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Maximal Additive and Maximal Multiplicative Families
for the Family of All Interval-Darboux

Baire One Functions

1. In his book [1l, p. 14] A. M. Bruckner defined
the maximal additive and the maximal multiplicative
family for a given family F of real functions as

follows: A subfamily F, of the family F is called the

0
maximal additive (multiplicative) family for F iff

F_. is the set of all functions f of F such that

0]
f+ge¢F (fge F) for all g e F.

In [2 , Theorem 7.5 p. 109], A.M. Bruckner and
J. G. Ceder proved that the maximal additive family
for the family of all real Darboux functions of a real
variable of the Baire clasé one is the family of ali
real continuous functions of a real variable.

In the cited book [1l, p. 15] A.M. Bruckner gives
the problem to find the maximal multiplicative family
for the same family. R. Fleissner recently solved this
problem in [3]. The maximal multiplicative family for
the family of all real Darboux functions of a real
variable of the Baire class one 1s the family of all
real Darboux functions f of a real variable of the

Baire class one having the following property:
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If f is discontinuous from the right (from the
left) at a point a, then f(a) = O and there exists a
decreasing (an increasing) sequence {Xn};=l converging
to a such that f(xn) = 0 for all n.

In (8], there are given the maximal additive and
the maximal multiplicative family for the family of
all real B -Darboux Baire one functions defined on a
finite dimensional strictly convex Banach space,
where'ﬂ is the base of all spherical neighborhoods.

In this paper, we solve the problem of the maximal
additive and maximal multiplicative family for the
family of all real Interval-Darboux Baire one functions.

2. In [4], it is proved that a finite derivative
of an additive Interval-function possesses the Darboux
property in the strong sense on every interval. A
real function f defined on the n-dimensional euclidean
space En possesses the Darboux property in the strong
sense -on a closed interval I iff for eveéy two points
P, @ € I and for each real number c¢ such that
(f(p) - é)-(f(q) - ¢) < 0, there exists a point z
from the interior of I such that f(z) = c.

In [9], C. J. Neugebauer introduced a class of
some connected sets in En’ called Darboux sets, and
he said that a real function f defined on En possesses
the Darboux property iff it maps every D=2rboux set into
a connected set. In [6, p. 46] it is proved that a
real function defined on E  has the Darboux property in
the sense of C. J. Neugebauer iff 1t possesses the
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Darboux property in the strong sense on every closed
interval.

We recall the definition of a '5 -Darboux function.
Let X be a topological space and let D be a base for the
topology in X. In [5], there is given the following
definition: A real function f defined on X is called
PB-Darboux iff for each A ¢ 8, every x, y ¢ & (E denotes
the closure of A) and each c ¢(min (f(x), f(y)), max
(f(x),f(y))) there exists a point z ¢ A such that f(z)=c.
If X is E, and B is the system of all open intervals
in En’ we shall call & -Darboux functions Interval-Darboux
functions. Interval-Darboux functions are functions
which posséss the Darboux property in thg strong sense
on every closed interval.

Let us recall the generalization of the theorem
of Young for B_parboux functions:

Theorem 1. [7, Satz 9, p. 425] Let X be a complete
metric space and let ﬂkxaa.base in X having the
following two'properties:

(l*) For each open neighborhood U of a point x ¢ X
and for each B ¢ ¥ satisfying x € B there exists a
C ¢B such that C c Un B and x ¢ C - C.

(2) For each B ¢ ¥ and f“or each decomposition of B
into two non empty disjoint sets Al and A2 such that
TnBc A, and UnBc A, respectively for each U ¢ !
and

which is contained in A. and A., the sets A.nA

1 2’ 172
are non empty (Ai denotes the derived set of Al).

7

Ajnh,

Then a real Baire one function f defined on X is
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B -Darboux iff for each B ¢¥ and for each x ¢ X
satisfying x € B - B there exists a simple sequence
{xn}n=l converging to x such that X, € B forn=1,2,

3,... and lim I(X ) = £(x).

N
We also recall that for X = En and for the base
of all open intervals in E the properties (1*) and (2)
hold (see [5, pp. 47 - 48]).

