Real Analysis Exchange Vol. 8 (1982-83)

Jaromír Uher, Leninova 56, 160 00 Praha 6, Czechoslovakia

 Symmetrically Dif ferentiable Functions are Differentiable Almost Everywhere

 In this note we show that any function f defined on the real line R and symmetrically semicontinuous at almost every point of a measurable set E cR is differentiable at almost every point of E at which it possesses a symmetric derivative, possibly infinite. Since the existence of the symmetric deriva tive at a point implies symmetric semicontinuity at that point, we get as a corollary that a function possessing a symmetric derivative almost everywhere is measurable. This solves a well-known problem, which was, according to [1], posed by well-known problem, whid $\,$. Sierpinski in 1928. $^{\rm 1)}$

 Recall that the upper symmetric derivative of a function f at $x \in R$ is $\overline{f}^S(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$ and that the lower symmetric derivative is

$$
\underline{f}^{\mathbf{S}}(x) = \liminf_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}.
$$

 $\overline{f}^{\mathbf{S}}(x) = f^{\mathbf{S}}$ If $f^{-}(x) = f'(x)$, the common value, finite or infinite, is called the symmetric derivative of f at x. A function f defined on R is said to be upper (lower) symmetrically

 ¹⁾ Editorial Note: The paper referred to is, W. Sierpiński, Sur une hypothese de M. Mazurkiewicz, Fund. Math., 11(1928), 148-150. The question asked there is a weaker form of the measurability question which has been answered by Szpilrajn and Preiss.

semicontinuous at x, if

 $\ddot{}$

$$
\limsup_{h \to 0_{+}} f(x+h) - f(x-h) \le 0
$$
\n
$$
(\liminf_{h \to 0_{+}} f(x+h) - f(x-h) \ge 0),
$$

 and it is said to be symmetrically semicontinuous at x, if it is upper or lower symmetrically semicontinuous at x. We shall it is upper or lower symmetrically semicontinuous at x . We shall
also use the usual notations $\overline{D}f(x)$, $\underline{D}f(x)$, $\overline{D}f(x)$, $\underline{D}f(x)$, $\underline{D}f(x)$, and $D^{\top}f(x)$ for ordinary, one-sided, upper, and lower derivatives. If M is a subset of the real line, we denote by $|M|$ its outer Lebesgue measure,

$$
D(M) = \left\{ x \in R \; ; \; \lim_{h \to O_+} \frac{|M \cap (x-h, x+h)|}{2h} = 1 \right\} ,
$$

$$
D_+(M) = \left\{ x \in R \; ; \; \lim_{h \to O_+} \frac{|M \cap (x, x+h)|}{h} = 1 \right\} ,
$$
and
$$
D_-(M) = \left\{ x \in R \; ; \; \lim_{h \to O_+} \frac{|M \cap (x-h, x)|}{h} = 1 \right\} .
$$

We remark that even if M is not measurable, $D(M)$, $D_+(M)$ and D (M) are measurable.

The results mentioned in the beginning will be easy consequences of the following lemma.

 Lemma. Assume that f is a real-valued function defined on the real line, E is a measurable subset of the real line and KeR such that (i) $E \subset D(E)$,

- (ii) $E \subset D\{z \in R : f^S(z) > K\}$, and
- (iii) f is symmetrically semicontinuous at each point of E.

Then $DF(z) \ge K$ at almost every point $z \in E$.

Proof. Let

$$
F = \{ z \in R ; \underline{f}^{S}(z) > K \}
$$

and

$$
F_n = \left\{ z \in F \; ; \; |h| < \frac{1}{n} \Rightarrow \frac{f(z+h) - f(z-h)}{2h} > K \right\} .
$$

Clearly $F = \bigcup_{n=1}^{\infty} F_n$ and $|D(F) - \bigcup_{n=1}^{\infty} D(F_n)| = 0$.

