Real Analysis Exchange VoZ. 5 (1979-80)
Ladislav Misík, Matematicky ustav SAV, ul. Obrancov mieru 49, 886 25, Bratislava, Czechoslovakia

Maximal Additive and Maximal Multiplicative Families for the Family of All Interval-Darboux

Baire One Functions

1. In his book [I, p. 14] A. M. Bruckner defined the maximal additive and the maximal multiplicative family for a given family F of real functions as follows: A subfamily F_{0} of the family F is called the maximal additive (multiplicative) family for F iff F_{0} is the set of all functions f of F such that $f+g \in F(f g \in F)$ for all $g \in F$.

In [2, Theorem 7.5, p. 109], A.M. Bruckner and J. G. Ceder proved that the maximal additive family for the family of all real Darboux functions of a real variable of the Baire class one is the family of all real continuous functions of a real variable.

In the cited book [1, p. 15] A.M. Bruckner gives the problem to find the maximal multiplicative family for the same family. R. Fleissner recently solved this problem in [3]. The maximal multiplicative family for the family of all real Darboux functions of a real variable of the Baire class one is the family of all real Darboux functions f of a real variable of the Baire class one having the following property:

If f is discontinuous from the right (from the left) at a point a, then $f(a)=0$ and there exists a decreasing (an increasing) sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converging to a such that $f\left(x_{n}\right)=0$ for all n.

In [8], there are given the maximal additive and the maximal multiplicative family for the family of all real β-Darboux Baire one functions defined on a finite dimensional strictly convex Banach space, where B is the base of all spherical neighborhoods. In this paper, we solve the problem of the maximal additive and maximal multiplicative family for the family of all real Interval-Darboux Baire one functions.
2. In [4], it is proved that a finite derivative of an additive Interval-function possesses the Darboux property in the strong sense on every interval. A real function f defined on the n-dimensional euclidean space E_{n} possesses the Darboux property in the strong sense on a closed interval I iff for every two points $p, q \in I$ and for each real number c such that $(f(p)-c) \cdot(f(q)-c)<0$, there exists a point z from the interior of I such that $f(z)=c$.

In [9], C. J. Neugebauer introduced a class of some connected sets in E_{n}, called Darboux sets, and he said that a real function f defined on E_{n} possesses the Darboux property iff it maps every Darboux set into a connected set. In [6, p. 46] it is proved that a real function defined on E_{n} has the Darboux property in the sense of C. J. Neugebauer iff it possesses the

Darboux property in the strong sense on every closed interval.

We recall the definition of a \boldsymbol{B}-Darboux function. Let X be a topological space and let B be a base for the topology in X . In [5], there is given the following definition: A real function f defined on X is called B-Darboux iff for each $A \in \mathcal{B}$, every $x, y \in \bar{A}$ (\bar{A} denotes the closure of A) and each $c \in(\min (f(x), f(y))$, max $(f(x), f(y)))$ there exists a point $z \in A$ such that $f(z)=c$. If X is E_{n} and B is the system of all open intervals in E_{n}, we shall call \mathbb{B}-Darboux functions Interval-Darboux functions. Interval-Darboux functions are functions which possess the Darboux property in the strong sense on every closed interval.

Let us recall the generalization of the theorem of Young for \mathcal{B}-Darboux functions:

Theorem 1. [7, Satz 9, p. 425] Let X be a complete metric space and let \mathcal{B} be a base in X having the following two properties:
(1*) For each open neighborhood U of a point $x \in X$ and for each $B \in \mathcal{B}$ satisfying $x \in \bar{B}$ there exists a $C \in \mathcal{B}$ such that $C \subset U \cap B$ and $x \in \bar{C}-C$.
(2) For each $B \in \mathcal{B}$ and for each decomposition of B into two non empty disjoint sets A_{1} and A_{2} such that $\bar{U} \cap B \subset A_{1}$ and $\bar{U} \cap B \subset A_{2}$ respectively for each $U \in \mathcal{B}$ which is contained in A_{1} and A_{2}, the sets $A_{1}^{\prime} \cap A_{2}$ and $A_{1} \cap A_{2}^{\prime}$ are non empty (A_{1}^{\prime} denotes the derived set of A_{1}).

Then a real Baire one function f defined on X is
\mathcal{B}-Darboux iff for each $B \in \mathcal{B}$ and for each $x \in X$ satisfying $x \in \bar{B}-B$ there exists a simple sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converging to x such that $x_{n} \in B$ for $n=1,2$, $3, \ldots$ and $\lim _{n-\infty} f\left(x_{n}\right)=f(x)$.