3. Let a; < b .y 8, < bn and let J = (al,...,a ;

1’ n’

b ,...,bn) be the open interval {(xl,...,xn) €E:a<

1 i
< X5 < bi for i =1, 2, ..., n}. Let JK and JK+l respec-
. . 1 1l l 1
tively be the open intervals (al-ﬁ"' »a ~g3bytgs .. -b ) and
1. 1
(a1~ T+ 22050 Y1t /5000 K+l)

Let Py be a bounded real continuous function on

n

J. It is easy to see that there exists a continuous

E_ - J, and let Ve be a real continuous function on

function X, defined on J 41 Such that X (A) = [-k-1,k+1]

for each set A = (7 JK+l)nB; where BeBis an open interval

K+l
with the centre in J,  ; - JK+l~and the diameter (diam A)
of the set A is not less than E%T . By the Tietze

extension theorem, there exists a real bounded con-

tinuous function ﬁK = ¢(¢K, XK’ *K) defined on E

such that ﬁK/En-JK Oy > ﬁ /T , ﬁK/T = Uy

K+l K+l

and sup | & (@K K ¢K) | = max (sup |¢K|, sup |XK[,

sup |4,|)

We shall call a real function f defined on a closed

interval J, where J is an open interval, an Interval-Dar-
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boux function on J iff for each open interval I contained
in J, for every x, ¥y € I and for each ¢ ¢(min (f(x), £(y)),
max (f(x), £(y))) there exists a point z ¢ I such that

f(z) = c.

Lemma 1. (Extension lemma) Let J be an open interval
in En and let f be a real Interval-Darboux Baire one
function defined on J. Then there exists a real In-
terval-Darboux Baire one function F defined on En such
that F/J =f .

Proof. Since f is a Baire one function on J there
exists a sequence {wk};=l of real continuous functions
defined on J such that f(x) = lim y, (x) for each x € J.

Let J, and X, for k = 1, 2, 3, ... be such as
above. Let c be a réal number. Let ¢q be a function
defined on E - Jy and ml(x) = ¢ for each x € E - J5.
Let ﬁl be a function ¢(¢1, X5 wl). By the induction,

and using the function ﬁk, we define & as follows:

K+1
Let ¢,  be the restriction of ¢K to E) - J ;- Then
¢K+1 is a function ¢(¢K+l, X 41> ¢K+l)' The sequence
{#, )%=, 1s a sequence of bounded continuous functions
defined on En' It is easy to prove that this sequence
converges at each point x ¢ En' Let F be the pointwise

limit of (& Then F/J = lim y, = £ and F/E_-J

} et -
K’ k=1 o
is continuous function. The function F is a Baire one
function on En'
Let I be an open interval and let x ¢ En be a

point for which x ¢ T - I. If x¢ E, - J, then there
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exists a sequence {xn}n=1 of points in I converging

to x and lim F(xn) = F(x) since F/En—j is continuous.
N

If I c J, then there exists a sequence {x },_; of

points in I converging to x and lim F(xn) = F(x)
N

since F/J = f and f is a real Interval-Darboux Baire
one function on J. If x € J - J and I n(E,-J) # &,
then there also exists a sequence {Xn}n=l of points

in I converging to x and lim F(xn) = F(x) since,
) N-y

according to the definition of the sequence {XK};=1’
F maps every neighborhood of x in E - T onto (-w,=).
From Theorem 1, it follows that F i1s an Interval-
Darboux function and the lemma is proved.

4, Theorem-2. (Maximal additive family for the
family of all real Interval-Darboux Baire one functions)
The maximal additive family A for the family of all
Interval-Darboux Bzire one functions defined on En is
the family of all real continuous functions defined
on En'

Proof. Let f be a real continuous function defined
on En' Then £ + g is an Interval-Darboux Baire one
function on En for each Interval-Darboux Baire one
function g defined on En' This is a consequence of
Theorem 13 of [7, Satz 13, p. 427]. Therefore f ¢ A.