 The main part of the proof of the lemma will be accomplished by showing that $\underline{D}^+ f(z) \geq K$ whenever $z \in D(F_n) \cap E$ for some natural number n. To prove this assertion, we assume $z = 0$ and we choose $\Delta \varepsilon$ (0, $\frac{1}{n}$) such that for every a ε (0, Δ)

$$
\frac{1}{2a} \left(\frac{-a, a \cap F_n}{2a} \right) > (1 - \frac{1}{64}) \quad \text{and} \quad \frac{|(-a, a) \cap E|}{2a} > (1 - \frac{1}{64})
$$

First we prove that

(*) whenever $x \in (0, \Delta)$, one may find a measurable set $BC(\frac{3}{4}x, x)$ with $|B|>\frac{3}{16}x$ and with $f(y) - f(0) \geq ky$ for each $y \in B$.

Proof of (*). Let
$$
x \in (0, \Delta)
$$
. We put
\n
$$
A = (F_n + \frac{3}{4}x) \cap E \cap (\frac{3}{4}x, x)
$$
 and note that $|A| > \frac{x}{4} - \frac{5}{128}x$.

Let

 $E^T = \{z \in E$; f is lower symmetrically semicontinuous at z), $E^{\dagger} = \{z \in E ; f \text{ is upper symmetrically semicontinuous at } z\},$ $A_{m,k} = {z \in A | E; 0 \le h \le \frac{1}{m} \Rightarrow E (z+h) - E (z-h) > -\frac{1}{k}}, \text{ and}$
 $A_{m,k}^- = {z \in A \cap E; 0 \le h \le \frac{1}{m} \Rightarrow f (z-h) - f (z+h) > -\frac{1}{k}}.$

$$
A_{m,k}^{-} = \{ z \in A \cap E^{-}; \ 0 < h < \frac{1}{m} \Rightarrow f(z-h) - f(z+h) > -\frac{1}{k} \}.
$$

Let

$$
A^* = \bigcap_{k=1}^{\infty} \left[\bigcup_{m=1}^{\infty} (D(A_{m,k}^+)) \cup D(A_{m,k}^-) \right].
$$

We put

$$
B = A^* \cap [\frac{2}{3}D(F_n) + \frac{x}{2}] \cap [\frac{1}{2}E + \frac{3}{4}x] \cap (\frac{3}{4}x, x) .
$$

Since A* is a measurable subset of $(\frac{3}{4}x, x)$ with

$$
|A^*| = |A| > \frac{x}{4} - \frac{5}{128}x
$$

since

 \sim

$$
|\left(\frac{2}{3}D(F_n) + \frac{x}{2}\right)| \cap \left(\frac{3}{4}x, x\right)| > \frac{x}{4} - \frac{1}{64}x
$$

and since

$$
|\left(\frac{1}{2}E + \frac{3}{4}x\right)| \left(\frac{3}{4}x, x\right)| > \frac{x}{4} - \frac{1}{128}x
$$
,
 $|B| > \frac{x}{4} - \frac{1}{16}x$.

 To prove the last part of the statement (*) let y eB. Then $\mathcal{L}^{\text{max}}_{\text{max}}$

(1)
$$
2(y - \frac{3}{4}x) + \frac{3}{4}x - \frac{y}{2} = \frac{3}{2}(y - \frac{x}{2}) \in D(F_n)
$$
, since $B \subset \frac{2}{3}D(F_n) + \frac{x}{2}$
and
(2) $2(y - \frac{3}{4}x) \in E$, since $B \subset \frac{1}{2}E + \frac{3}{4}x$.

and

and
(2)
$$
2(y - \frac{3}{4}x) \in E
$$
, since $B \subset \frac{1}{2}E + \frac{3}{4}x$.

Let

$$
c^{1} = (F_{n} - \frac{3}{4}x + \frac{y}{2}) \cap E \cap (0, \frac{x}{2}) .
$$

Then

(3) $2(y - \frac{3}{4}x) \in D(C^1)$ according to (1) and (2). Let ϵ ϵ (O, $\frac{1}{16}x$) be an arbitrary positive number. Let $c^{1+} = c^1 \cap E^+$ and $c^{1-} = c^1 \cap E^-$, and choose, for each t ϵc^{1+} (resp. t ϵc^{1-}), a $\delta^+(t)$ ϵ (0, ϵ) (resp. a $\delta^-(t)$ ϵ (0, ϵ)) such that $f(t + h) - f(t - h) > - \epsilon$ for each $h \epsilon (0, \delta^+(t))$ (resp. $f(t - h) - f(t + h) > - \epsilon$ for each $h \in (0, \delta^{-}(t))$. Let

$$
c^{2} = \bigcup_{t \in C} 1 + (t - \delta^{+}(t), t) \cup \bigcup_{t \in C} 1 - (t, t + \delta^{-}(t)).
$$