We also recall that for $X=E_{n}$ and for the base of all open intervals in E_{n} the properties (1*) and (2) hold (see [5, pp. 47 - 48]).
3. Let $a_{1}<b_{1}, \ldots, a_{n}<b_{n}$ and let $J=\left(a_{1}, \ldots, a_{n}\right.$; $\left.b_{1}, \ldots, b_{n}\right)$ be the open interval $\left\{\left(x_{1}, \ldots, x_{n}\right) \in E_{n}: a_{i}<\right.$ $<x_{i}<b_{i}$ for $\left.i=1,2, \ldots, n\right\}$. Let J_{k} and J_{k+1} respectively be the open intervals ($a_{1}-\frac{1}{K}, \ldots, a_{n}-\frac{1}{K} ; b_{1}+\frac{1}{k}, \ldots b_{n}+\frac{1}{k}$) and $\left(a_{1}-\frac{l}{k+1}, \ldots, a_{n}-\frac{1}{k+1} ; b_{1}+\frac{l}{k+1}, \ldots, b_{n}+\frac{l}{k+1}\right)$.

Let φ_{k} be a bounded real continuous function on $E_{n}-J_{k}$ and let ψ_{k} be a real continuous function on \bar{J}. It is easy to see that there exists a continuous function X_{k} defined on \bar{J}_{k+1} such that $X_{k}(A)=[-k-1, k+1]$ for each set $A=\left(\bar{J}_{k+1}-J_{k+1}\right) \cap B$; where $B \in \mathcal{B}$ is an open interval with the centre in $\bar{J}_{k+1}-J_{K+1}$ and the diameter (diam A) of the set A is not less than $\frac{1}{k+1}$. By the Tietze extension theorem, there exists a real bounded continuous function $\varnothing_{k}=\varnothing\left(\varphi_{K}, X_{k}, \psi_{k}\right)$ defined on E_{n} such that $\varnothing_{K} / E_{n}-J_{K}=\varphi_{K}, \varnothing_{K} / J_{K+1}-J_{k+1}=X_{K}, \varnothing_{K} / J=\psi_{K}$ and $\sup \left|\varnothing\left(\varphi_{K} X_{K}, \psi_{K}\right)\right|=\max \left(\sup \left|\varphi_{K}\right|, \sup \left|X_{K}\right|\right.$, $\sup ||k| k|)$.

We shall call a real function f defined on a closed interval \bar{J}, where J is an open interval, an Interval-Dar-
boux function on \bar{J} iff for each open interval I contained in J, for every $x, y \in \bar{I}$ and for each $c \in(\min (f(x), f(y))$, $\max (f(x), f(y)))$ there exists a point $z \in I$ such that $f(z)=c$.

Lemma 1. (Extension lemma) Let J be an open interval
in E_{n} and let f be a real Interval-Darboux Baire one function defined on \bar{J}. Then there exists a real In-terval-Darboux Baire one function F defined on E_{n} such that $F / \bar{J}=f$.

Proof. Since f is a Baire one function on \bar{J} there exists a sequence $\left\{\psi_{k}\right\}_{k=1}^{\infty}$ of real continuous functions defined on \bar{J} such that $f(x)=\lim \psi_{K}(x)$ for each $x \in \bar{J}$.

Let J_{k} and X_{k} for $k=1,2,3, \ldots$ be such as above. Let c be a real number. Let φ_{I} be a function defined on $E_{n}-J_{1}$ and $\varphi_{1}(x)=c$ for each $x \in E_{n}-J_{1}$. Let \varnothing_{1} be a function $\varnothing\left(\varphi_{1}, X_{1}, \psi_{1}\right)$. By the induction, and using the function \varnothing_{k}, we define \varnothing_{k+1} as follows: Let φ_{K+1} be the restriction of \varnothing_{K} to $E_{n}-J_{K+1}$. Then $\varnothing_{\mathrm{K}+1}$ is a function $\varnothing\left(\varphi_{\mathrm{K}+1}, X_{\mathrm{k}+1}, \psi_{\mathrm{K}+1}\right)$. The sequence $\left\{\varnothing_{k}\right\}_{k=1}^{\infty}$ is a sequence of bounded continuous functions defined on E_{n}. It is easy to prove that this sequence converges at each point $x \in E_{n}$. Let F be the pointwise limit of $\left\{\varnothing_{K}\right\}_{k=1}^{\infty}$. Then $F / \bar{J}=\lim _{K_{-\infty}} \psi_{k}=f$ and $F / E_{n}-\bar{J}$ is continuous function. The function F is a Baire one function on E_{n}.

