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 ON FULL COVERING PROPERTIES

 The notion of a Vitali cover plays a fundamental role

 in the study of derivatives; a simpler but similar role

 may be played by the notion of a full cover. A collec-

 tion of closed intervals is said to be a Vitali

 cover of a set X if at each point x in X there are in

 £ intervals containing x of arbitrarily small
 length; such a collection is said to be a full cover

 if moreover at each point x there is a positive number

 ô(x) such that £ includes every interval containing x

 and with length smaller than 6(x). Both of these

 concepts are local in nature and both possess proper-

 ties that are global. The celebrated theorem of Vitali

 provides an important global property for the former

 concept. For the full covers a considerably simpler

 property is available; if t is a full cover of an

 interval [a,b] then Č contains a partition of every

 subinterval of [a,b].

 To illustrate how such a feature may be used

 consider that we are given a function f on [a,b]

 whose lower extreme derivate is everywhere positive.

 Then it is easy to check that the collection of all

 intervals I for which f(I) > 0 is a full cover of [a,b]j
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 thus given any subinterval J of [a,b] we may extract

 from this cover a partition {1^} of J and obtain
 f(J) = S > 0 from which we can conclude that

 f is strictly increasing on [a,b]. This then gives a

 particularly revealing proof of a well-known fact.

 This idea of extracting partitions from full

 covers has not been much exploited, although it can

 be traced back at least to the beginnings of this

 century (cf. Goursat [6]) and it has played a central

 role in certain theories of integration (eg. Henstock

 [7]). In this note we discuss several types of full

 covers, the partitioning properties of such covers,

 and provide a few applications to the proof of mono-

 tonicity theorems. A more general and formal presen-

 tation of these considerations will appear elsewhere

 ([12], [13] , and [14]) but it has seemed appropriate

 to communicate here some of the simpler aspects in

 a more immediate and elementary form.

 §1. The ordinary derivative. Certain of the properties

 of the ordinary derivative and the ordinary extreme

 derivates lead one immediately to a consideration of the

 following notion.

 DEFINITION 1. A collection C of closed subintervals

 of an interval [a,b] is said to be an ordinary full

 cover of [a,b] if to each x in [a,b] there is a number

 6 (x) > 0 such that every interval I with x ç, I and

 ul < ô(x) belongs to Č .
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 Such a cover arises in a number of obvious ways :

 for example if £' is the lower extreme derivate of a

 function f on an interval [a5b] then the collection

 {I : f(I) > (f, 1 (x) - e)|l|i X € I] would necessarily

 be a full cover of [a,b] for any e > 0 . The partition-

 ing property available for such covers is immediate and

 easy to prove.

 LEMMA. 1.1 If c is an ordinary full cover of an interval

 [a,b] then £ contains a partition of every subinterval

 of [a,b] .

 PROOF. The argument follows a familiar compactness

 theme. If t fails to contain a partition of some

 interval J then by repeated bisection of J there must

 be a sequence {Jn} of subintervals of J with |Jn|-» 0

 and J"n+ļ c Jn> with the property that t contains no

 partition of any interval Jn . Let xQ be in the

 intersection of the sequence {Jn} and let ô(Xq) be
 that positive number promised in definition 1. Then

 for large enough n the intervals Jn have ļJn|<fi(x0)
 and xn € . That means that £ contains these 0 n

 intervals and so trivially partitions them. This

 contradiction establishes the lemma.

 We move now to a few simple consequences of this

 lemma.

 (1.2) If f 1 (x) ^ 0 everywhere on an interval [a,b]

 then f i¿ nondecreasing on that interval.
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 To prove this we merely collect for any e > 0 those

 intervals I for which f(I) > -e|I| • If J is any

 subinterval of [a,b] then this collection contains

 a partition ... , In) of J giving f(J) =
 2f(Iļ) > -Ze|IjJ = - e I J 1 • As e > 0 is arbitrary it
 follows that f(J) 0 for any subinterval of [a,b]

 and hence f is nondecreasing as required.

 (1.3) If f ' (x) 0 a.e. and f ' (x) > everywhere in

 an interval [aab] then f is nondecreasing on

 that interval.