Then (3) and the definition of c^2 imply Then (3) and the definition of C^2 imply
(4) 2(y - $\frac{3}{4}x$) ϵ D(C²) and C^2 is measurable.

Let k and m be natural numbers such that $\frac{1}{k} < \epsilon$ and $y \in D(A^+_{m,k}) \cup D(A^-_{m,k})$. Choose $\beta \in (0, m in (\frac{1}{m}, \epsilon))$ such that

$$
(\mathbf{y} - \boldsymbol{\beta}, \ \mathbf{y} + \boldsymbol{\beta}) \subset (\frac{3}{4}\mathbf{x}, \ \mathbf{x})
$$

Put

$$
c^{3} = \left[((y - \beta, y) \cap A^{+}_{m,k}) \cup ((y, y + \beta) \cap A^{-}_{m,k}) \right] - \frac{3}{4}x
$$

and

$$
c^4 = (2c^3) \cdot c^2
$$
.

If $y \in D(A^+_{m,k})$, then $2(y - \frac{3}{4}x) \in D_-(2C^3)$ which, together with (4), implies that one may find a point $\mathcal{J} \epsilon C^4 \cap 2((y-\beta, y) - \frac{3}{4}x)$.

Since $\texttt{J}~\texttt{c}~$ 2C , there is $~\texttt{u}~\texttt{c}~$ (y- $~\beta$, y) $~\cap~$ A $_{\mathfrak{m}$, $_{\mathsf{K}}}$ such that 3, there is $u \in (y-\beta, y) \cap A^+$ m ; K $\mathcal{J} = 2 \left(u - \frac{3}{4} x \right)$. Then (5) f (y) - f (2u - y) > - ϵ according to the definition of $A_{m,k}^+$. since $u \in A_{m,k}^+$, $\epsilon > \frac{1}{k}$ and $0 < y - u < \beta < \frac{1}{m}$. In addition, (6) $u - \frac{3}{4}x \epsilon F_n$ according to the definition of A, since $u \in A_{m,k}^{-} \subset A$. If $y \in D(A_{m,k}^-) - D(A_{m,k}^+),$ then $2(y - \frac{3}{4}x) \in D_+(2C^3)$ wh together with (4), implies that one may find a point $\mu \in A^+_{m,k} \subset A$.

If $y \in D(A^-_{m,k}) - D(A^+_{m,k})$, then $2(y - \frac{3}{4}x) \in D_+(2C^3)$ which,

together with (4), implies that one may find a point
 $J \in C^4 \cap 2((y, y+\beta) - \frac{3}{4}x)$. Since $J \in 2C^3$, there is
 $\mu \in (y, y+\beta) \cap A^-_{m,k}$ suc $y \in D(A_{m,k}^-) - D(A_{m,k}^+)$, then 2(y
ther with (4), implies that one m
 $\frac{4}{12} (y, y+\beta) - \frac{3}{4} x$). Since $\mathcal{F} \in 2C^3$ If $y \in D(A_{m,k}^-) - D(A_{m,k}^+)$, then $2(y - \frac{3}{4}x) \in D_+(2C^3)$ which,
together with (4), implies that one may find a point
 $\mathcal{F} \in C^4 \cap 2((y, y+\beta) - \frac{3}{4}x)$. Since $\mathcal{F} \in 2C^3$, there is
u $\in (y, y+\beta) \cap A_{m,k}^-$ such that
 \mathcal plies that one may find a point
. Since $f \in 2C^3$, there is
h that
 $J = 2(u - \frac{3}{4}x)$.

