Real Analysis Exchange Vol. 8 (1982-83)

G. Petruska, Department I of Analysis, Eotovs Loránd University, Budapest, Muzeum krt. 6-8, Hungary H-1088

An Extension of the Darboux Property and Some Typical Properties of Baire-1 Functions

We denote by \mathcal{A} , Λ , \mathcal{DB}^1 , \mathcal{B}^1 the set of approximately continuous functions, derivatives, Darboux Baire 1 functions and Baire 1 functions all defined on [0,1]. We state our results for the corresponding bounded classes \mathbf{bA} , $\mathbf{b}\Lambda$, \mathbf{bDB}^1 , \mathbf{bB}^1 ; all these form Banach spaces with the norm $\|\mathbf{f}\| = \sup |\mathbf{f}|$ and a typical property is understood as such that holds for a residual subset in one of these spaces. The results we list here were proved in [1], [2], [3]. In the chart below we deal with the range $R_{\mathbf{f}}$, the set $A_{\mathbf{f}}$ of points of approximate continuity, the set $C_{\mathbf{f}}$ of continuity points, the level sets $\mathbf{f}^{-1}(\mathbf{y})$ the "reduced" ranges $f(A_{\mathbf{f}})$, $f(C_{\mathbf{f}})$ and "cl" stands for closure. μ denotes arbitrary finite Borel measure on [0,1], $\mu_{\mathbf{c}}$ is continuous Borel measure and λ denotes Lebesgue's measure.

For instance, assertion 53 is to be read as follows: for any given finite Borel measure μ the functions $f \in DB^1$ satisfying $\mu(cl f(C_f)) = 0$ form a residual subset in bDB^1 .

62

 λ measure for any f $\boldsymbol{\epsilon} \Delta$ and α , β real numbers.

(d) 42 is of course stronger than 32 and actually it is not a typical result; every derivative $f \in \Delta$ satisfies $f(A_f) = R_f$. In particular, this gives and extension of the well known Darboux property: a derivative takes every intermediate value even if f is restricted to A_f .

(e) In the 6th row c denotes the power of continuum.

(f) We have no results on the typical behaviour of $cl f^{-1}(y)$ except for $b\mathcal{B}^1$.

(g) It is also open wether 91, 92, 93 hold for arbitrary continuous measures $\,\mu$.

References

- [1] A.M. Bruckner, G. Petruska, Some typical results on bounded Baire 1 functions, Acta Math. Acad. Sci. Hung., to appear
- [2] J. Ceder, G. Petruska, Most Darboux Baire 1 functions map big sets onto small, Acta Math. Acad. Sci. Hung., to appear
- [3] G. Petruska, Derivatives take every value on the set of approximate continuity points, Acta Math. Acad. Sci. Hung., to appear

	ъA	b∆	bDB ¹	b \mathcal{B}^1
cl R _f	11	12	13	14 μ=Ο
R _f	21	22	23	24 μ=Ο
cl f(A _f)	31	32 =R _f	33 μ=Ο	34 μ=Ο
f(A _f)	41	42 =R _f	43 μ=0	44 μ=Ο
cl f(C _f)	51 µ=0	52 μ=Ο	53 μ=0	54 μ=0
f(C _f)	61 C	62 C	63 C	64 C
° _f	71 µ=0	72 μ=0	73 μ=Ο	74 μ=0
\forall y, cl f ⁻¹ (y)	81 ?	82 ?	83 ?	84 ^μ c ⁼⁰
$\forall y, f^{-1}(y)$	91 nowhere dense $\lambda=0$	92 n.d., λ=0	93 n.d., λ=0	94 ^µ c ⁼⁰

Some more comments.

- (a) Blank spaces represent trivial assertions.
- (b) 14 obviously implies i4 for i \leq 5.
- (c) 32 is an easy consequence of Denjoy's theorem

stating that $\{x : \alpha < f(x) < \beta\}$ either empty or has positive