Let £ be a function which is discontinuous at a,

a g En' If £ is not a real Interval-DArboux Baire one

function on En’ then f does not belong to A since
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f =f 4+ 0 1s not a real Interval-Darboux Baire one
function on En. If £ is a real Interval-Darboux Baire
one function on En’ then it is evident that there exists
an open interval I such that a is a vertex of I and
o =sup {inf £(J) : J is an open -interval with one
vertex a and which is contained in I}< inf {sup f(J)
J 1s an open interval with one vertex a and which is
contained in I}= 2B It is easy to prove that
o < f(a) < g. If we define g on I as follows:
g(x) = -f(x) for each x ¢ T - {a}and g(a) # -f(a),
-p<g(a) <-a, then g is an Interval-Darboux Baire one
function on I. According to Lemma 1, there is a real
Interval-Darboux Baire one function defined on En
such that G/I = g. The function f + G is a real
Baire one function on En’ but it is not an Interval-
Darboux function on E since f(x) + G(x) = O for each
x € I - (a} and f(a) + G(a) # O. Therefore f ¢ A.

5. Let f be a real function defined on En’ let
a be a point of En and let I be an open interval in En
such that a ¢ T - I. We shall say that a sequence

{Jn};=l of open intervals converges from an open interval

I to a point a iff {Jn}:= is decreasing sequence of

1
open intervals contained in I, a ¢ Eh - J, for n =1,

2, 3, ... and lim diam Jn = 0. We shall say that f is

N

discontinucus from I at a 1ff there exists a sequence
{Jn}:=l of open intervals converging from I to a such

that sup inf £(J_) < inf sup £(J_).
n n n .
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Let M be the maximal multiplicative family for
the family of all real Interval-Darboux Baire one
functions defined on En'

Lemma 2. Let f ¢ M. Then f2 € M.

Proof. Let f € M. Let g be a real Interval-
Darboux Baire one function defined on En' Then fg is
a real Interval-Darboux Baire one function defined on
E since f ¢ M. Therefore also the function f2g = f(fg)
is a real Interval-Darboux Baire one function on En'
Thus f2 € M.

Lemma 3. Let f be a nonnegative Interval-Darboux
Baire one function defined on En' Let I be an open
interval in E and a ¢ E  such that a ¢ I-I. Iff is
discontinuous from I at a and f(a) > O, then £ £ M.

Proof. Let f be a honnegative Interval-Darboux
Baire one function defined on En which is discontinuous
from I at a. We can assume that a is a vertex of I.

Then there exist two numbers g and g such that g = SUp

inf f(Jn) < inf sup f(Jn) = g for each sequence
{Jn};=l converging from I to a. Then g<f(a)<g.

If g = f(a), then there exists an open interval J
with one vertex a contained in I such that f£(J) c(%u ©) .

If o < £(a), we take a number y from (q, f(a)).

Now, we define a function g on I by: g(x) =

2 T 1 1
max (Q;gf(}()7 for each x ¢ I - {a}and g(a) € (E’ a_ -

o1 . 0
tf]Ejﬁ if ¢ = f(a) and g(x) = max (7,27 (x)) for each
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xeT- (a}and g(a) = % if ¢ < £(a). The function g is
a real Interval-Darboux Baire one function on I. By the
extension lemma, there exists a real Interval-Darboux
Baire one extension h of g defined on En' The function
fh is not a real Interval-Darboux function on En since
we have:
(fh) (x) = 1 for each x € J - {a} and {fh) (a) #1
if ¢ = f(a) and
(fh)(x) = "1 for each x ¢ I - {a} which satisfies
y<2f(x), (fh)(x) = gﬁézl-< 1 for each x ¢ T - {a}
which satisfies 2f(x) <y and (fh)(a) = f—Y(il>1 if
a < f(a).

Therefore f £ M.

Lemma 4. Let f be a nonnegative Interval-Darboux
Baire one function defined on En which is discontinuous

from an open interval I at a, a ¢ E . If £(T - [a}) c

(O,o), then £ ¢ M.