Let I be an open interval and let $x \in E_{n}$ be a point for which $x \in \bar{I}-I$. If $x \in E_{n}-\bar{J}$, then there
exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points in I converging to x and $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F(x)$ since $F / E_{n}-\bar{J}$ is continuous. If $I \subset J$, then there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points in I converging to x and $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F(x)$ since $F / \bar{J}=f$ and f is a real Interval-Darboux Baire one function on \bar{J}. If $x \in \bar{J}-J$ and $I \cap\left(E_{n}-\bar{J}\right) \neq \varnothing$, then there also exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points in I converging to x and $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F(x)$ since, according to the definition of the sequence $\left\{X_{K}\right\}_{k=1}^{\infty}$, F maps every neighborhood of x in $E_{n}-\bar{J}$ onto ($-\infty, \infty$). From Theorem l, it follows that F is an IntervalDarboux function and the lemma is proved.
4. Theorem.2. (Maximal additive family for the family of all real Interval-Darboux Baire one functions) The maximal additive family A for the family of all Interval-Darboux Baire one functions defined on E_{n} is the family of all real continuous functions defined on E_{n}.

Proof. Let f be a real continuous function defined on E_{n}. Then $f+g$ is an Interval-Darboux Baire one function on E_{n} for each Interval-Darboux Baire one function g defined on E_{n}. This is a consequence of Theorem 13 of [7, Satz 13, p. 427]. Therefore f $\in A$.

Let f be a function which is discontinuous at a, $a \in E_{n}$. If f is not a real Interval-Darboux Baire one function on E_{n}, then f does not belong to A since
$f=f+0$ is not a real Interval-Darboux Baire one function on E_{n}. If f is a real Interval-Darboux Baire one function on E_{n}, then it is evident that there exists an open interval I such that a is a vertex of I and $\alpha=\sup \{\inf f(J): J$ is an open interval with one vertex a and which is contained in I\}< inf $\{\sup f(J):$ J is an open interval with one vertex a and which is contained in $I\}=\{B, \quad$ It is easy to prove that $\alpha \leq f(a) \leq \beta$. If we define g on \bar{I} as follows: $g(x)=-f(x)$ for each $x \in \bar{I}-\{a\}$ and $g(a) \neq-f(a)$, $-\beta \leq g(a) \leq-\alpha$, then g is an Interval-Darboux Baire one function on \bar{I}. According to Lemma 1 , there is a real Interval-Darboux Baire one function defined on E_{n} such that $G / \bar{I}=g$. The function $f+G$ is a real Baire one function on E_{n}, but it is not an IntervalDarboux function on E_{n} since $f(x)+G(x)=0$ for each $x \in \bar{I}-\{a\}$ and $f(a)+G(a) \neq 0$. Therefore $f \notin A$.
5. Let f be a real function defined on E_{n}, let a be a point of E_{n} and let I be an open interval in E_{n} such that $a \in \bar{I}-I$. We shall say that a sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ of open intervals converges from an open interval I to a point a iff $\left\{J_{n}\right\}_{n=1}^{\infty}$ is decreasing sequence of open intervals contained in I, $a \in J_{n}-J_{n}$ for $n=1$, 2, 3, ... and $\lim _{n \rightarrow \infty} \operatorname{diam} J_{n}=0$. We shall say that f is discontinuous from I at a iff there exists a sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ of open intervals converging from I to a such that $\sup _{n} \inf f\left(J_{n}\right)<\inf _{n} \sup f\left(J_{n}\right)$.

Let M be the maximal multiplicative family for the family of all real Interval-Darboux Baire one functions defined on E_{n}.

Lemma 2. Let $f \in M$. Then $f^{2} \in M$.
Proof. Let $f \in M$. Let g be a real IntervalDarboux Baire one function defined on E_{n}. Then $f g$ is a real Interval-Darboux Baire one function defined on E_{n} since $f \in M$. Therefore also the function $f^{2} g=f(f g)$ is a real Interval-Darboux Baire one function on E_{n}. Thus $f^{2} \in M$.

Lemma 3. Let f be a nonnegative Interval-Darboux Baire one function defined on E_{n}. Let I be an open interval in E_{n} and $a \in E_{n}$ such that $a \in \bar{I}-I$. If f is discontinuous from I at a and $f(a)>0$, then $f \notin M$.

