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 On Absolute Peano Derivatives

 1 . Introduction

 In the recent survey article on Peano derivatives [1] , M. J. Evans and

 C. E. Weil have stated that it is not known whether Laczkovich's absolute

 Peano derivatives have the -M,M property, the Zahorski property, or property

 Z. With some further observations on the generalized Peano derivatives

 studied by the author [3], we show that, in particular, the absolute Peano

 derivatives do have those properties.

 Terminology and notations are those used in the survey article [1]

 unless otherwise stated. The letter n will be a positive integer through-

 out the paper.

 Now, we review the study in [3] . The (ordinary) Peano derivative

 of f at t is denoted as f^(t), the same as that in [1] except that the
 parentheses are put around n. The generalized n*^ Peano derivative of f

 at t as defined in [3], denoted as f^ft) with brackets around n, is just
 th f |ļ

 the ordinary (n+k) Peano derivative "here g is a k primitive

 of f in a neighborhood of t, assuming that f is continuous in that neighbor-

 hood and that there exist such k and g for which g, (t) exists. Note
 (n+Kj

 that ^£nļCt)> if i* exists, is unambiguously defined since it is independ-
 ent of the k and g above. Also note that it might happen that one of

 and exists while the other does not exist. However, if

 f is assumed to be continuous in a whole neighborhood of t, then the

 existence of f^(t) implies that f ^ (t) exists and equals f^ft). In

 particular, if f^ exists and f^ is finite in an interval, then f^j

 exists and equals f^ in that interval. The above statement fails to hold
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 when the parentheses and brackets are interchanged. In fact, even more

 can be said. It can happen that exists and is finite on an interval

 while fj.nļ is not of the form on the interval for any integer i. This
 follows from the following two facts: (i) for each Laczkovich absolute

 *

 Peano derivative f on a compact interval there exist a function g and a
 it

 positive integer i such that f = g^j on the interval (cf. corollary to
 *

 theorem 7 in [ 3 J ) ; (ii) there exists a function f such that f exists on
 ft th

 an interval while f is not an (ordinary) j Peano derivative on that

 interval for any integer j (cf. theorem 9 in [2]). Thus, the following

 results proved in [3] are genuine generalizations of those known for the

 exact Peano derivatives.

 Theorem A. Let f be a function defined on [a,bļ such that f, , exists and

 is finite on [a,b] . Then in the interval [a,b] one has the following:

 (I) f^nļ is of Baire class one;

 (II) f^nj has the Darboux property;

 (III) f ^ has the Denjoy property;

 (IV) if fļ-jļj bounded above or below in a non-degenerated interval,
 then f^ exists and equals fr , there.

 Inj ,

 Here we will show further that f ^ has the -M,M property (cf. the

 O'Malley-Weil's Oscillation Theorem in section 2), the Zahorski property

 and property Z (cf. Theorem 4 and its corollary in section 3). It then

 follows from (i) stated above that every Laczkovich' s absolute Peano deriva-

 tive has those properties, too.

 It is helpful to note that if f ^ (t) exists and if g is a kth pri-

 mitive of f in a neighborhood of t, then g[n+kj (t) exists and equals f[nj(t).
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 2. The -M, M property.

 We state the -M,M property for the generalized Peano derivatives as

 O'Malley-Weil 's Oscillation Theorem: Suppose that f ^ exists and is finite

 on the interval 1^, and let M ^ 0. If f attains both M and -M on IQ,
 then there exists a subinterval I of I_ such that fr -, = f^ on I and f^

 0 [nj

 attains both M and -M on I.

 For the (ordinary) Peano derivative f^ and for the approximate deriva-
 tive f , the results were proved by OłMalley and Weil in [6]. Their long

 ap

 and intricate proof for the case can be carried over for the generalized

 fj-nj and will not be reproduced here. However, to make their argument work

 for the generalized fļ-nj> besides those results stated as Theorem A in the
 introduction, we need to prove the following two results.