Proof. Let f be as we assume in the lemma. Then
we can assume that a is a vertex of I. Then there
exist two numbers ¢ and g -:such that g = sgp inf £(J,) <

igf sup f(Jn) = g for each sequence {Jn}:=l converging

from I to a. According to Lemma 3, f ¢ M if f(a) > O.
Let f(a) = 0. Then g = 0. Let g be a function
defined on I by :g(x) = 163 for each x ¢ T - {a} and

1 . .
g(a) = min (157 ° It is easy to prove that g is a real

Interval-Darboux Baire one function on I. By the ex-
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tension lemma, there exists a real Interval-Darboux
Baire one function h defined on En which extends g.
The function fh is not a real Interval-Darboux function
on E since (fh)(x) =1 for each x ¢ I - {a} and
(fh) (a) = 0.

Therefore f ¢ M.

Lemma 5. Let f be a nonnegative Interval-
Darboux Baire one function defined on En which is
discontinuous from an open interval I at a, a ¢ En‘
Let f(I) ¢ (0,0). If f is discontinuous from every
interval J at each point z ¢ I such that f(z) = 0,
JcIand z e J -J, then £ ¢ M.

Proof. According to Lemma 3, £ ¢ M if f(a) > O.
Let f(a) = 0. Let J = (al,...,an;bl,...,bn) be such
an open interval for which J < I and min £(J)= 0. Then
we define a number (f;J) as follows: (f;J) = max
{1 :1if z = (295...5%)) € J is such that f(z) = 0,
then the cardinal number of the set {j € {1, 2, ..., n}:
z 4 {2y bj} is at most n - i}. Since f(J) c (0,=),
JcI and min £(J)= 0, we have (£;J) = 1. Thus also
(£5I)=21.

It is easy to prove that for each z ¢ I satisfying
f(z) = O there exists a positive number 4(z) such that
sup £(J) = g(z) for each open interval which is con-
tained in I and for which z ¢ J - J.

If there exlists an open interval J = (al,...,a 3

n)

b ’bn) contained in I for which (f;J) = n, then

EREE
Z§#(zed: f(z) =0} c{u-= (ul,...,un) e J°
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u; € {ai,bi} for each 1 =1, 2,..., n}. But, then
the set {z € J : f(z) = 0} is finite and therefore
there exists an open interval Y contained in J such
that f is discontinuous from Y at a point y e ¥ - Y
and £(Y - {y}) ¢ (0y=). Acéording to Lemma 4, f £ M.

Let k be a positive integer satisfying n-lak>(f;I)
with the following property: If there exists such an
open interval J contained in I for which min £(J)= 0 and
(f3J) = k+1l, then f does not belong to M.

Now, suppose there exists an open interval J
contained in I such that (f3;J) = k. We shall prove
that f does not belong to M. Then there exists a
point z = {z7,... z) € J, £(z) = 0 and n-k different

positive 1ntergers il,..., i K in {1, 2, ..., n}

n-
such that z; € {ai,bi} iff 1 e {1, 2, ..., N} -

{il, ey in-K}' Then there exists a positive number

€9 such that ais < z]._S - € < z]._S + €g < bis for s =1,

2, ..., n-k. Let O <€ < ¢, and B, = [(xps-0e5%y)

E J : X. =Zi fOI‘ ie{l, 2, e e 0o 9 n}- {il,no

i i in-K}

and z; -€sX s Zi + efor s =1, 2, ..., n-K}.
] S S
We shall prove: If there exists an € such that
0O<e se€,and f(BE) = {0}, then £ ¢ M.
Let 0 < € < €o and f(BE) = (0}. Forn =1, 2, 3,

B..
1 n

Cs

1
we put B, = {ve B : a(v)zE}. Then we have: B€=

n
Since B is of the second category of Baire in itself,

there exists an n such that Bn is not nondense in BG'
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Thus, for s =1, 2, ..., n-k, there must exist numbers

s and di such that z; -—€s¢C; < di < Z4 + €

S -8 S S S S

for s

1,2, ..., n-kand C ={vegB c, <V, < 4,

€ 1s s s
for s =1, 2, ..., n-kjc B . But, then for each

u € C, for each open interval Y which is contained in
J and for which ue ¥ - Y there exists a v in B, N Y.
Therefore 0 = inf £(Y) < % < sup £(Y). This implies
that £ is discontinuous from Y at u. Thus f(u) =0

and q(u) = % or according to Lemma 3, f ¢ M. Therefore

we can assume that C Bn'

