INROADS Real Analysis Exchange VoL. 5 (1979-80)
Jan Mařik, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.

GENERALIZED DERIVATIVES

The classical assertion that there exist continuous, nowhere differentiable functions can be generalized in various ways. One such possibility was shown by L. Filipczak in [1]. He constructed a periodic continuous function whose upper and lower symmetric derivates are ∞ and $-\infty$, respectively, at each point. I would like to mention some theorems of J.C. Georgiou and myself that together generalize Filipczak's result.

Let r be a natural number and let $a_{0}<a_{1}<\ldots<a_{r}$. There are b_{j} such that $\sum_{j=0}^{r} b_{j} a_{j}^{k}=0$ for $k=0,1, \ldots$ $r-1$ and $\sum_{j=0}^{r} b_{j} a_{j}^{r}=r!$. For each finite real function f on $R=(-\infty, \infty)$ and each pair of real numbers x, h with $h \neq 0$ we define $L(f, x, h)=\sum_{j=0}^{r} b_{j} f\left(x+a_{j} h\right)$, $\lambda(f, x, h)=h^{-r} \cdot L(f, x, h)$. It is easy to see that $\lambda(f, x, h) \rightarrow f(r)(x)(h \rightarrow 0)$, if the r-th Peano derivative $f_{(r)}(x)$ exists. If $a_{j}=j-\frac{r}{2}$ for $j=0, \ldots, r$, then $\lim \lambda(f, x, h)$ means the $r-t h$ Riemann derivative of f at x .

Now we may ask whether there is an f with the following property:
(P) The function f has a continuous derivative of order $r-1$ on R and, for each $x \in R$,

```
\(\lim \sup \lambda(f, x, h)=\lim \sup \lambda(f, x, h)=\infty\).
    \(h \uparrow 0 \quad h \neq 0\)
\(\lim \inf \lambda(f, x, h)=\lim \inf \lambda(f, x, h)=-\infty\).
    \(h \uparrow 0 \quad h \downarrow 0\)
```

The following assertion is helpful:
(A) Let F be a continuous, periodic function
on R such that
(Q) for each $x \in R$ there are $h_{1}, h_{2} \in$ $(-\infty, 0)$ and $h_{3}, h_{4} \in(0, \infty)$ with

$$
(-1)^{i} \cdot L\left(f, x, h_{i}\right)>0 \quad(i=1,2,3,4)
$$

Then there is an f with property (P).
It is possible to indicate the proof of (A) as follows: We approximate F by a periodic function G with a continuous derivative of order r, choose a large natural number $a, ~ d e f i n e ~ a ~ s u i t a b l e ~ p o s i t i v e ~$ number b (we need, in particular, $a^{r-1} b<1<a^{r} b$) and set $f(x)=\sum_{k=0}^{\infty} b^{k} G\left(a^{k} x\right)$ for each x.

It can be proved that under the assumption
$a_{0} \ldots a_{r} \neq 0$ (this is obviously fulfilled, if r is odd and $a_{j}=j-\frac{r}{2}$) either $F(x)=\cos x$ or $F(x)=$ $=\cos x+\sin 2 x$ has property (Q). Taking $r=1$, $a_{0}=-1, a_{1}=1$ and applying (A) we obtain Filipczak's result.

If $a_{0} \ldots a_{r}=0$, then the situation is not so
simple. If $r=2$ and $a_{1}=0$, then there is no f with property (P) and, consequently, no F with property (Q). We have been able to find an F with property (Q) in the following cases: $3 \leqq r \leqq 12$ and $a_{j}=j-\frac{r}{2} ; r=2$ and $a_{0} a_{2}=0 ; r=3$ and $a_{0} a_{3}=0$. However, we have not been able to find an $r>2$ and a_{0}, \ldots, a_{r} for which such an F does not exist.

On the other hand, by means of an assertion
analogous to (A) we proved that, in any case, there is a function f with a continuous derivative of order $r-1$ such that $\lim \sup |\lambda(f, x, h)|=$
$\mathrm{h} \uparrow \mathrm{O}$

Reference

[1] L. Filipczak, Exemple d'une fonction continue privée de dérivée symétrique partout, Coll. Math. XX (1969), 249-253.

This article is an abstract of a talk presented to the Summer Syposizm in Real Analysis, University of Wisconsin-Milwaukee, August, 1979.