 Theorem 1. Suppose that f^ exists and is finite on [a,b] and f^ exists
 and is finite nearly everywhere on [a,b]. If is Lebesgue summable

 on [a,b], then f^ is absolutely continuous on [a,b] and

 f[n-Uth) * Vl](a) * ^afWit}dt-

 Theorem 2. Suppose that f^ exists and is finite on a neighborhood of

 t. If fj-nj(t) exists and is finite, then for each positive number e (say,
 < 1) there exists a positive number 6 such that for any x with

 0 < ļ x- 1 1 < 6/2 there exists x^ and x2 with x^ < x < and satisfying

 the following properties:

 (1) ¡x. -x| < e|x-t| for i = 1,2,

 and

 lf[n-Utz) * Vu(t) * < el1"1'
 for z in a set of positive measure contained in [xļ,x], and in a set

 of positive measure contained in [x^].
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 Note that here for convenience we use the convention that "fj-Qj(t)

 exists and is finite" means "f = f^ is continuous not only at t but also
 in a neighborhood of t." Also, if the domain of the function concerned

 is a compact interval, then only the suitable one-sided case should be

 understood at each of the end points of the interval.

 Theorem 2, being closely related to Weil's property Z, will be con-

 sidered in section 3. Here we will give theorem 1 a proof. First, we

 need refinements of some results on ordinary Peano derivatives due to Sargent

 in [8]. To be precise, we will start with some convenient notations.

 Let m be a fixed non- negative integer, and let F be a function such

 that F (t) exists and is finite. (Note that for m = 0 this means that

 F is continuous on a neighborhood of t by our convention.) Then define

 the m approximation polynomial in x at t as

 pm00 - Pm(F;t;x) = Ei=^(x-t) (t)/i! ,

 tVi
 and the m remainder as

 RmCx) = Rra(F;t;x) = FW - Pffl(x)

 for any x in the domain of F. Furthermore, the (generalized) mth Peano

 O-difference of F from t to x is defined as

 emCx) * em(F;t;x) = RmCx)m!/(x-t)m

 when x ^ t, and e (t) = 0. It is clear that is continuous at t when
 m m

 and only when F(m)^* *n Seneral> it may happen that even
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 lim^e^Cx) does not exist. Thus, we need to generalize the O-difference for

 our general case. First, we prove the following simple fact.

 Lemma 1. Let exist and be finite, k a positive integer. Then for
 f Vi

 any two k primitives, G and H, of F in a neighborhood of t, one has

 Êm+k^G't'x-' = em+křH;t;x^

 for all X in that neighborhood.

 Proof. Note first that it follows from the definition of the generalized

 Peano derivatives that

 G[k+i](t) = H[k+iļCt) = F[i](t)

 for i = 0,1,2, m. Hence

 Rm+kCG;t;x) - Rm+k(H;t;x) = Rk(G-H;t;x) .

 As G^ = H^ = F on a neighborhood of t, (G-H) (x) is a polynomial in x

 of degree less than k. Hence R^CG-H^jx) = 0 for x in that neighborhood

 by the Taylor remainder theorem. Then

 Rm*kiG;t:i0 *

 whence

 £m+k^G;t;x^ = em+k^H;t;x^'
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 o o
 The number t or e in lemma. .1 .Is then unambiguously
 k. th

 denoted as e (F;t;x) arid is called the n Peano k-dif£erence of F from
 31

 t to X. Note that it follows from the definitions involved that if

 If

 exists and is finite, then there exists an integer k such that e (F;t;x),

 as a function of x, is continuous at x = t (i.e. lim em(F;t;x) = 0), and

 furthermore F[m+ļ](t) exists if and only if there exists a non-r.egative
 integer k such that

 limx-*-t em^F;t'x-' 0,1+k+1)/ (x-t)

 exists and in this case this limit is F, , -.(ti. v
 [m+1] , v -

 Now, we come to prove the following basic result.

 Lemma 2. For any pair of non-negative integers m,k, there exists a positive

 number A such that
 m

 (3) lr[»]'d'-FWMl

 whenever F is a continuous function defined on the interval [c,d] such

 that F[m]^ and F[m]^ exist and are finite, where w^(F; [c,d]) is defined

 to be the maximum of { sup |e^(F;c;xļ m | , sup |ek(F;d;x) m | }. c<x<d m c<x<d m

 Proof. The assertion is trivial when both m and k are zero by taking Aļ to

 be any real number not less than 1. Thus, we assume that m + k > 1.