Let Yi € (ai’bi) for i e {1, 2, «.., N}~ {il""’in-K}'
Let Y be the open interval {(xl,...,xn) € B min
(yi,zi) < X; < max (Yi’zi) for i e {1, 2, ..., n} -
{il, e in-K} and C; <X < di for s =1, 2, ...,

S S S

n-k}. Let t e Y - C. Then ais < zis - € < Cis <

t., <d, <z. +€<b, fors=1, 2, ..., n=-k
s s T s ts

and the set {1 {1, 2, ..., n}- {15, ..., 1 _.}:

by # z;} 1s nonempty. Therefore t ¢ J and the cardinal
number of the set {i €{l, 2, ..., n} : t; € {2y D))
is at least n-k+l. Thus f(t)>0 since (f;J) = k. This
implies that {ve Y : f(v) = 0} = C. Let g be a func-

. . 1 =
tion defined by : g(u) = () for ue ¥ - C and g(u) = n
for u e C. From the generalization of the theorem of
Young, we conclude that g is a real Interval-Darboux

Baire one function on Y. From the extension lemma,
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there exists a real Interval-Darboux Baire one function
h defined on E  which extends g. But, f € M since
(fh)(u) = 1 for each u ¢ Y - C and (fh)(u) = O for
each u ¢ C.

If there does not exists an ¢ such that f(BE) = {0}
and 0 < € < €4, then there exists a w ¢ Bn - {VeT :

f(v) = Ojfor n = Then f(w) > 0. According to

1
2 €o-
Lemma 3, f ¢ M if there exists an open interval Y
such that Y J, we Y - Y and f is discontinuous from
Y at w.

Let us assume that f is not discontinuous from

any open interval Y at w such that Y J andwe Y - Y.

Let ¢ > 0 and Bw,o= {te Bn : wis -0 < tis < wis +

g for s =1, 2, ..., n-kK}. It is easy to prove that

there exists a positive number g such that f(t) > féﬂ).> 0

for each t ¢ Bw Let W = U{Bw,c: g> 0, £(B )

Wsgo
(O,m)}. There exists such a positive number y that

EXe)

W={teTI: t, =2z, forie(l, 2, ..., n}-{iyseee,i ]

i i
and LS ti < W +w for s =1, 2, ..., n-Kj}.
] S S
It is evident that yp < max {|wi - zy |: s =1, 2, ...,
S

n-X} < % €y and f(W) ¢ (O,w). Since W - W is compact, we

have min £(W)= 0. It also holds: a; <2z; -~ €<
s s

W,omw< W, Foc zy +t €5 < bi for s = 1,2,...,n-k.

s s S s
Let Y e(ai,bi) and let c; = min (Zi’Yi)’ d.l =

max (z;,v;) for i e {1, 2, ..., nA{Ll,...,in_K}. Let
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c; = wi - ws d =w, 4+ gy for s =1,2,..., n-K.
S S s S

Let Y = (cl,...,cn;dl,...,dn). Then Y « J < I.
Let t € ¥ and {1 €{1,2,..0,0)~(1y5eeesiy ¢

ti # zi}% #. Then the cardinal number of the set
{ie{1,2,...,n}: &, 4 {a;5b;}} is at least n-k+l.
Since t ¢ J then f(t) is a positive number. If f

is such a point of Y for which t; =z; forie

{1, 2, «.4, n}-{il, cees in-K} and cis = wiS - w

. €W, +y=d, fors=1, 2, ..., n-k, then
s s Ls

t € W. Since f(W) ¢ (0,0), £(t) > O. Therefore

it must hold that t ¢ W - W for each t ¢ Y satisfying
f(t) = 0. But, then the cardinal number of the set
{1 €fl, 2, ...on}: t, € {c;, d;}}1s at most n - (k+1)
for each t ¢ Y satisfying f(t) = O. Therefore
(f3Y)>k+1l. From the definition of the number k, we
get that f does not belong to M.