$$
\mathcal{T} = 2(u - \frac{3}{4}x)
$$

Then

(5') f(y) - f(2u - y) > - ϵ according to the definition of $A_{m,k}^{\dagger}$, since $u \in A_{m,k}^{\dagger}$, $\epsilon > \frac{1}{k}$ and $0 < u - y < \beta < \frac{1}{m}$. In addition, (6') u - $\frac{3}{4}x \in F_n$ according to the definition $u \in A_{m,k}^- \subset A$. $F_{m,k} \subset A$.
Finally, we use $J \in C^2$ to choose t $\in C^1$ such that

 $\mathcal{J} \epsilon [\,t, t + \delta \,t]$ or $\mathcal{J} \epsilon (t - \delta^{\dagger} (t), t]$. We also note that (7) t + $\frac{3}{4}x - \frac{y}{2} \epsilon F_n$ according to the definition of c^1 .

Now we are ready to estimate

$$
f(y) - f(0) = [f(y) - f(2u-y)] + [f(2u-y) - f(2t - 2(u - \frac{3}{4}x))] + [f(2t - 2(u - \frac{3}{4}x)) - f(2(u - \frac{3}{4}x))] + [f(2(u - \frac{3}{4}x)) - f(0)].
$$

The first term is greater than $-\epsilon$ according to (5) and (5'). To estimate the second term we first note that since The first term is greater than $-\epsilon$ according to (5) and (5').
To estimate the second term we first note that since
 $t \epsilon c^1 \subset (0, \frac{x}{2})$ and since $y \epsilon B \subset (\frac{3}{4}x, x)$, $y - t \epsilon (\frac{x}{4}, x)$.
Then since $|u-y| < \beta < \epsilon$ and since $t \in c^1 \subset (0, \frac{x}{2})$ and since $y \in B \subset (\frac{3}{4}x, x)$, $y - t \in (\frac{x}{4}, x)$.
Then since $|u-y| < \beta < \epsilon$ and since The first term is greater than $-\epsilon$ according to (5) and (5').

To estimate the second term we first note that since
 $\pm \epsilon c^1 \subset (0, \frac{x}{2})$ and since $y \epsilon B \subset (\frac{3}{4}x, x)$, $y - \epsilon \epsilon (\frac{x}{4}, x)$.

Then since $|u-y| < \beta < \epsilon$ and sinc The first term is greater than $-\epsilon$ according to (5) and (5).

To estimate the second term we first note that since
 $t \epsilon c^1 \epsilon (0, \frac{x}{2})$ and since $y \epsilon B \epsilon (\frac{3}{4}x, x)$, $y - t \epsilon (\frac{x}{4}, x)$.

Then since $|u-y| \le \beta \le \epsilon$ and since

$$
t \in C^{2} \subset (0, \frac{x}{2}) \text{ and since } y \in B \subset (\frac{3}{4}x, x), y - t \in (\frac{x}{4}, x).
$$

Then since $|u-y| < \beta < \xi$ and since

$$
|t - 2(u - \frac{3}{4}x)| = |t - \mathcal{J}| < \xi, |(2u - y - 2t + 2(u - \frac{3}{4}x)) - (y - t)|
$$

$$
\leq 2|u - y| + |t - 2(u - \frac{3}{4}x)| < 3 \epsilon < \frac{x}{4}.
$$

It follows that

It follows that

$$
0 < 2u - y - 2t + 2(u - \frac{3}{4}x) < \frac{2}{n}.
$$

Therefore (7) implies

$$
f(2u - y) - f(2t - 2(u - \frac{3}{4}x)) > K (2u - y - 2t + 2(u - \frac{3}{4}x)) .
$$

The third term is not less than -6 since $t \in C^1$ and
 $2(u - \frac{3}{4}x) = T$ belongs to $(t - \delta^+(t), t)$ or $[t, t + \delta^-(t))$.
To estimate the last term, we use (6) or (6') to show that
 $u - \frac{3}{4}x \epsilon F_n$ which, together with $u - \frac{3}{4}x \epsilon (0, \frac{x}{4})$ gives
 $f(2(u - \frac{3}{4}x)) - f(0) > K2(u - \frac{3}{4}x)$.
Hence

Hence

$$
f(y) - f(0) > Ky - 2 \epsilon - |K| \cdot |2(t - 2(u - \frac{3}{4}x))| - |K| \cdot |2(y - u)| >
$$

> $Ky - (2 + 4|K|) \cdot \epsilon$.