 Let F be any continuous function such that a>k(F;[c,d]) makes sense

 and (without loss of generality) is less than +°°, and let G be a kth primitive

 of F on [c,d] . (Note that for k = 0 this means that G = F + C on [c,d]

 for some constant C.) For convenience, denote n - m + k, and we will prove
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 the following equality:

 (4) G(n](d) - G[n](c) . Er20(-l)n-rQïîten(c;r).En(d;r)],

 where

 en(c;r) = e°(G;c;c+rh)

 en(d;r) = e®(G;d;d-rh)

 with h = (d-c)/n. Note that

 en(c;0) ■ en(d;0) = 0,

 and for 0 < r £ n,

 en(c;r) = [G(c+rh)-Zi^0Crh)iG[i] (c)/i!]n!/(rh)n,

 en(d;r) = [GCd-rhi-Z.^C-rh^G^ (d)/i! ]n!/ (-rh)n.

 Since h = (d-c)/n and ö ■ w for 0 <_ r £ n, one has

 ^0(-l)n"r(")[G(c+rh)-C-l)nG(d-rh)] - 0.

 Hence the sum on the right hand side of (4) is equal to
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 By interchanging the summation order, one has

 R ° ^ Ex"oÍBÍE<:-liÍ+nG[i;|Cd)-G[.JCe>3hi/i!l,

 where

 B* - SrH0(-l)n"rQr1 (for i = 0,1,2, •••, n)

 and is known to be equal to n! when i = n, and to 0 when i = 0,1,2, ••*, n-1.

 Hence one has

 R" B"EC-l>2nGEn3tdJ-Gtn]Cc))h"/n!

 = ~ G[n]^' tlle le^ hanc* s^e of (4) •

 Note that G^j(a) = F ļ-mj C«) for a = c and for ct = d,
 and

 en(c;r) = eJļ(F;c;c+rh),

 en(d;r) = e¡¡;CF;d;d-rh).

 Hence, by applying the triangular inequality, one obtains from the equality

 (4) the required inequality (3) by taking A* m = 21 n.ln) rn/n!, which de- m r= u 'r/

 pends only on the integer n = m + k. The proof is hence completed.

 Theorem 3. Let m ^ 0 and let F be a function such that Fr , exists and is
 lmJ ,

 finite on [a,b]. If exists and is finite nearly everywhere on a
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 set Ec[a,b], then is (ACG) on E (by which we mean that E can be written

 as a union of countably many sets on each the function F^j is absolutely
 continuous in the wide sense, i.e. AC as given Saks' book [7]).

 Proof. Since a function is AC on every singleton set, one assumes, without

 loss of generality, that exists and is finite everywhere on the set

 E. For each positive integer k, let E be the set of all t in E such that

 F[m+1]00 = lim^t ^(F;t;x)(in+k+l)/(x-0,

 k
 and for each positive integer p and each integer i, let E . be the set of

 P# 1

 all t in Ekn[^i,
 such that

 le¡¡(F»t»t+h)l < p'h'

 whenever t + h is in [a,b] with 0 < ļhļ < 1/p. Then one sees easily that

 E = uE . , where the union is taken through all integers k, p, i involved.
 P»1

 v

 It suffices to show that Fr , is AC on each E ..To see this, let c,d be [m] , p,i
 v

 in E . with c < d. Then, for a = c and d, one has
 P»i

 |eJļ(F;ct;x)| < p|x-a| < p(d-c)

 for all X in (c,d), and hence

 ^(F;[c,d]) < p(d-c).

 Thus, by lemma 2, we conclude that
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 ¡W^W01' .;.pA>-cl

 k k
 for all c,d in E and hence it follows that Fr , is AC on E completing ť p,i' [ra] , on p,i' ť
 the proof.

 Lemma 2 and theorem 3 are essentially due to Sargent in [8] for the

 ordinary Peano derivatives on intervals. Our proof is a simple adaptation

 to our hypothesis of the proof given in [8]. The details in proving the

 equality (4) were carried out here to indicate the algebraic identities in-

 volved. To prove theorem 1, we do not need any more refinements of the

 other results in [8]. Instead, we need the following result.

 Lemma 3. Let G be a function which is of Baire class one, has the Darboux

 property and satisfies Lusin's condition (N) on [a,b]. Then G is a constant

 on [a,b] provided that G'(x) = 0 for almost all x at which G'O) exists and

 is finite.

 If G is continuous, this lemma is a consequence of the monotonicity

 theorem in Saks' book [7], page 282. The general case follows from a

 generalization of that monotonicity theorem recently presented in [4].

 We omit the details here. Now, we are in a position to give a proof for

 theorem 1.

