P. Isaza, Department of Mathematics, Syracuse University, Syracuse, New York 13210

A SPACE OF REGULATED FUNCTIONS WHOSE FOURIER SERIES ARE EVERYWHERE CONVERGENT

1. Let f be a regulated function (i.e. $\left.f(x)=\frac{1}{2}(f(x+0)+f(x-0))\right)$ on the unit circle $T=[0,2 \pi)$, and $I_{1}, \ldots, I_{2 n}$ a cyclically ordered collection of contiguous intervals of length π / n, forming a partition of T. If $I_{i}=\left[a_{i}, b_{i}\right]$ we write $f\left(I_{i}\right)=f\left(b_{i}\right)-f\left(a_{i}\right)$. Let $V_{n}(f)$ be the supremum of the sums $\Sigma\left|f\left(I_{i}\right)\right| / i$ over such collections $\left\{I_{i}\right\}$, and let $V(f)=\sup _{n} V_{n}(f)$. Let $x \in T, \delta>0$. For a given n and $0 \leq t<\pi / n$, let $I_{i}^{+}(t)=[x+t+\pi / n, x+t+(i+1) \pi / n]$ and $I_{i}^{-}(t)=[x-t-(i+1) \pi / n, x-t-i \pi / n]$, $i=1,2, \ldots, N$, where $N=[n \delta / \pi]$. Define
$V_{n}(f, x, \delta)=V_{n}(x, \delta)$

$$
\begin{aligned}
& =\sup \left\{\operatorname { m a x } \left[\sum_{i=1}^{N-j}\left|f\left(I_{j+i}^{+}(t)\right)\right| / i, \sum_{i=1}^{j+1}\left|f\left(I_{j+2-i}^{+}(t)\right)\right| / i,\right.\right. \\
& \left.\sum_{i=1}^{N-j}\left|f\left(I_{j+i}^{-}(t)\right)\right| / i, \sum_{i=1}^{j+1}\left|f\left(I_{j+2-i}^{-}(t)\right)\right| / i\right]: \\
& 0 \leq j<N, 0 \leq t<\pi / n j
\end{aligned}
$$

and $V(f, x, \delta)=V(x, \delta)=1$ im sup $V_{n}(f, x, \delta)$.
We will consider, the space of functions f for which $V(f, x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x. Clearly, if f satisfies this condition, then $V(f)<\infty$, and it is easily seen that this space is a Banach space under the norm $\|f\|=\underset{x}{\sup |f(x)|+V(f) .}$
2. A function f is said to be of ordered harmonic bounded variation (OHBV) on [a,b], if there is an M such that the sums $\Sigma\left|f\left(I_{i}\right)\right| / i<M$ for all finite collections \{ $\left.I_{i}\right\}$ of nonoverlapping intervals $I_{i} \subset[a, b]$ ordered from left to right or from right to left. Let $V(f,[a, b])$ be the supremum of such sums. For $(a, b] \operatorname{let} V(f,(a, b])=\lim _{y \rightarrow a^{+}} V(f,[y, b])$. Similarly $V(f,[a, b))=\lim _{Y^{\rightarrow}} V(f,[a, y])$.

We will show that the space $Y=(f \in O H B V: V(f,(x, x+\delta]) \rightarrow 0$ and $V(f,[x-\delta, x)) \rightarrow 0$ as $\delta \rightarrow 0$ for all $x\}$ is properly contained in the space $X=\{f \mid V(x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all $x\}$. It is clear that $\mathrm{Y} \subseteq \mathrm{X}$.
3. Definition. Let $[a, b] \subset(c, d) \subset(0,2 \pi), d-b, a-c>b-a$, and let φ be a function defined on (c,d) such that for some K, $|\varphi(I)| \leq K|I|$ for all intervals $I \subset(c, d)$, and $\varphi(x)=0$ if $x \in(c, d)-(a, b)$. Let Q be a partition of T into intervals of length $r<b-a$, and $I_{1} \ldots . I_{M}$ those intervals of Q which intersect [a,b] ordered from left to right. Let $A_{r}(\varphi,[a, b])$ be the supremum of the sums

$$
\sum_{i=1}^{M-j}\left|\varphi\left(I_{j+i}\right)\right| / i \text { and } \sum_{i=1}^{j+1}\left|\varphi\left(I_{j+2-i}\right)\right| / i
$$

