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 Maximal Additive and Maximal Multiplicative Families

 for the Family of All Interval-Darboux

 Baire One Functions

 1. In his book [1, p. 14] A. M. Bruckner defined

 the maximal additive and the maximal multiplicative

 family for a given family F of real functions as

 follows: A subfamily Fq of the family F is called the
 maximal additive (multiplicative) family for F iff

 Fq is the set of all functions f of F such that
 f + g 6 F (fg ç F) for all g f F.

 In [2 , Theorem 7.5>P> 109], A.M. Bruckner and

 J. G. Ceder proved that the. maximal additive family

 for the family of all real Darboux functions of a real

 variable of the Baire class one is the family of all

 real continuous functions of a real variable.

 In the cited book [1, p. 15] A.M. Bruckner gives

 the problem to find the maximal multiplicative family

 for the same family. R. Fleissner recently solved this

 problem in [3]- The maximal multiplicative family for

 the family of all real Darboux functions of a real

 variable of the Baire class one is the family of all

 real Darboux functions f of a real variable of the

 Baire class one having the following property:
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 If f is discontinuous from the right (from the

 left) at a point a, then f(a) = 0 and there exists a

 decreasing (an increasing) sequence [xn}^=]_ converging
 to a such that f(x v ) = 0 for all n. v n'

 In [8], there are given the maximal additive and

 the maximal multiplicative family for the family of

 all real á -Darboux Baire one functions defined on a

 finite dimensional strictly convex Banach space ,

 where is the base of all spherical neighborhoods.

 In this paper, we solve the problem of the maximal

 additive and maximal multiplicative family for the

 family of all real Interval-Darboux Baire one functions.

 2. In [4], it is proved that a finite derivative

 of an additive Interval-function possesses the Darboux

 property in the strong sense on every interval. A

 real function f defined on the n-dimensional euclidean

 space En possesses the Darboux property in the strong
 sense on a closed interval I iff for every two points

 Pj q ç I and for each real number c such that

 (f(p) - c)«(f(q) - c) < Oj there exists a point z

 from the interior of I such that f(z) = c.

 In [9] i C. J. Neugebauer introduced a class of

 some connected sets in E^j called Darboux sets, and
 he said that a real function f defined on E possesses

 n

 the Darboux property iff it maps every Darboux set into

 a connected set. In [6, p. 46] it is proved that a

 real function defined on En has the Darboux property in
 the sense of C. J. Neugebauer iff it possesses the ■
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 Darboux property in the strong sense on every closed

 interval .

 Wé recall the definition of a -Darboux function.

 Let X be a topological space and let ^ be a base for the

 topology in X. In [5 ]3 there is given the following

 definition: A real function f defined on X is called

 "Íí-Darboux iff for each A ç 5, every x, y ç I (A denotes

 the closure of A) and each c ç (min (f(x), f(y)), max

 (f(x),f(y))) there exists a point z ç A such that f(z)=c.

 If * X is En and ^ is the system of all open intervals
 in E , we shall call 2? -Darboux functions Interval-Darboux

 n

 functions. Interval-Darboux functions are functions

 which possess the Darboux property in the strong sense

 on every closed interval.

 Let us recall the generalization of the theorem

 of Young for 25 -Darboux functions:

 Theorem 1. [J, Satz 9, p. 425] Let X be a complete

 metric space and let Í be a base in X having the

 following two properties:

 (1*) For each open neighborhood U of a point x g X

 and for each B ç # satisfying x ç B there exists a

 C e TS such that C c U n B and x ç Č - C.

 (2) For each B ç U and for each decomposition of B

 into two non empty disjoint sets A^ and A^ such that

 U n B c: A^ and U n B c Ag respectively for each U ç 'ô
 t

 which is contained in A^ and the sets A^nAg and
 f t

 A-jpAg are non empty (A^ denotes the derived set of A^).
 Then a real Baire one function f defined on X is
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 2$ -Darboux iff for each B ç# and for each x ç X

 satisfying x ç B - B there exists a simple sequence

 {xn}"_i converging to x such that xß ç B for n = 1,2,

 3j... and lim f(xn) = f(x)'
 n_*o

 We also recall that for X = E and for the base
 n

 of all open intervals in the properties (1*) and (2)

 hold (see [5j pp . 4-7 - 48]).

 3 • Let a^ < b^ , afi < bQ and let J = (a^, . . . ¿anj
 bļ,...,bn) be the open interval [(x^,...,xn) ç E^: a^ <
 < x^ < b^ for i = 1, 2, . .., n} . Let and respec-

 tively be the open intervals (a]_~£> • • • anc*

 (al~ K+P " ' * ,anTE+T5 bl+ Īē+T^ * * ' íbn+Íč+T^ •

 Let (pfc be a bounded real continuous function on
 E - J, and let è be a real continuous function on n fc "le

 J. It is easy to see that there exists a continuous

 function X defined on Jfc+ļ_ such that Xfc(A) = £-K-l,K:+l]

 for each set A = ("Jfc+1 - JK+i)nBj where' BçSis an open interval
 with the centre in ~ an<* the diameter (diam A)

 of the set A is not less than - . By the Tietze

 extension theorem, there exists a real bounded con-

 tinuous function X , defined on E^

 such that 0/En-JK = „R, = XK, 0K/J = łfc

 and sup ļ 0 (Vfc Xfc, |= max (sup , sup | XJ ,

 sup ^K|).
 We shall call a real function f defined on a closed

 interval J, where J is an open interval, an Interval-Dar-
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 boux function on J iff for each open interval I contained

 in Jj for every x, y ç T and for each c g (min (f(x)j f(y))í

 max (f(x), f (y) ) ) there exists a point z £ I such that

 f(z) = c.