 Proof of Theorem 1. Let f^j be Lebesgue summable on [a,b], and let K

 be an indefinite Lebesgue integral of f^ on [a,b]. Then K is AC on [a,b]

 and K' = f^ almost everywhere in [a,b]. Note that f^ ^ is of Baire
 class one, has the Darboux property by (I) and (II) in Theorem A, and is

 (ACG) by Theorem 3. Hence the function G = K - fr , , also has all these
 in- 1] , ,

 23 7



 properties since K is AC on [a,b]. It is well-known that a continuous (ACG'

 function (i.e. an ACG function as defined in Saks' book) has Lusin's

 property (N) . A simple check of the proof in Saks' book [7], page 225,

 shows that the continuity is superfluous. Hence our (ACG) function G

 here also satisfies Lusin's condition (N) on [a,b]. Now, we show further

 that G' (x) = 0 for almost all x at which G'(x) exists and is finite. To

 be precise, let

 S = {x:x in [a,b] and G'(x) exists and is finite)

 T = (x:x in la,b] and K' (x) exists, is finite, and equals f^fx)}
 U = SnT.

 Then |u| = I S I since ļ T | = b - a. Let x be in U. One has that both G'(x)

 and K' (x) exist and are finite, so that exists and

 G'(x) = K' (x) - (f j-^jj) ' (x)

 ■ f[n]W *

 But then one shows that (*[„_!])' 00 = f[n]W' so that we have G'^ = °
 for all x in U. Therefore, it follows from lemma 3 that G is constant on

 [a,b] and hence the conclusion of theorem 3 follows.

 3 . Property Z .

 We will call a function having property Z a Weil function. Thus, g

 is a Weil function on an interval I if for each e > 0 and for each t in I

 one has

 (5) lim^lixtx in I± and lg(x)-g(t)| > + distft,!^ = 0
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 whenever {i^} is a sequence of subintervals of I and g > g(t) on 1^ or

 g 5, g("t) on 1^ for each i, and {i^} converges to t as i ^

 Theorem 4. Let f be a function such that f^ exists and is finite on an

 interval I. Then g = ^[n] a function on I.

 When g = f^ or fļp> the result was proved by C. E. Weil in [9], A

 proof for the case 2 = f[n] can be obtained by following the line of proof
 given there for the case g = using (IV) listed in Theorem A

 here in the introduction and the lemma in [9], Here, we will give a proof

 using the following result due to J. Marik in [5], which he has used to

 give a proof for B. S. Babcock's result that approximate Peano derivatives

 are Weil's functions.

 Theorem B. (Theorem 1, Marik [5]). Let m be a positive integer and let G

 be a function defined in a neighborhood of the point t such that the mth

 approximate Peano derivative G(m) (t) exists and is finite, and define
 m

 QW s 2fl_0(x-t) **(£,) ,ap^^' ^or a11 real number x. Let £ > 0 and tļ > 0.
 Then there exists a 6 > 0 with the following properties:

 (a) If J is a subinterval of (t-6, t+<5), j an integer with 0 < j < m

 and if either on J or G^ > on J, then

 (6) I (x:x in J andjG^ (x)-Qf;i:) (x) ļ > elx-t^} I < n[|j|+dist(t,j)].

 (b) If J is any subinterval of (t-<5, t+6), then the inequality (6) holds

 for j = 0.

 2.39



 Proof of Theorem 4. Let e > 0 and t in I be fixed, and let í I ^ ł be a se-

 quence of intervals satisfying the conditions described in the definition

 of a Weil function. To prove (5), it suffices to shov; that for each n > 0,

 there exists an i^ such that

 (7) ļ(x:x in Iļ and|g(x)-g(t) ļ > e] | < nCllJ+disttt,^))

 whenever i >_ i^. Now, note that since g(t) = fj-nj(t), there exists a positive
 t' Vi

 integer k such that for a k primitive G of f in a neighborhood of t, one

 has f[n](t) = G(n+k)(-t) (= G (n+k) , ap ^ aPP1?1"« the°rem B t0 the
 function G with m = n + k we have a 6 > 0 such that properties (a) and (b)

 hold. Since f^^j ^ f (^) on I^ or 5 ^[nj Iļ implies that
 f(n) _ £ on by (IV) in theorem A, and since f^ = wherever

 f^n^ exists, it follows from (6) with j = m that (7) holds when i^ is large

 enough to insure that c (t-S, t+6) for all j _> i^. Such an Íq exists

 because {i^} converges to t as The proof is hence completed.