over all $0 \leq j<M$ and all partitions $Q . \operatorname{Let} A(\varphi,[a, b])=$ $\sup \operatorname{Ar}(\varphi,[a, b]) . \operatorname{Ar}$ is defined for $a l l r$ and $A r \rightarrow 0$ as $r \rightarrow 0$; $\stackrel{r}{\operatorname{Ar}(w \varphi,[a, b])}=|w| \operatorname{Ar}(\varphi,[a, b])$ and if $\psi(x)=v x+v, v \neq 0$, then $\operatorname{Ar}(\varphi,[a, b])=A(r / v)\left(\varphi^{\circ} \psi,[(a-v) / v,(b-v) / v]\right)$.
4. We now construct a function $f \in X$ which does not belong to Y. Let $\varphi(x)=0$ if $x \in[-1,0] \cup[1,2], \varphi(x)=2 x$ if $x \in[0,1 / 2]$ and $\varphi(x)=-2(x-1)$ if $x \in[1 / 2,1]$. Choose $m_{1}>2$ and define $f(x)=0$ if $x \in\left[\pi / 2 m_{1}, 3 \pi / 4 m_{1}\right] \cup\left[\pi / m_{1}, 2 \pi\right)$, and $f(x)=\varphi\left(4 m_{1}\left(x-3 \pi / 4 m_{1}\right) / \pi\right) / \log 2$ if $x \in\left(3 \pi / 4 m_{1}, \pi / m_{1}\right)$. There is M_{1} such that $|f(I)|<M_{1}|I|$ for $I \subset\left(\pi / 2 m_{1}, 2 \pi\right)$.

If m_{2}, \ldots, m_{k-1} have been chosen such that f is defined in $\left[\pi / 2 m_{k-1}, 2 \pi\right)$ and there is M_{k-1} satisfying $|f(I)|<M_{k-1}|I|$ for $I \subset\left(\pi / 2 m_{k-1}, 2 \pi\right)$, then we can choose $m_{k}>4 m_{k-1}$ such that $\operatorname{Ar}\left(\mathrm{f},\left[3 \pi / 4 \mathrm{~m}_{k-1}, \pi / 2\right]\right)<1 / k$ for $r<\pi / m_{k}$, and define f in $\left[\pi / 2 m_{k}, \pi / 2 m_{k-1}\right]$ by $f(x)=0$ for $x \in\left[\pi / 2 m_{k}, 3 \pi / 4 m_{k}\right] \cup\left[\pi / m_{k}, \pi / m_{k-1}\right]$, and $f(x)=\varphi\left(4 m_{k}\left(x-3 \pi / 4 m_{k}\right) / \pi\right) / \log (k+1)$ if $x \in\left[3 \pi / 4 m_{k}, \pi / 4 m_{k}\right]$. Then there is M_{k} such that $|f(I)|<M_{k}|I|$ for $\left(\pi / 2 m_{k}, 2 \pi\right)$. Setting $f(0)=0, f$ is defined in $[0,2 \pi)$.

To prove that $V(f, x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x, we first notice that f is of bounded variation in a neighborhood of each $x \neq 0$, and therefore it is enough to show that $V(0, \delta) \rightarrow 0$ as $\delta \rightarrow 0$.

Let $\varepsilon>0$ and s so large that $(4+A(\varphi[0,1])) / \log s+1 /(s-1)<\varepsilon$.
For $\delta<\pi / m_{s-1}$, choose n such that $\pi / n<\delta$, and let
$I_{1}^{+}(t), \ldots, I_{N}^{+}(t)$ be as in $\S 1$. Let k be the smallest i such that $\pi / m_{i} \leq \pi / n$, then $\pi / n<\pi / m_{k-1}$. Only $I_{l}^{+}(0)$ can intersect $\left[0, \pi / m_{k}\right]$; and if it does, since $m_{k}>4 m_{k-1}$,
$I_{1}^{+}(0) \cap\left[3 \pi / 4 m_{k-1}, \pi / m_{k-1}\right]=\phi$. Let L_{1}, \ldots, L_{t} be the intervals $I_{i}^{+}(t)$ intersecting $\left[3 \pi / 4 m_{k-1}, \pi / m_{k-1}\right]$. If $\pi / n \geq \pi / 4 m_{k-1}$, then $t \leq 3$. If $\pi / n<\pi / 4 m_{k-1}$, then all the L_{i} 's are contained in
$\left(\pi / 2 m_{k-1}, 5 \pi / 4 m_{k-1}\right)$. Also we have that $L_{i} \cap\left[3 \pi / 4 m_{k-2}, \delta\right)=\phi$. Finally, let M_{l}, \ldots, M_{ℓ} be the intervals $I_{i}^{+}(t)$ intersecting $\left[3 \pi / 4 m_{k-2}, 6\right)$. Thus we have the estimate

