INROADS Real Analysis Exchange Vol. 5 (1979-80)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.

GENERALIZED DERIVATIVES

The classical assertion that there exist continuous, nowhere differentiable functions can be generalized in various ways. One such possibility was shown by L. Filipczak in [1]. He constructed a periodic continuous function whose upper and lower symmetric derivates are ∞ and $-\infty$, respectively, at each point. I would like to mention some theorems of J.C. Georgiou and myself that together generalize Filipczak's result.

Let r be a natural number and let $a_0 < a_1 < ... < a_r$. There are b_j such that $\sum_{j=0}^r b_j a_j^k = 0$ for k = 0, 1, ..., r - 1 and $\sum_{j=0}^r b_j a_j^r = r!$. For each finite real function f on $R = (-\infty, \infty)$ and each pair of real numbers x, h with $h \neq 0$ we define $L(f, x, h) = \sum_{j=0}^r b_j f(x + a_j h),$ $\lambda(f, x, h) = h^{-r} \cdot L(f, x, h)$. It is easy to see that $\lambda(f, x, h) \rightarrow f_{(r)}(x)$ $(h \rightarrow 0)$, if the r-th Peano derivative $f_{(r)}(x)$ exists. If $a_j = j - \frac{r}{2}$ for j = 0, ..., r, then $\lim_{k \to 0} \lambda(f, x, h)$ means the r-th Riemann derivative of f at x.

Now we may ask whether there is an f with the following property:

(P) The function f has a continuous derivative of order r - 1 on R and, for each x ∈ R,
lim sup λ(f,x,h) = lim sup λ(f,x,h) = ∞, ht0
lim inf λ(f,x,h) = lim inf λ(f,x,h) = -∞. ht0
The following assertion is helpful:
(A) Let F be a continuous, periodic function on R such that

(Q) for each $x \in \mathbb{R}$ there are $h_1, h_2 \in (-\infty, 0)$ and $h_3, h_4 \in (0, \infty)$ with $(-1)^{i} \cdot L(f, x, h_i) > 0$ (i = 1,2,3,4).

Then there is an f with property (P).

It is possible to indicate the proof of (A) as follows: We approximate F by a periodic function G with a continuous derivative of order r, choose a large natural number a, define a suitable positive number b (we need, in particular, $a^{r-1}b < 1 < a^rb$) and set $f(x) = \sum_{k=0}^{\infty} b^k G(a^k x)$ for each x.

It can be proved that under the assumption $a_0 \dots a_r \neq 0$ (this is obviously fulfilled, if r is odd and $a_j = j - \frac{r}{2}$) either $F(x) = \cos x$ or F(x) = $= \cos x + \sin 2x$ has property (Q). Taking r = 1, $a_0 = -1$, $a_1 = 1$ and applying (A) we obtain Filipczak's result. If $a_0 \dots a_r = 0$, then the situation is not so simple. If r = 2 and $a_1 = 0$, then there is no f with property (P) and, consequently, no F with property (Q). We have been able to find an F with property (Q) in the following cases: $3 \le r \le 12$ and $a_j = j - \frac{r}{2}$; r = 2 and $a_0 a_2 = 0$; r = 3 and $a_0 a_3 = 0$. However, we have not been able to find an r > 2 and a_0, \dots, a_r for which such an F does not exist.

On the other hand, by means of an assertion analogous to (A) we proved that, in any case, there is a function f with a continuous derivative of order r - 1 such that $\lim_{h \neq 0} \sup |\lambda(f, x, h)| =$ $= \lim_{h \neq 0} \sup |\lambda(f, x, h)| = \infty$ for each $x \in \mathbb{R}$.

Reference

 [1] L. Filipczak, Exemple d'une fonction continue privée de dérivée symétrique partout, Coll. Math. XX (1969), 249-253.

This article is an abstract of a talk presented to the Summer Syposium in Real Analysis, University of Wisconsin-Milwaukee, August, 1979.

Received December 20, 1979