Real Analysis Exchange Vol. 8 (1982-83)

W. Wilczyński, Institute of Mathematics, University of Łódź, 90-238 Łódź, Poland.

A Generalization of Density Topology.

The similarities and differences between measure and category have been studied by many mathematicians. A good deal of information about problems of this kind is collected in the excellent book by Oxtoby [3]. According to my best knowledge there is not in the literature a good concept of the category analogue of a density point of a set. The notion of a qualitative point, which has been used from time to time when studying derivatives ([2]) or cluster sets ([6]), does not appear to be very delicate (see for example [1], p. 166).

This note attempts to formulate a concept of a \mathcal{J} -density point of a set for an arbitrary σ -ideal \mathcal{J} , which will reduce for the σ -ideal of null sets to the notion of a density point and which will give for the σ -ideal of meager sets a quite satisfactory and delicate new notion, which can be considered as a starting point for studying "category" approximate continuity, differentiability and so on. Here we shall present only some basic definitions and properties. More detailed exposition will be included in [7] (general σ -ideals) and [4] (the σ -ideal of meager sets).

Let (X, S, m) be a finite (or σ -finite) measure space. A sequence $\{f_n\}_{n \in \mathbb{N}}$ of S-measurable real functions defined on X converges to a function f if and only if every subsequence $\{f_{m_n}\}_{n \in \mathbb{N}}$ of $\{f_n\}_{n \in \mathbb{N}}$ contains a subsequence $\{f_{mpn}\}_{n \in \mathbb{N}}$ con-

16

verging to f almost everywhere. This well known fact allows us to introduce a generalization of the notion of convergence in measure of sequences of measurable functions (see [5]): Let (X, \$\$) be a measurable space. Let $\mathcal{I} \subset \$$ be a proper σ -ideal. We shall say that some property holds \mathcal{I} -almost everywhere (\mathcal{I} -a.e.) if and only if the set of points which do not have this property belongs to \mathcal{I} . We shall say that the sequence $\{f_n\}_{n\in\mathbb{N}}$ of \$\$-measurable real functions defined on X converges with respect to \mathcal{I} to the \$\$-measurable real function f defined on X if and only if every subsequence $\{f_m\}_{n\in\mathbb{N}}$ of $\{f_n\}_{n\in\mathbb{N}}$ contains a subsequence $\{f_m\}_{n\in\mathbb{N}}$ converging to f \mathcal{I} -a.e.. We shall use the denotation $f_n \xrightarrow{\mathcal{I}}_{n \to \infty} f$.

Observe that the definition of a density point of a set can be formulated using only convergence in measure in the following way: 0 is a point of density of A if and only if the sequence $\{\chi_{(n\cdot A)} \cap [-1,1]\}_{n \in \mathbb{N}}$ of characteristic functions (where $n \cdot A = \{nx: x \in A\}$) converges in measure to 1 on the interval [-1,1]. Now it is clear how to define a notion of \mathcal{J} -density point for an arbitrary σ -ideal \mathcal{J} :

Def. 1. We shall say that O is a \mathcal{T} -density point of a set $A \subset R$ if and only if $\chi_{(n:A)} \cap [-1,1] \xrightarrow{\mathcal{T}} 1$.

Similarly one can define right- or left-hand \mathcal{I} -density at 0, and 0 is a \mathcal{I} -dispersion point of A if and only if the limit is 0.

Obviously we can take some interval [-a,a], a > 0, instead of [-1,1]. Other modifications are also possible (see [7] or [4]).

17

Def. 2. We shall say that x_0 is a \mathcal{I} -density point of A if and only if 0 is a \mathcal{I} -density point of A - $x_0 = \{x-x_0: x \in A\}$.

In the sequel we can consider only sets having the Baire property as the σ -algebra § and \mathcal{J} will always denote the family of meager sets on the real line R. If $A \triangle B \in \mathcal{J}$ (Δ means the symmetrical difference), then we shall write A^B . Denote $\Phi(A) = \{x \in \mathbb{R}: x \text{ is a } \mathcal{J}\text{-density point of } A\}$.

Th. 1. for every A,B cg

- 1) $\Phi(A) \sim A$,
- 2) if A~B, then $\Phi(A) = \Phi(B)$,

3)
$$\Phi(\phi) = \phi, \Phi(R) = R,$$

4)
$$\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$$
.

Remark. From 1) it follows that if $A \in S$, then $\Phi(A) \in S$.

Th. 2. The family $\mathfrak{T}_{\mathcal{T}} = \{ \Phi(A) - N: A \in S, N \in \mathcal{T} \}$ is a topology on the real line.

The topology $\mathfrak{T}_{\mathcal{J}}$ will be called the \mathcal{I} -density topology (or qualitative density topology).

Remark. It is not difficult to observe that $\mathfrak{T}_{\mathcal{T}} = \{ A \in S: A \subset \Phi(A) \}.$

Th. 3. There exists an open set $E = \prod_{n=1}^{\infty} (a_n, b_n)$ such that $b_n 0$, the intervals (a_n, b_n) are pairwise disjoint and 0 is a *I*-dispersion point of E.

From the above theorem it follows that the set having x_0 as a \mathcal{I} -density point need not be residual at any neighborhood of x_0 . This fact we had had in mind writing earlier that this notion is a delicate one.

Th. 4. \mathfrak{T}_{T} is T_{2} but not T_{3} .

We conclude this note with some information on *J*-approximately continuous functions.

Def. 3. A function $f: \mathbb{R} \to \mathbb{R}$ is called \mathcal{I} -approximately continuous at x_0 if and only if for every $\varepsilon > 0$ the set $f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon))$ has x_0 as a point of \mathcal{I} -density.

Def. 4. A function $f: R \rightarrow R$ is called $\mathcal{I}_{-approximately}$ continuous if and only if for every interval (y_1, y_2) the set $f^{-1}((y_1, y_2))$ belongs to $\mathfrak{T}_{\mathcal{I}}$.

In other words, a \mathcal{T} -approximately continuous function is a continuous function from (R, $\mathfrak{T}_{\mathcal{T}}$) into R equipped with the natural topology (and is \mathcal{T} -approximately continuous at every point).

Th. 5. A function f has the Baire property if and only if it is \mathcal{T} -approximately continuous \mathcal{T} -a.e..

Th. 6. If $f:R \rightarrow R$ is \mathcal{T} -approximately continuous, then it is of Baire class 1 and has the Darboux property.

REFERENCES

- [1] A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., No. 659, Springer-Verlag, Berlin, Heidelberg, New York 1978.
- [2] S. Marcus, Sur la limite approximative qualitative, Com. Acad. R. P. Romine 3(1953), pp. 9-12.
- [3] J.C. Oxtoby, Measure and category, Springer-Verlag, New York. 1971.
- [4] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, A category analogue of the density topology, in preparation.
- [5] E. Wagner, Sequences of measurable functions, Fund. Math. CXII (1981), pp. 89-102.

- [6] W. Wilczyński, Qualitative cluster sets, Coll. Math. XXXII (1974), pp. 113-118.
- [7] W. Wilczyński, S. Wroński, A generalization of density topology, in preparation.