$$
\sum_{i=1}^{N-j}\left|f\left(I_{j+i}^{+}(t)\right)\right| / i \leq l / \log (k+1)+\sum_{i=1}^{t}\left|f\left(L_{i}\right)\right| / i+\sum_{i=1}^{\ell}\left|f\left(M_{i}\right)\right| / i
$$

$\leq 1 / \log (k+1)+3 / \log k+A\left(f,\left[3 \pi / 4 m_{k-1}, \pi / m_{k-1}\right]\right)+1 /(k-1)$
$\leq(4+A(\varphi,[0,1])) / \log s+1 /(s-1)<\varepsilon$.
The same estimate holds for $\sum_{i=1}^{j+l}\left|f\left(I_{j+2-i}^{+}(t)\right)\right| / i$. Hence $V(0, \delta) \rightarrow 0$ as $\delta \rightarrow 0$. However $f \notin O H B V$.
5. We have mentioned that if $V(f, x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x, then $V(f)<\infty$. However, the converse is not true. Consider the sequence $\varphi_{1}, \varphi_{2}, \ldots$ defined by $\varphi_{1}(x)=\varphi(x)$, $\varphi(x)$ as in $\S 4$ and $\varphi_{i}(x)=0$ if $x \in[-1,0] \cup[1,2]$, and $\varphi_{i}(x)=\varphi(i x-j)$ if $j / i \leq x<(j+1) / i, j=0,1, \ldots$ (i-l). Let $A\left(\varphi_{1},[0,1]\right)=A$. We can easily see that

$$
-\quad \sum_{i=1}^{2 k} 1 / i \leq A\left(\varphi_{k}\right) \leq A\left(\varphi_{k-1}\right)+A, \quad k=2,3, \ldots
$$

Then there is a subsequence $\left\{\varphi_{k_{j}}\right\}$ such that $j A \leq A\left(\varphi_{k_{j}},[0,1]\right) \leq(j+1) A$. Let $\psi_{i}=\varphi_{k_{i}}$. For each k there is a rational $r_{k}=P_{k} / q_{k}<1$ and contiguous intervals I_{1}, \ldots, I_{m} of length r_{k} in $(-1,2)$ such that
(*) $\quad \sum_{i=1}^{M}\left|\psi_{k}\left(I_{i}\right)\right| / i>A\left(\psi_{k},[0,1]\right) / 2$.

We define now f following the inductive procedure of 84 , choosing m_{k} as before, but also a multiple of p_{k}, say $m_{k}=p_{k} \ell_{k}$ and defining $f(x)=\psi_{k}\left(4 m_{k}\left(x-3 \pi / 4 m_{k}\right) / \pi\right) / k$ if $x \in\left[3 \pi / 4 m_{k}, \pi / m_{k}\right]$. We can see as in $\delta 4$ that $V(f)<\infty$. However, for $\delta>0$, if we let s be so large that $\pi / m_{s}<\delta / 2$, by (*) there are continguous intervals J_{1}, \ldots, J_{m} of length $\left(\pi / 4 m_{s}\right)\left(p_{s} / q_{s}\right)=\pi / 4 q_{s} \ell_{s^{\prime}}$ in $\left(\pi / 2 m_{s}, 5 \pi / 4 m_{s}\right) \subset(0, \delta)$, such that

$$
\sum_{i=1}^{M}\left|f\left(J_{i}\right)\right| / i=\frac{1}{s} \sum_{i=1}^{M}\left|\psi_{s}\left(I_{i}\right)\right| / i>A\left(\psi_{s}\right) / 2 s \geq s A / 2 s=A / 2 .
$$