Proof. Let f be a nonnegative Interval-Darboux Baire one function defined on E_{n} which is discontinuous from I at a. We can assume that a is a vertex of I. Then there exist two numbers α and β such that $\alpha=\sup _{\mathrm{N}}$ $\inf _{n} f\left(J_{n}\right)<\inf \sup f\left(J_{n}\right)=\beta$ for each sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ converging from I to a. Then $\alpha \leq f(a) \leq \beta$.

If $\alpha=f(a)$, then there exists an open interval J with one vertex a contained in I such that $f(J) \subset\left(\frac{\alpha}{2}, \infty\right)$. If $\alpha<f(a)$, we take a number y from $(\alpha, f(a))$.

Now, we define a function g on \bar{I} by: $g(x)=$
$\frac{2}{\max (\alpha, 2 f(x))}$ for each $x \in \bar{I}-\{a\}$ and $g(a) \in\left(\frac{I}{\beta}, \frac{l}{\alpha}\right)-$ $\left\{\frac{1}{f(a)}\right\}$ if $\alpha=f(a)$ and $g(x)=\frac{2}{\max (y, 2 f(x))}$ for each
$x \in \bar{I}-\{a\}$ and $g(a)=\frac{1}{y}$ if $\alpha<f(a)$. The function g is a real Interval-Darboux Baire one function on \bar{I}. By the extension lemma, there exists a rea. Interval-Darboux Baire one extension h of g defined on E_{n}. The function fh is not a real Interval-Darboux function on E_{n} since we have:
(fh) $(x)=I$ for each $x \in \bar{J}-\{a\}$ and (fh) (a) $\neq 1$ if $\alpha=f(a)$ and
$(f h)(x)=$ for each $x \in \bar{I}-\{a\}$ which satisfies $y \leq 2 f(x),(f h)(x)=\frac{2 f(x)}{y}<I$ for each $x \in \bar{I}-\{a\}$ which satisfies $2 f(x)<\gamma$ and $(f h)(a)=\frac{f(a)}{Y}>_{I}$ if $\alpha<f(a)$.

Therefore $f \notin \mathrm{M}$.
Lemma 4. Let f be a nonnegative Interval-Darboux Baire one function defined on E_{n} which is discontinuous from an open interval I at $a, a \in E_{n}$. If $f(\bar{I}-\{a\}) \subset$ $(0, \infty)$, then $f \notin M$.

Proof. Let f be as we assume in the lemma. Then we can assume that a is a vertex of I. Then there exist two numbers α and R such that $\alpha=\sup _{n} \inf f\left(J_{n}\right)<$ inf sup $f\left(J_{n}\right)=\beta$ for each sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ converging from I to a. According to Lemma 3, $f \notin M$ if $f(a)>0$. Let $f(a)=0$. Then $\alpha=0$. Let g be a function defined on \bar{I} by $: g(x)=\frac{l}{f(x)}$ for each $x \in \bar{I}-\{a\}$ and $g(a)=\frac{l}{\min (l, \beta)} . \quad$ It is easy to prove that g is a real Interval-Darboux Baire one function on \bar{I}. By the ex-
tension lemma, there exists a real Interval-Darboux Baire one function h defined on E_{n} which extends g. The function $f h$ is not a real Interval-Darboux function on E_{n} since $(f h)(x)=I$ for each $x \in \bar{I}-\{a\}$ and $(f h)(a)=0$.

Therefore $f \notin M$.
Lemma 5. Let f be a nonnegative IntervalDarboux Baire one function defined on E_{n} which is discontinuous from an open interval I at $a, a \in E_{n}$. Let $f(I) \subset(0, \infty)$. If f is discontinuous from every interval J at each point $z \in \bar{I}$ such that $f(z)=0$, $J \subset I$ and $z \in \bar{J}-J$, then $f \notin M$.

Proof. According to Lemma 3, f $\notin \operatorname{M}$ if $f(a)>0$. Let $f(a)=0$. Let $J=\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)$ be such an open interval for which $J \subset I$ and $\min f(\bar{J})=0$. Then we define a number $(f ; J)$ as follows: $(f ; J)=\max$ \{i: if $z=\left(z_{I}, \ldots, z_{n}\right) \in \bar{J}$ is such that $f(z)=0$, then the cardinal number of the $\operatorname{set}\{j \in\{1,2, \ldots, n\}$: $z_{j} \notin\left\{a_{j}, b_{j}\right\}$ is at most $\left.n-i\right\}$. Since $f(J) \subset(0, \infty)$, $J \subset I$ and $\min f(\bar{J})=0$, we have $(f ; J) \geq 1$. Thus also $(f ; I) \geq 1$.