 Let XQ = {xç[a,b] : £ 1 (x) < 0). Then since |XQ| = 0
 there is for any e > 0 a sequence of open sets {Gn)

 such that Gn 2 XQ and |Gn| < e/n2n. Define the
 following collections of intervals:

 £0 = {I : f(I)>-e|I|) and

 Cn = {.I : f(I) > -n|l| , I = Gn}

 for n = 1,2,35

 If we set C= Ö £ then it is easy to checK
 n=0 n

 that C is an ordinary full cover of [a,b] . Let J be

 an arbitrary subinterval of [a,b] and let

 {I^IgjIy ••• i Im} be a partition of J contained
 in Č . We may compute the sum f ( 1^ ) by con-
 sidering separately the sums 2n for intervals 1^

 from Cn if there are such. This gives
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 f(J) -Z& f(Ii) = 2nīo t J

 > -e Sq I1! I " 2n=l ' Sn n ' I.-'

 > -e|J| - EnĪ! n(€/n2n)

 > -e I J| - c .

 Again as g > 0 . is arbitrary this gives f (J) 0

 and the result follows.

 Further generalization is possible in (1.3) by

 permitting an exceptional set in the f 1 (x) > -<*> re-

 quirement and adding hypotheses on f . A proof only

 requires adding more intervals to C. so as to have

 again an ordinary full cover.

 §2. The approximate derivative. If f is a measurable

 function on an interval [a,b] then we will write f' _
 cip

 for the lower approximate derivate of f . A completely

 analagous theory for this derivative is available. The

 notion of an approximate full cover can be developed

 and a partitioning property proved; applications are

 then immediate for the proofs would be unchanged.

 DEFINITION 2. A collection <t of closed subintervals

 of an interval [a,b] is said to be an approximate full

 cover of [a5b] if to each x in [a,b] there is a

 measurable set A c [a5b] that has left and right
 OC

 density 1 at x such that every interval I with

 x € I and with endpoints in A belongs to £ .
 X
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 Note that any ordinary full cover is also an

 approximate full cover but not conversely, and that

 this latter concept would play the same role in the

 study of the approximate deriva tes as the former

 plays in the study of the ordinary der iva tes. The

 partitioning property is identical but this time

 the proof lies much deeper and cannot be obtained by

 a simple compactness argument.

 LEMMA. 2.1 If £ Ls_ an approximate full cover of an

 interval [a,b] then £ contains a partition of every

 subinterval of [a,b] .

 PROOF. We follow a familiar category argument. Let

 {A : X ç [a,b]) be given as in definition 2 for

 the collection £ and write

 En = (X 6 £a>b] : ļAxn[x,x+t]ļ > t/2, |Axn[x-t,x] |>t/2,

 for all 0 < t < 1/n} .

 We must then have Q E = [a,b] . Letteî be the
 n=l n

 collection of all sub intervals of [a,b] such that

 Č, contains a partition of every further subinterval ;

 write G = u { int I : I Ç Jl) and F = [a,b] ' G. It

 is easy to check that F is closed, that every interval

 complementary to F belongs to «5 , and that (therefore)

 F is either perfect or empty. The lemma is proved

 if we are able to show that F = 0 .
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 Suppose contrary to the lemma that P is nonempty;

 then by Baire's theorem (Saks [lljp.5^]) there is a

 nonempty portion (c,d)nF such that some set En is
 dense in (c,d)nF. We may assume that d - c < 1/n .

 We shall show then that [c,d] belongs to and since

 this is impossible the lemma is proved. Let [ça rj ]

 be a sub interval of [c,d]. If (ç, ri) contains no

 points of P then certainly there is a partition of

 [Çí T)]s on the other hand if (Çín)nF ^ 0 we may write

 = inf (?,Ti)nF and ri1 = sup (§3r))nP . As En is

 dense in Fn(c,d) there are points of En in (ç^íT)^)
 arbitrarily close to and ri^ .

 Let 6 > 0 be chosen so that if 0 < t < 6 then

 lAÇln[?l^l+t]l > ty/2 anā 1% I > ť/2

 and then select and ^2 ao

 §2 € (§i>?i+&)nEn and r'2 6 (r^ - 6iri1)nPn .