From the induction principle, it is clear that we
have proved the following : If there exists such an
open interval J contained in I for which (f;J)=1,
then £ ¢ M. But, then f ¢ M since (f;I) =1 and the
lemma is proved.

Theorem 3. (Maximal multiplicative family for
the family of all real Interval-Darboux Baire one
functions) A real function f defined on E Dbelongs to
the maximal multiplicative family M for the family of

all real Interval-Darboux Baire one functions defined
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on En iff £ is a real Interval-Darboux Baire cne
function on En with the following property:

If £ is discontinuous from an open interval I
at a point a, then f(a) = O and there exists a
sequence {an};=l converging to a such that f(an)=0
for all n and elther a, € Iforn=1,2, 3, ... or
an € I - I and there exists a sequence {In]:=l of
open intervals contained in I such that f is not dis-
continuous from In at a .

Proof. Let f be a real Interval-Darboux Baire'
one function defined on En with the property mentioned
in the theorem. ILet g be a real Interval-Darboux
Baire one function defined on En’ Then fg is a Baire
one function on En' To prove that fg is also an
Interval-Darboux function on En’ we use the generaliza-
tion of the theorem of Young. Let a ¢ En’ let I be
an open interval such that a ¢ T - I. If f is not

discontinuous from I at a, then syp inf f(Jn) =

. -] .
inf sup f(Jn) for each sequence {J } _; of open in-
tervals converging from I to a. Then it holds : f(a) =
sup inf f(Jn) = inf sup f(Jn) since f is an Interval-
Darboux function on En‘ According to Theorem 1, there
exists a sequence {xn};=l of points such that

1 1
x, €3, and g(x ) € (g(2) - 7> 8(2) +3)

for all n. We have : f(a) = syp inf f(Jn) < jim inf

£(x,) = gim sup f(x,) < ipf sup £(J ) = f(a). Therefore
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g im (f(xn)g(xn)) = f(a)g(a) and x, € I.
If £ is discontinuous from I at a, then f(a) =0

and there exlsts a sequence {an};=l converging to a

such that f(an) = O for all n, and either a ¢ I
forn=1, 2, ... ora_ ¢ I-Iforn=1,2, 3, ...
and there exists a sequence {In};=l of open intervals
contained in I such that f is not discontinuous from
In at a. In the first case, we have : a, € I for

n=1,2, 3, ... and lim (f(an)g(an)) =0 = f(a)g(a).

Nee

In the second case, we prove, as shown above, that
for each n =1, 2, ... there exists a sequence

{Xn,k};=l of points of I  such that iif (f(xn,K)g(xn’K))

= f(an)g(an) = 0. Let k be such a positive integer

. . 1
for which g1im x = a and 'f(xn,Kn)!< = for n =

n,k
> n

1, 2, 3, ... . Then we have : X @ is a
> ] > { n,k;n n=1

sequence of points in I converging to a such that %33

(f(xn,Kn)g(Xn,Kn)) = f(a)g(a). From the generali-

zation of the theorem of Young, it follows that the
function fg 1s an Interval-Darboux function.

So we have proved that f € M.

Now, let £ ¢ M. Since f = f+1, f 1s a real
Interval-Darboux Baire one function. Let I be an
open interval, a ¢ En and a ¢ I<I. Let f be discontinuous
from I at a. Then f2 is also discontinuous from I at a.
According to ILemmas 2, 3, 4, and 5, fz(a) = 0 and
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there exists a sequence {an}:=1 of points in T converging

to a that £2(a_) = 0 for n =1, 2, 3, ..., and either

a, e Iforn=1,2,3, ...0ra ¢ I-Iforn-=

1, 2, 3, ... and there exists a sequence [Jn};=l of

open intervals contained in I such that f

2 is not dis-

continuous from Jn at 8- Therefore f(a) = O and there

exists a sequence {an}n=l of points in I converging

to a such that f(an) =0 forn=1,2,3,... and either

a €l forn=1,2,3, ...ora ¢ T - I and there

exists a sequence {Jn};=l of open intervals contained

in I such that f is not discontinuous from Jn at an.
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