It is easy to prove that for each $z \in \bar{I}$ satisfying $f(z)=0$ there exists a positive number $\alpha(z)$ such that sup $f(J) \geq \alpha(z)$ for each open interval which is contained in I and for which $z \in \bar{J}-J$.

If there exists an open interval $J=\left(a_{1}, \ldots, a_{n}\right.$;
$\left.b_{1}, \ldots, b_{n}\right)$ contained in I for which $(f ; J)=n$, then $\varnothing \neq\{z \in \bar{J}: f(z)=0\} \subset\left\{u=\left(u_{1}, \ldots, u_{\eta}\right) \in \bar{J}:\right.$
$u_{i} \in\left\{a_{i}, b_{i}\right\}$ for each $\left.i=1,2, \ldots, n\right\}$. But, then the set $\{z \in \bar{J}: f(z)=0\}$ is finite and therefore there exists an open interval Y contained in J such that f is discontinuous from Y at a point $y \in \bar{Y}-Y$ and $f(\bar{Y}-\{y\}) \subset(0, \infty)$. According to Lemma 4, $f \notin M$.

Let k be a positive integer satisfying $n-l \geq k \geq(f i)$ with the following property: If there exists such an open interval J contained in I for which $\min f(\bar{J})=0$ and $(f ; J) \geq k+l$, then f does not belong to M.

Now, suppose there exists an open interval J contained in I such that $(f ; J)=k$. We shall prove that f does not belong to M. Then there exists a point $z=\left(z_{1}, \ldots z_{n}\right) \in J, f(z)=0$ and $n-k$ different positive intergers i_{1}, \ldots, i_{n-k} in $\{1,2, \ldots, n\}$ such that $z_{i} \in\left\{a_{i}, b_{i}\right\}$ iff $i \in\{1,2, \ldots, n\}-$ $\left\{i_{1}, \ldots, i_{n-k}\right\}$. Then there exists a positive number ϵ_{0} such that $a_{i_{s}}<z_{i_{s}}-\epsilon_{0}<z_{i_{s}}+\epsilon_{0}<b_{i_{s}}$ for $s=l$, 2, ..., n-k. Let $0<\epsilon \leq \epsilon_{0}$ and $B_{\epsilon}=\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$ $\in \mathcal{J}: x_{i}=z_{i}$ for $i \in\{1,2, \ldots, n\}-\left\{i_{1}, \ldots, i_{n-k}\right\}$ and $z_{i_{s}}-\epsilon \leq x_{i_{s}} \leq z_{i_{s}}+\in$ for $\left.s=1,2, \ldots, n-k\right\}$. We shall prove: If there exists an \in such that $0<\epsilon \leq \epsilon_{0}$ and $f\left(B_{\epsilon}\right)=\{0\}$, then $f \notin M$.

Let $0<\epsilon \leq \epsilon_{0}$ and $f\left(B_{\epsilon}\right)=\{0\}$. For $n=1,2,3, \ldots$ we put $B_{n}=\left\{v \in B: \alpha(v) \geq \frac{1}{n}\right\}$. Then we have: $B_{\epsilon}=\bigcup_{n=1}^{\infty} B_{n}$.

Since B is of the second category of Baire in itself, there exists an n such that B_{n} is not nondense in B_{ϵ}.

Thus, for $s=1,2, \ldots, n-k$, there must exist numbers $c_{i_{s}}$ and $d_{i_{s}}$ such that $z_{i_{s}}-\epsilon \leq c_{i_{s}}<d_{i_{s}} \leq z_{i_{s}}+\epsilon$ for $s=1,2, \ldots, n-k$ and $C=\left\{v \in B_{\epsilon}: c_{i_{s}} \leq v_{i_{s}} \leq d_{i_{s}}\right.$ for $s=1,2, \ldots, n-k\} \subset \bar{B}_{n}$. But, then for each $u \in C$, for each open interval Y which is contained in J and for which $u \in \bar{Y}-Y$ there exists $a v$ in $B_{n} \cap \bar{Y}$. Therefore $0=\inf f(Y)<\frac{l}{n} \leq \sup f(Y)$. This implies that f is discontinuous from Y at u. Thus $f(u)=0$ and $\alpha(u) \geq \frac{1}{n}$ or according to Lemma $3, f \notin M$. Therefore we can assume that $C \subset B_{n}$.