 Corollary. If fļ-nj exists and is finite on an interval, then g = fjnj is
 a Zahorski function there, i.e. for each open interval I and for each t

 in g-1 (I) one has

 lirai-w! Ij. l/dist (t,Iļ) = 0

 whenever (iJ is a sequence of intervals converging to t and ļling"1(I)ļ = 0

 for each i. (Note that the last equality was missed in the definition 2.1

 in [1].)
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 Proof. This follows from theorem 4, and (II) and (III) in theorem A since

 a Weil function with both Darboux and Den joy properties must be a Zahorski

 function (see the Remark and the Theorem in [9]).

 v"
 Following Marik* s step once more, we use theorem B to prove the following

 result (cf. theorem 3 in [5] , where the case for approximate Peano deriva-

 tive was considered), of which theorem 2 in section 2 is a simple corollary.

 Theorem 5. Let f be a function defined on a neighborhood of the point t

 such that f (t) exists and is finite, and let 0 £ i _< n. Then for each

 e > 0 and each ri* > 0 there exists a 6 > 0 with the following property: If

 L is a subinterval of (t-<S, t+6) such that f^j exists and is finite on L
 and that

 lf[i] C*)-Pn(i)(*)l lelx-tl11-1

 for almost all x in L, then

 |l| < n*dist(t,L),

 where Pn(x) = Pn(f;t;x) = z"=0(x-t)Af (t)/Ä! , and, of course, P^1-1 denotes
 the ordinary i^ derivative of P .

 Proof. Let G be as in the proof of theorem 4, i.e. = f on a neighborhood

 of t and f ^nļ (t) = Gfn+jc)(t)' Applying theorem B to the function G with

 m = n + k, and with r) = f|*/(l+Ti*), one obtains a 6 > 0 having the properties

 stated there. Let L be an interval as stated above. Note that Gr» , (t) v ' =
 [£+kj , v '
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 f [£ļ (t) fox % = 0, 1, 2, •••, n, so that one has Pn^(x) = Q^*+^(x).

 Now, since " £[i] wherever f^ exists, one has

 |G[i+k]W -Q(l+k)(x)l t. elx-t|n"1 = e|x-tr_(l+k)

 almost everywhere on L. Now, if Ln(t,°°) is non-empt)^ set J = Lnft,00), and

 otherwise set J » Ln(-~,t). Then, using the Denjoy property and the Darboux

 property of the function CG-Q) j¿+k] anc* f°ll°winS argument in the

 proof of lemma 4 in [5], one proves that ^ exists and either G >

 qCi+k) on j or G(1+10 < Q(1+k) on J. Hence, by the inequality (6) with

 j = i + k, we have |j| < n C ! Jļ+dist (t,J)) whence |j| < n*dist (t,J) . In

 particular, dist(t,J) > 0 so that J - L. Thus ļ L | <_ n*dist(t,J) , completing

 the proof.

 We end this note by giving a

 Proof of Theorem 2: Applying Theorem 5 with n* = e/2, i = n - 1, one ob-

 tains a 6 > 0 satisfying the property stated there, and such that ^ j-n_ļ]

 exists and is finite on [t-5, t+5] . Let x be such that 0 < ]x-t| < 5/2.

 Then we will show that there exist x^ and x2 with 1x1-ti < 5 for i = 1, 2,

 and x. < x < x9 ^ such that the property (1) (stated in theorem 2) holds 1 ^

 and also |l| > |dist(t,L) = n*dist(t,L) for L = [xj.x] and for L = [x,x2].

 Hence it is impossible to have |f [n_n (z)-P¿n"1} 00 I > e|z-t| for almost

 all z in L, so that the property (2) (stated in Theorem 2) must hold, too.

 Thus, it remains to show the existence of and x2< For definiteness,

 let 0 < x - t < 5/2. (The argument for the other case -6/2 < x - t < 0

 is similar.) Then the existence of xļ follows immediately by solving for

 xļ the following inequalities x - xļ < e(x-t) and x - xļ > yO^-t). The
 solution set is the non-empty interval (et+(l-e)x, + ^x) included in

 (t,x). Similarly, x2 can be any number in the non-empty interval
 242



 ((l-e)x + e(2x-t), + ^(2x-t)) (included in (x, 2x-t)) which is the

 solution for X2 of the inequalities x^ - x < e(x-t) and x^ - x > -j(x-t).
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