 We claim now that C contains a partition of

 each of the following (possibly degenerate) intervals:

 3 and [ti^jT)] •
 This means that C contains a partition of [§,r)]

 and the lemma is proved. As [§,§ļ] and [tu,ti]
 contain in their interiors no point of F there

 must be a partition of each. For the interval

 t?25 T|2^ n°tice that
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 lAç2r>[ç2,T)2] 1 > (r)2-Ķ2)/2 and

 ļ > (ti2-§2)/2 so that there

 must exist a point z in both of these sets and this

 requires that [§2*z] and [zjT)2] both belong to ÍL ;

 this gives a partition of [§2íT)2]. Identical arguments

 provide partitions of the other intervals [§1jÇ2] an<*
 thus the lemma is proved.

 Prom this lemma we deduce with proofs identical

 to those of the previous section several known mono-

 tonic ity results. The standard proofs may be compared;

 Bruckner [l^p.156] and Goffman and Neugebauer [5] prove

 the first of these (but using an exact approximate

 derivative in place of an extreme derivate) and O'Malley

 [9] obtains the second as an application of his theory

 of selective derivates.

 (2.2) If jf'-Tjix) ž. 0 everywhere on an interval [a,b]
 then f i£ nondecreasing on that interval .

 (2.3) If f'apM ž. 0 a-e- »"d

 nondecreasing on that interval .

 One can extend (2.3) to allow a countable ex-

 ceptional set. If f* «(x) 0 a.e. and ^.'«„(x) > -»
 Oé±J

 except possibly in a countable set C then provided
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 one knows that at each point of C

 ap-lim f (t) £ ap-lim f(t)
 t-*x- t-»x+

 the function f must be nondecreasing. The proof

 requires only a modification in the approximate full

 covers needed in the original proof.

 All of the preceeding can be generalized by-

 replacing the approximate derivative by Denj oy 1 s

 preponderant derivative (see Bruckner [ljP.165])

 and by requiring in definition 2 that the sets

 A have only right and left density exceeding 1/2.

 Note that the partitioning property of Lemma 2.1

 needed only this much of the sets A . Perhaps more

 curious is the fact that one could introduce a

 "lopsided" preponderant derivative: in definition 2

 require that the sets A have at x a right density

 exceeding p and a left density exceeding X . If

 p + X 1 then again the proof of Lemma 2.1 will

 apply with a few modifications. Thus if a function

 has a (p,X) -preponderant lower derivate everywhere

 nonnegative with p + X ^ 1 that function must be

 nondecreasing.

 A generalization in another spirit is provided by

 replacing density considerations with category ones;

 this yields the qualitative derivative of Marcus (see

 Bruckner [l,p.l66]) and the theory for qualitative

 full covers and the proof of the partitioning property
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 of such covers follows closely the pattern given here.

 #3« Symmetric derivatives. A similar theory may be

 developed for the symmetric derivative. It is not

 clear however what might be the best possible statement

 of partitioning properties for the notion of a symmetric

 full cover. We give in Lemma 3.1 a partitioning property

 which is sufficient to derive a number of monotonicity

 theorems, but it is not intended as a complete picture

 of the global properties of such covers.

 DEFINITION 3. A collection è of closed subintervals of

 an interval (a,b) is said to be a symmetric full cover

 of (a,b) if to each x in (a,b) there is a number

 ô(x) > 0 such that every interval [x-t,x+t] with

 0 < t < 6(x) belongs to Â .

 LEMMA 3.1 Let J be a symmetric full cover of an

 interval (a,b) and write c = (a+b)/2 for the midpoint

 of that interval. Then there is a set D c (cab)

 with (c,b ) 'D countable such that ¿ contains a

 partition of every interval [c-x,c+x] for every

 c+x 6 D.

 PROOF, (cf. McGrotty [8]) For simplicity of notation

 we center (aab) at 0 and consider J is a symmetric

 full cover of (-b,b) . Let D = {x € (0,b) contains

 a partition of [-xjx]} . Suppose that ô(x) is given
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 for each x € (-b,b) and, with no loss in generality,

 that 6 (x) = ô(-x) everywhere.

 Define ß = sup {x € (0,b) : (0,x) 'D is countable}.