Let $\gamma_{i} \in\left(a_{i}, b_{i}\right)$ for $i \in\{1,2, \ldots, n\}-\left\{i_{1}, \ldots, i_{n-k}\right\}$.
Let Y be the open interval $\left\{\left(x_{1}, \ldots, x_{n}\right) \in E_{n}:\right.$ min $\left(y_{i}, z_{i}\right)<x_{i}<\max \left(y_{i}, z_{i}\right)$ for $i \in\{1,2, \ldots, n\}-$ $\left\{i_{1}, \ldots, i_{n-k}\right\}$ and $c_{i_{s}}<x_{i_{s}}<d_{i_{s}}$ for $s=1,2, \ldots$, $n-k\}$. Let $t \in \bar{Y}-C$. Then $a_{i_{s}}<z_{i_{s}}-\epsilon \leq c_{i_{s}} \leq$ $t_{i_{s}} \leq d_{i_{s}} \leq z_{i_{s}}+\epsilon<b_{i_{s}}$ for $s=1,2, \ldots, n-k$
and the $\operatorname{set}\left\{i \in\{1,2, \ldots, n\}-\left\{i_{1}, \ldots, i_{n-k}\right\}\right.$:
$\left.t_{i} \neq z_{i}\right\}$ is nonempty. Therefore $t \in \bar{J}$ and the cardinal number of the set $\left\{i \in\{I, 2, \ldots, n\}: t_{i} \notin\left\{a_{i}, b_{i}\right\}\right\}$ is at least $n-k+1$. Thus $f(t)>0$ since $(f ; J)=k$. This implies that $\{v \in \bar{Y}: f(v)=0\}=C$. Let g be a function defined by $: g(u)=\frac{1}{f(u)}$ for $u \in \bar{Y}-C$ and $g(u)=n$ for $u \in C$. From the generalization of the theorem of Young, we conclude that g is a real Interval-Darboux Baire one function on \bar{Y}. From the extension lemma,
there exists a real Interval-Darboux Baire one function h defined on E_{n} which extends g. But, $f \notin M$ since (fh) (u) $=1$ for each $u \in \bar{Y}-C$ and (fh)(u) $=0$ for each $u \in C$.

If there does not exists an ϵ such that $f\left(B_{\epsilon}\right)=\{0\}$ and $0<\epsilon \leq \epsilon_{0}$, then there exists a $w \in B_{\eta}-\{v \in \bar{J}:$ $f(v)=0\}$ for $\eta=\frac{1}{2} \epsilon_{O}$. Then $f(w)>0$. According to Lemma 3, $f \notin M$ if there exists an open interval Y such that $Y \subset J, W \in \bar{Y}-Y$ and f is discontinuous from Y at w.

Let us assume that f is not discontinuous from any open interval Y at w such that $Y \subset J$ and $w \in \bar{Y}-Y$. Let $\sigma>0$ and $B_{w, \sigma}=\left\{t \in B_{\eta} \vdots w_{i_{S}}-\sigma<t_{i_{S}}<w_{i_{S}}+\right.$ σ for $s=1,2, \ldots, n-k\}$. It is easy to prove that there exists a positive number σ such that $f(t)>\frac{f(w)}{2}>0$ for each $t \in B_{W, \sigma}$. Let $W=U\left\{B_{W, \sigma}: \sigma>0, f\left(B_{W, \sigma}\right) \subset\right.$ $(0, \infty)\}$. There exists such a positive number ω that $W=\left\{t \in \bar{I}: t_{i}=z_{i}\right.$ for $i \in\{1,2, \ldots, n\}-\left\{i_{1}, \ldots, i_{n-k}\right\}$ and $w_{i_{s}}-w<t_{i_{s}}<w_{i_{s}}+w$ for $\left.s=1,2, \ldots, n-k\right\}$. It is evident that $\omega \leq \max \left\{\left|w_{i_{s}}-z_{i_{s}}\right|: s=1,2, \ldots\right.$, $n-k\}<\frac{l}{2} \epsilon_{0}$ and $f(W) \subset(0, \infty)$. Since $\bar{W}-W$ is compact, we have $\min f(\bar{W})=0^{\circ}$. It also holds: $a_{i_{S}}<z_{i_{S}}-\epsilon_{0}<$ $w_{i_{s}}-w<w_{i_{s}}+u<z_{i_{s}}+\epsilon_{0}<b_{i_{s}}$ for $s=1,2, \ldots, n-k$.