Therefore for $n=4 q_{s} \ell_{s}$, an appropriate value of $0 \leq t<\pi / n$ and some j we will have that

$$
\sum_{i=1}^{N-j}\left|f\left(I_{j+i}^{+}(t)\right)\right| / i \geq \sum_{i=1}^{M}\left|f\left(J_{i}\right)\right| / i>A / 2
$$

and thus $\mathrm{V}_{4 \mathrm{q}_{s} \ell_{s}}(0, \delta)>A / 2$. Since we can take s, and therefore m_{s}, arbitrarily large, and $n=4 q_{s}{ }_{s} \geq 4 p_{s}^{\ell}=4 m_{s}$, it follows that for arbitrarily large values of $n, V_{n}(0, \delta)>A / 2$. Hence $\lim \sup _{\mathrm{n}} \mathrm{V}_{\mathrm{n}}(0, \delta) \geq A / 2$ for all δ.
6. Theorem. If $V(f, x, \delta) \rightarrow 0$ as $\delta \rightarrow 0$ for all x, then the $n \frac{t h}{}$ partial sum of the Fourier series of f at $x, s_{n}(f, x) \rightarrow f(x)$ for all x. If f is continuous on a closed interval I, the convergence is uniform on each interval J contained in the interior of I.

Proof. For $h(t)=h(x, t)=f(x+t)+f(x-t)-2 f(x)$ and $\delta>0$,

$$
\begin{aligned}
s_{n} & (f, x)-f(x)=\frac{1}{\pi} \int_{0}^{\delta} h(t) \frac{\sin n t}{t} d t+o(1) \\
& =\frac{1}{\pi} \int_{0}^{\pi / n} h(t) \frac{\sin n t}{t} d t+\frac{1}{\pi} \int_{0}^{\pi / n} \sum_{i=1}^{(N-1) / 2}\left[\frac{h(t+2 i \pi / n)}{t+2 i \pi / n}-\frac{h(t+(2 i-1) \pi / n)}{t+(2 i-1) \pi / n}\right]
\end{aligned}
$$

$$
\sin n t d t+\int_{N}^{\delta} h(t) \frac{\sin n t}{t} d t=I+I I+I I I \text {, where } N \text { is }
$$

the largest odd integer less than $n \delta / \pi$.
I and III are easily seen to be o(l).
Now

$$
\begin{aligned}
|I I| \leq & \frac{1}{\pi} \int_{0}^{\pi / n} \sum_{i=1}^{(N-1) / 2} \frac{|h(t+2 i \pi / n)-h(t+(2 i-1) \pi / n)|}{t+2 i \pi / n} d t \\
& +\frac{1}{\pi} \int_{0}^{\pi / n} \sum_{i=1}^{(N-1) / 2} \frac{|h(t+(2 i-1) \pi / n)|}{\frac{\pi}{n} i^{2}} d t \\
\leq & \frac{2}{\pi} v_{n}(f, x, \delta)+\frac{1}{\pi} \sup _{\frac{\pi}{n} \leq t \leq 2[\sqrt{n}] \pi / n} \sum_{i=1}^{\infty} 1 / i^{2} \\
& +\frac{1}{\pi} \sup _{t \in T}|h(t)| \quad \sum_{i=[\sqrt{n}]}^{\infty} 1 / i^{2} \\
= & \frac{2}{\pi} v_{n}(f, x, \delta)+o(1) .
\end{aligned}
$$

Thus $\left|s_{n}(f, x)-f(x)\right| \leq \frac{2}{\pi} V_{n}(f, x, \delta)+o(1)$ and so
$\overline{\lim \mid s_{n}}(x)-f(x) \left\lvert\, \leq \frac{2}{\pi} V(x, \delta)\right.$. Since δ can be taken arbitrarily small, we have that $\overline{\lim \mid s_{n}}(x)-f(x) \mid=0$.

If f is continuous in a closed interval I, the above estimates are $o(1)$ uniformly in $x \in J \subset$ int I. Also, by an
argument of compactness we can see that $V(x, \delta) \rightarrow 0$, uniformly in x, as $\delta \rightarrow 0$.

REFERENCES

1. D. Waterman, \wedge-bounded variation: recent results and unsolved problems, Real Analysis Exchange 4(1978-1979), 69-75.
2. D. Waterman, Fourier series of functions of \wedge-bounded variation, Proc. Amer. Math. Soc. 74(1979), 119-123.