 The lemma is proved by showing that ß = b. Note

 firstly that D contains the interval (0, 6(0)) so

 that ß ^ 6(0) > 0 . Suppose now, contrary to the

 lemma, that 0 < ß < b , and consider the interval

 (ß - ö(ß)j ß + ô ( ß ) ) • Simple arguments show that

 (ß - 6(ß), ß) ' D is countable and that

 (ß, ß + 6(ßjjND is uncountable. But^ contains every

 interval [ß - t, ß+ t] and [-ß -t, -ß +t] for

 0 < t < 6(ß). From this we can see that D contains

 in the interval (ß, ß +6(ß)) at least a reflection

 of the set Dn(ß-6(ß)i ß) about the point ß . Con-

 sequently (ß, ß + ô (ß) ) ' D must also be countable

 and this is a contradiction. It follows that ß = b

 and the lemma is proved. Note that we have proved

 as well that for any x ç D there is an e*0<e<6(0) ,

 such that J contains a partition of the interval [g,x].

 Using this partitioning property of symmetric full

 covers we can prove several monotonicity theorems by

 identical arguments to those given above. Here f' _ will
 - sy

 denote the lower extreme symmetric derivate.

 (3.2) If f,!gv(x) > 0 everywhere in (a,b) then there
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 is a set De (c,b), where c is the midpoint

 of (a,b), the closure of whose complement in

 (c,b) is^ countable such that f (c-x) < f (c+x)
 for every c+x in D

 Also we have :

 (3.3) li L f'gyOO * 0 a_j_e . in (a,b) and f!sy(x) > -
 everywhere in (a,b) then except possibly for a

 countable set f(c-x) £ f(c+x)5 0 < x < (b-a)/2.

 The proof is only mildly more complicated than that

 of (1.3) but requires some attention to the fact that

 the exceptional countable closed set may vary with the

 e . We shall not give the details.

 Prom this we obtain some known monotonicity

 theorems (eg. Weil [15] i and Evans [3]).

 (3.3) Suppose that f1 (x) «^0 a.e. in (a,b) and
 ö «✓

 everywhere in (a,b) ¿'„„(x) > -» . If
 v

 f(a) £ lim f(x) and f(b) ^ lim f(x) ,
 x-»a+ x-*b-

 then f(a) £ f(b) .

 (In fact we could use less than these one sided semi-

 continuity conditions. We only need to know that the sets
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 {x € (a,b) : f(x) > f(a) - e )

 {X 6 (a,b) : f (x) < f (b) + e } are for any e > 0

 uncountable in any neighbourhood of a and b .

 We conclude with one further type of partitioning

 property of symmetric full covers. This is in quite

 a different spirit than those we have so far discussed.

 LEMMA 3.^ Let J be a full symmetric cover of an

 interval (a,b). Then there must exist an interval

 (c,d) c (a,b) such that to every subinterval J there

 are { J^) each a subinterval of J and
 each belonging to J such that

 f (J) - 2iEo (-1)1 f(Ji)

 for any function f .

 PROOF, (cf. Davies [2]) Let 6 (x) correspond to

 the cover as in definition 3 and write

 En = {x € (a3b) : ô(x) > 1/n} . Then since the sets
 {Fn3 cover (a5b) there must exist an interval
 (c,d) e (a,b) and a set En dense in (c,d) .
 Without loss in generality we may assume that

 d - c < 1/n. If I e (cjd) we must exhibit a sequence

 of sub intervals chosen from J that has the property

 stated.

 The notation is considerably simplified if we

 assume that I = [-2ai2a]j that Eß is dense in
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 (-2aj2a)í and that ba < l/n . If so choose a negative

 x' in En so that 0 < xf- (-a/2) < 6(a)/2 3 and
 choose a positive x" in En so that 0 < x" - (a/2) <
 6(-a)/2 . This means that 0 < 2xf + a < 6(a) and

 0 <L2x" - a < 6(a). Clearly we can arrange too that
 x " + 2x ' <0 and 2x" + x' > 0 .

 Let us define now the following intervals :

 Iļ = [-2a,2x,+2a] = [xt-(x,+2a),xl+(x'+2a)] ,

 I2 = [-2xf j2x'+2a] = [a-(2x,-hi)5a+(2x,+a)] ,

 = [2x"+2xt ,-2xf ] = [x'^x'^x' ^x'^x'^x' )] 3

 1^ = [-2x"i2xt+2x11] = [x,-(2x"+xł ),x,+(2x"+x' )] ,

 1^ = [-2xn,2x"-2a] = [-a-(2x"-a),-a+(2x"-a)] * and

 Ig = [2x"-2a,2a] = [xll-(2a-xll),x!l+(2a-x")]

 It is straightforward to check that each 1^ (1=1,2, . . . ,6)
 is a subinterval of I, that each belongs to J and that

 for any function f ,

 f (I) = f (Ix) - f (I2) - f (I3) - f (I4) + f (I5) + f (Ig) .
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 It remains only to relabel as in the lemma and the

 proof is complete.