Let $y_{i} \in\left(a_{i}, b_{i}\right)$ and $\operatorname{let} c_{i}=\min \left(z_{i}, \gamma_{i}\right), d_{i}=$ $\max \left(z_{i}, Y_{i}\right)$ for $i \in\{1,2, \ldots, n\}\left\{I_{1}, \ldots, i_{n-k}\right\}$. Let
$c_{i_{s}}=w_{i_{s}}-\omega, d_{i_{s}}=w_{i_{s}}+w$ for $s=1,2, \ldots, n-k$.
Let $Y=\left(c_{1}, \ldots, c_{n} ; d_{1}, \ldots, d_{n}\right)$. Then $Y \subset J \subset I$.
Let $t \in \bar{Y}$ and $\left\{i \in\{1,2, \ldots, n\}-\left\{i_{l}, \ldots, i_{n-k}\right\}\right.$:
$\left.t_{i} \neq z_{i}\right\} \neq \varnothing$. Then the cardinal number of the set $\left\{i \in\{1,2, \ldots, n\}: t_{i} \notin\left\{a_{i}, b_{i}\right\}\right\}$ is at least $n-k+1$. Since $t \in \bar{J}$ then $f(t)$ is a positive number. If f is such a point of \bar{Y} for which $t_{i}=z_{i}$ for $i \epsilon$ $\{I, 2, \ldots, n\}-\left\{i_{1}, \ldots, i_{n-k}\right\}$ and $c_{i_{s}}=w_{i_{s}}-\omega$ $<t_{i_{s}}<w_{i_{s}}+\omega=d_{i_{s}}$ for $s=1,2, \ldots, n-k$, then $t \in W$. Since $f(W) \subset(0, \infty), f(t)>0$. Therefore it must hold that $t \in \bar{W}-W$ for each $t \in \bar{Y}$ satisfying $f(t)=0$. But, then the cardinal number of the set
$\left\{i \in\{l, 2, \ldots, n\}: t_{i} \notin\left\{c_{i}, d_{i}\right\}\right\}$ is at most $n-(k+l)$ for each $t \in \bar{Y}$ satisfying $f(t)=0$. Therefore $(f ; Y) \geq k+1$. From the definition of the number k, we get that f does not belong to M.

From the induction principie, it is clear that we have proved the following : If there exists such an open interval J contained in I for which ($f ; J$) ≥ 1, then $f \notin M$. But, then $f \notin M$ since ($f ; I$) ≥ 1 and the lemma is proved.

Theorem 3. (Maximal multiplicative family for the family of all real Interval-Darboux Baire one functions) A real function f defined on E_{n} belongs to the maximal multiplicative family M for the family of all real Interval-Darboux Baire one functions defined
on E_{n} iff f is a real Interval-Darboux Baire one function on E_{n} with the following property:

If f is discontinuous from an open interval I at a point a, then $f(a)=0$ and there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converging to a such that $f\left(a_{n}\right)=0$ for all n and either $a_{n} \in I$ for $n=1,2,3, \ldots$ or $a_{n} \in \bar{I}-I$ and there exists a sequence $\left\{I_{n}\right\}_{n=1}^{\infty}$ of open intervals contained in I such that f is not discontinuous from I_{n} at a_{n}.