Since $\epsilon \in (0, \frac{x}{16})$ is arbitrary, $f(y) - f(0) \geq Ky$, which finishes the proof of (*) .

Next we prove that $\underline{D}^+ f(0) \geq K$ by showing that $f(x) - f(0) \geq Kx$ for each $x \in (0, \Delta)$. Let $C^3 = F_n \cap (\frac{1}{8}x, x)$, and $C = 2C^3 - x$. Then $C \subset (\frac{3}{4}x, x)$ and $|C| = 2|C^5| > \frac{x}{4} - \frac{1}{16}x$. Let B be a measurable set with the properties described in (*) . Then $|C \cap B| > \frac{x}{4} - \frac{x}{8} = \frac{x}{8} > 0$, hence there is $v \in C^5$ such that $2v - x \varepsilon B$.

From $(*)$ we see that $f(2v - x) - f(0) \ge K(2v - x)$. Since $v \in F_n$ and $v \in (\frac{1}{8}x, x)$, $f(x) - f(2v - x) > K2(x -v)$. n and $v \in (\frac{7}{8})$ From (*) we see that $f(2v - x) - f(0) \ge K(2v - x)$.

Since $v \in F_n$ and $v \in (\frac{7}{8}x, x)$, $f(x) - f(2v - x) > K2(x - v)$.

Hence $f(x) - f(0) > Kx$ for $x \in (0, \Delta)$ and thus $\underline{D}^{\dagger}f(0) \ge K$.

Therefore $D^{\dagger}f(z) \ge K$ for each $z \in \bigcup_{x=0}^$ 09 Therefore $\underline{D}^{\cdot}f(z) \geq K$ for each $z\in\underset{n=1}{\sim}D(F_{n})$ AE, hence D^{\dagger} f \geq K almost everywhere in E.

Using this statement for the function $\varphi(x) = -f(-x)$, we see that $\overline{D}^+ \varphi \geq K$ almost everywhere in -E, hence $\overline{D}^+ f \geq K$ almost everywhere in E, which finishes the proof of the lemma.

Theorem 1. Let f be a real-valued function defined on the real line. Then f is differentiable at almost every point of the set

$$
D\{x \in R; \overline{f}^S(x) \leq + \infty \text{ or } \underline{f}^S(x) > - \infty\}
$$

- $D\{x \in R; \overline{f}^S(x) \leq \overline{f}^S(x) > - \infty\}$

Proof.

Let $E_n^+ = \{x \in R; \underline{f}^S(x) > -n\}$, $E_n^- = \{x \in R; \overline{f}^S(x) < n\}$ and

 $A = {x \in R; f \text{ is not symmetrically semicontinuous at } x}.$ Using the preceding lemma, we see that $DF > -\infty$ at almost every point of each of the sets $D(E_n^+) - (A \cup D(A))$, and that $\overline{D}f \leq + \infty$ at almost every point of each of the sets $D(E^{\top}_{n}) - (A \cup D(A))$. From $[2]$, Theorem 3, p. 171, we deduce that f is differentiable at almost every point of

$$
\bigcup_{n=1}^{\infty} [D(E_{n}^{+}) \cup D(E_{n}^{-})] - (A \cup D(A)),
$$

hence it is differentiable at almost every point of the set

$$
D\left(\bigcap_{n=1}^{\infty} \left(E_n^+ \cup E_n^-\right)\right) - D(A) .
$$

 Using that the existence of the symmetric derivative implies symmetric semicontinuity, we get the following corollaries.

 Corollary 1. If a function f has the symmetric deriva tive at almost every point of a measurable set $E \subset R$, then f is differentiable almost everywhere in E.

 Corollary 2. If a function f has the symmetric deriva tive almost everywhere in R, then f is measurable.

References

 [1] L. Larson: On the symmetric derivative, Real Anal. Exchange, 6/1980-81/, 235-241 [2] S. Saks: Théorie de l'intégrale, Warszawa 1933

Received October 14, 1982