 As an application note that Lemmas (3. 3) and (3 .4)

 provide another proof of an observation that has been

 made in this Exchange on the subject of symmetric

 functions. See Davies [2], Rusza [10], Porań [4],

 and the editors [16] . A function is symmetric if there

 is a symmetric full cover of (-»,+«), jçJ for which

 f(I) = 0 for every I 6j¿ . By (3«^) we see immediately

 that there must be an interval (a>ß) on which f is

 constant (in fact of course such intervals are everywhere

 dense). Then using (3*3) we can find a countable

 closed set C such that J contains a partition of

 [y jx] for every x ¿ C and some y € (a*ß) . Con-

 sequently f must be constant in the complement of C.

 91



 REFERENCES

 [1] A.M. Bruckner, Differentiation of real functions.

 Lecture Notes in Math. #659* Springer Verlag (1978).

 [2] R.O. "Davies, Symmetric sets are measurable, Real-
 Analysis Exchange 4 (1978/79)» 87-89.

 [3] M.J. Evans, A symmetric condition for monotonicity,
 Real Analysis Exchange 3 (1977/78), 98-99.

 [4] M. Poran, Symmetric functions, Real Analysis
 Exchange 1 (1976), 38-40.

 [5] C. Goffman and C. Neugebauer, On approximate
 derivatives. Proc. Amer. Matti. Soc., 11 (i960),
 962-966.

 [6] E. Goursat, Sur la definition generale des fonctions
 analytique, d'après Cauchy, Trans, Amer. Math.
 Soc., 1 (I900), 14-16.

 [7] R. Henstock, Linear Analysis» Butterworths , London
 (I968).

 [8] J. Mc Grotty, A theorem on complete sets, J. London
 Math. Soc-, 37 (1962), 338-340.

 [9] R. O'Malley, Selective derivates, Acta. Math.
 Acad. Sci. Hungar., 29 (1977), 77-97.

 [10] I.Z. Ruzsa, Locally symmetric functions, Real
 Analysis Exchange 4 (1978/79) í 84-86.

 [11] S. Saks, Theory of the integral, Warsaw (1937).

 92



 [12] B.S. Thomson, Some monotonicity theorems, (submitted).

 [13]

 (submitted) .

 [14]

 (in preparation).

 [15] C.Weil, Monontonicity, convexity and symmetric
 derivatives, Trans. Amer. Math. Soc., 222 (1976),
 225-237.

 [16] Editorial staff, Concerning query 37* Real
 Analysis Exchange, 4 (1978/79) > 82-83.

 Received August lt 1980

 93


	Contents
	p. 77
	p. 78
	p. 79
	p. 80
	p. 81
	p. 82
	p. 83
	p. 84
	p. 85
	p. 86
	p. 87
	p. 88
	p. 89
	p. 90
	p. 91
	p. 92
	p. 93

	Issue Table of Contents
	Real Analysis Exchange, Vol. 6, No. 1 (1980-81) pp. 1-131
	Front Matter
	EDITORIAL MESSAGES [pp. 3-3]
	THIRD SUMMER SYMPOSIUM ON REAL ANALYSIS [pp. 5-7]
	FOURTH SUMMER SYMPOSIUM ON REAL ANALYSIS [pp. 8-8]
	TOPICAL SURVEY
	APPROXIMATE DIFFERENTIATION [pp. 9-65]

	RESEARCH ARTICLES
	ON LOCALLY SYMMETRIC AND SYMMETRICALLY CONTINUOUS FUNCTIONS [pp. 67-76]
	ON FULL COVERING PROPERTIES [pp. 77-93]

	INROADS
	SUR LE PRODUIT DE DEUX DÉRIVÉES VECTORIELLES [pp. 95-110]
	On the Derivative of a Nondecreasing Saltus Function [pp. 111-113]
	SOME SET THEORETIC PROPERTIES OF σ-POROUS SETS [pp. 114-119]
	REMARKS ON A PROBLEM OF A. M. BRUCKNER [pp. 120-126]
	Finitistic real analysis [pp. 127-130]

	QUERIES
	QUERIES FROM THE TEXT [pp. 131-131]