Proof. Let f be a real Interval-Darboux Baire one function defined on E_{n} with the property mentioned in the theorem. Let g be a real Interval-Darboux Baire one function defined on E_{n}. Then $f g$ is a Baire one function on E_{n}. To prove that $f g$ is also an Interval-Darboux function on E_{n}, we use the generalization of the theorem of Young. Let a $\in E_{n}$, let. I be an open interval such that $a \in \bar{I}$ - I. If f is not discontinuous from I at a, then $\sup _{n} \inf f\left(J_{n}\right)=$ inf sup $f\left(J_{n}\right)$ for each sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ of open intervals converging from I to a. Then it hoids : $f(a)=$ $\sup \inf f\left(J_{n}\right)=\inf _{n} \sup f\left(J_{n}\right)$ since f is an IntervalDarboux function on E_{n}. According to Theorem I, there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of points such that $x_{n} \in J_{n}$ and $g\left(x_{n}\right) \in\left(g(a)-\frac{l}{n}, g(a)+\frac{l}{n}\right)$
for all n. We have : $f(a)=\sup _{n} \inf f\left(J_{n}\right) \leq \lim _{n \rightarrow \infty} \inf$ $f\left(x_{n}\right) \leq \lim _{n \rightarrow \infty} \sup f\left(x_{n}\right) \leq \inf _{n} \sup f\left(J_{n}\right)=f(a)$. Therefore
$\lim _{n-\infty}\left(f\left(x_{n}\right) g\left(x_{n}\right)\right)=f(a) g(a)$ and $x_{n} \in I$.
If f is discontinuous from I at a, then $f(a)=0$ and there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converging to a such that $f\left(a_{n}\right)=0$ for all n, and either $a_{n} \in I$ for $n=1,2, \ldots$ or $a_{n} \in \bar{I}-I$ for $n=1,2,3, \ldots$ and there exists a sequence $\left\{I_{n}\right\}_{n=1}^{\infty}$ of open intervals contained in I such that f is not discontinuous from I_{n} at a_{n}. In the first case, we have $a_{n} \in I$ for $n=1,2,3, \ldots$ and $\lim _{n \rightarrow \infty}\left(f\left(a_{n}\right) g\left(a_{n}\right)\right)=0=f(a) g(a)$.
In the second case, we prove, as shown above, that for each $n=1,2$, ... there exists a sequence $\left\{x_{n, k}\right\}_{k=1}^{\infty}$ of points of I_{n} such that $\lim _{k \rightarrow \infty}\left(f\left(x_{n, k}\right) g\left(x_{n, k}\right)\right)$
$=f\left(a_{n}\right) g\left(a_{n}\right)=0$. Let k_{n} be such a positive integer for which $\lim _{n \rightarrow \infty} x_{n, k_{n}}=$ a and $\left|f\left(x_{n, k_{n}}\right)\right|<\frac{1}{n}$ for $n=$ $1,2,3, \ldots$. Then we have : $\left\{x_{n, k_{n}}\right\}_{n=1}^{\infty}$ is a sequence of points in I converging to a such that $\lim _{\mathrm{n} \rightarrow \infty}$ $\left(f\left(x_{n, k_{n}}\right) g\left(x_{n, k_{n}}\right)\right)=f(a) g(a)$. From the generalization of the theorem of Young, it follows that the function fg is an Interval-Darboux function.

So we have proved that $f \in M$.

$$
\text { Now, let } f \in M \text {. Since } f=f \cdot l, f \text { is a real }
$$

Interval-Darboux Baire one function. Let I be an open interval, $a \in E_{n}$ and $a \in \bar{I}=I$. Let f be discontinuous from I at a. Then f^{2} is also discontinuous from I at a. According to Lemmas $2,3,4$, and $5, f^{2}(a)=0$ and
there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of points in \bar{I} converging to a that $f^{2}\left(a_{n}\right)=0$ for $n=1,2,3, \ldots$, and either $a_{n} \in I$ for $n=1,2,3, \ldots$ or $a_{n} \in \bar{I}-I$ for $n=$ $1,2,3, \ldots$ and there exists a sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ of open intervals contained in I such that f^{2} is not discontinuous from J_{n} at a_{n}. Therefore $f(a)=0$ and there exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of points in \bar{I} converging to a such that $f\left(a_{n}\right)=0$ for $n=1,2,3, \ldots$ and either $a_{n} \in I$ for $n=1,2,3, \ldots$ or $a_{n} \in \bar{I}-I$ and there exists a sequence $\left\{J_{n}\right\}_{n=1}^{\infty}$ of open intervals contained in I such that f is not discontinuous from J_{n} at a_{n}.

References

[1] Bruckner A. M., Differentiation of Real Functions; Springer-Verlag Berlin, Heidelberg, New York, 1978
[2] Bruckner A. M. and Ceder J. G., Darboux continuity, Jber. Deut, Math. Ver. 67, 1975, 93-117
[3] Fleissner R., A note on Baire l Darboux Functions, Real Analysis Exchange 3, 1977-78, 104-106
[4] Mišík L., Der Mittelwertsatz für additive Intervallfunktionen, Fund. Math. 45, 1957, 64-70
[5] Misík L., Uber die Funktionen der ersten Klasse mit der Eigenschaft von Darboux, Mat.-fyz. cas. SAV 14, 1964, 44-48
[6] Mišík L., Uber die Eigenschaft von Darboux fur Funktionen, Mat,-fyz. cas. SAV 16, 1966, 45-52
[7] Misík L., Uber die Eigenschaft von Darboux und einiger Klassen von Funktionen, Revue Roum. Math. pures et appl. 4, 1966, 411-430
[8] Mišík L., Maximal additive and multiplicative family for the family of B-Darboux Baire one functions, (to appear)
[9] Neugebauer C.J., Darboux property for functions of several variables, Trans, Amer. Math. Soc. 107, 1963, 30-39

Received January 8, 1980

