1}{\pi} \int_{0}^{\delta} h(t) \frac{\sin nt}{t} dt + o(1)$$

= $\frac{1}{\pi} \int_{0}^{\pi/n} h(t) \frac{\sin nt}{t} dt + \frac{1}{\pi} \int_{0}^{\pi/n} \sum_{i=1}^{(N-1)/2} \left[\frac{h(t+2i\pi/n)}{t+2i\pi/n} - \frac{h(t+(2i-1)\pi/n)}{t+(2i-1)\pi/n} \right]$

sin nt dt +
$$\int_{N}^{\circ} h(t) \frac{\sin nt}{t} dt = I + II + III$$
, where N is

the largest odd integer less than $n\delta/\pi$.

I and III are easily seen to be o(1).

Now

$$|II| \leq \frac{1}{\pi} \int_{0}^{\pi/n} \sum_{i=1}^{(N-1)/2} \frac{|h(t+2i\pi/n)-h(t+(2i-1)\pi/n)|}{t+2i\pi/n} dt$$

$$+ \frac{1}{\pi} \int_{0}^{\pi/n} \frac{(N-1)/2}{\sum_{i=1}^{\ln(t+(2i-1)\pi/n)}} \frac{\ln(t+(2i-1)\pi/n)}{\frac{\pi}{n}i^{2}} dt$$

$$\leq \frac{2}{\pi} V_{n}(\mathbf{f}, \mathbf{x}, \delta) + \frac{1}{\pi} \sup_{\substack{n \leq t \leq 2 \ [\sqrt{n}] \ \pi/n}} \sum_{i=1}^{\infty} \frac{1}{i^{2}}$$

+
$$\frac{1}{\pi} \sup_{t \in T} |h(t)| \sum_{i=\left[\sqrt{n}\right]}^{\infty} 1/i^2$$

 $=\frac{2}{\pi}V_{n}(f,x,\delta)+o(1)$.

Thus $|s_n(f,x)-f(x)| \le \frac{2}{\pi} V_n(f,x,\delta) + o(1)$ and so $\overline{\lim} |s_n(x)-f(x)| \le \frac{2}{\pi} V(x,\delta)$. Since δ can be taken arbitrarily small, we have that $\overline{\lim} |s_n(x)-f(x)| = 0$.

If f is continuous in a closed interval I, the above estimates are o(1) uniformly in $x \in J \subset int I$. Also, by an

argument of compactness we can see that $V(x, \delta) \rightarrow 0$, uniformly in x, as $\delta \rightarrow 0$.

REFERENCES

- D. Waterman, A-bounded variation: recent results and unsolved problems, Real Analysis Exchange 4(1978-1979), 69-75.
- D. Waterman, Fourier series of functions of A-bounded variation, Proc. Amer. Math. Soc. 74(1979), 119-123.