 Lemma 1. (Extension lemma) Let J be an open interval

 in E and let f be a real Interval-Darboux Baire one
 n

 function defined on J. Then there exists a real In-

 terval-Darboux Baire one function F defined on E such
 n

 that F/J = f .

 Proof. Since f is a Baire one function on J there

 exists a sequence {i|ik}ķ_ļ real continuous functions

 defined on 'J such that f (x) = lim i|ifc(x) for each x £ J.
 Let J. and X, for tc = 1, 2, 3» • • • be such as

 above. Let c be a real number. Let ^ be a function
 defined on E - J, and m, (x) ' = c for each x f E -J,. n i ^iv ' n 1

 Let 01 be a function 0(c X^} By the induction,

 and using the function 0 we define 0^+j_ as follows:

 Let cp^ļ be. the restriction of 0 to En - Then
 0K+1 is a function '+i> ^k+I^* The secluence
 Í ^tc3 fc=l ^"s a secluerlce bounded continuous functions

 defined on En- It is easy to prove that this sequence

 converges at each point x £ En< Let F be the pointwise

 limit of Then F/J = lim ^ = f and F/E^-J
 k_co

 is continuous function. The function F is a Baire one

 function on E .
 n

 Let I be an open interval and let x ç E^ be a
 point for which x ç I - I. If x ç E ■ J, then there
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 exists a sequence Cxn^n=l P°^-n^s i-n ^ converging
 to X and lim F(x ' ) = F(x) v ' since F/E -J is continuous. ' ny v ' 'n

 n-^oo

 If I c Jj then there exists a sequence { xn3 n=l oi'

 points in I converging to x and lim F(x ) = F(x)
 n-*» n

 since F/J = f and f is a real Interval-Darboux Baire

 one function on J. If x ç J - J and I n(En~J) ¿ 03

 then there also exists a sequence [xn}^=i of" P°i-nts
 in I converging to x and lim F(x ) = F(x) since,

 n-*» n

 according to the definition of the sequence (X

 F maps every neighborhood of x in - J onto (-»,<»).

 From Theorem 1, it follows that F is an Interval-

 Darboux function and the lemma is proved.

 4. Theorem- 2. (Maximal additive family for the

 family of all real Interval-Darboux Baire one functions)

 The maximal additive family A for the family of all

 Interval-Darboux Baire one functions defined on E is
 n

 the family of all real continuous functions defined

 on En.
 Proof. Let f be a real continuous function defined

 on E . Then f + g is an Interval-Darboux Baire one

 function on E for each Interval-Darboux Baire one
 n

 function g defined on E . This is a consequence of

 Theorem 13 of ['J, Satz 13, p. 427]. Therefore f ç A.

 Let f be a function which is discontinuous at a,

 a c c E • If f is not a real Interval-Darboux Baire one c n

 function on E , then f does not belong to A since
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 f = f + 0 is not a real Interval-Darboux Baire one

 function on E . If f is a real Interval-Darboux Baire
 n

 one function on E , then it is evident that there exists
 n

 an open interval I such that a is a vertex of I and

 a = sup {inf f(J) : J is an open 'interval with one

 vertex a and which is contained in I}< inf {sup f(J) :

 J is an open interval with one vertex a and which is

 contained in I}= , g. It is easy to prove that

 a £ f(a) z ß' If we define g on Ī as follows:

 g(x) = -f(x) for each x £ T - [a] and g(a) ¡4

 -ß£g(a) £-a,j then g is an Interval-Darboux Baire one

 function on T. According to Lemma 1¿ there is a real

 Interval-Darboux Baire one function defined on E
 n

 such that G/Ī = g. The function f + G is a real

 Baire one function on E , but it is not an Interval- n' ,

 Darboux function on En since f(x) + G(x) = 0 for each
 X ç I - {a} and f(a) + G(a) ^ 0. Therefore f ¿ A.

 5. Let f be a real function defined on EßJ let

 a be a point of Eß and let I be an open interval in En
 such that a ç T - I. We shall say that a sequence

 { Jn}n=l °Pen intervals converges from an open interval

 I to a point a iff {Jn}™_ļ i-s decreasing sequence of
 open intervals contained in I, a £ for n = 1,

 2, 3} ••• and lim diam J =0. We shall say that f is
 n-*»

 discontinuous from I at a iff there exists a sequence

 {Jn}™_i of open intervals converging from I to a such

 that sup inf f(Jn) < ini" SUP
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 Let M be the maximal multiplicative family for

 the family of all real Interval-Darboux Baire one

 functions defined on E.
 n

 Lemma 2. Let f ç M. Then f^ g M.

 Proof. Let f ç M. Let g be a real Interval-

 Darboux Baire one function defined on E . Then fg is
 n

 a real Interval-Darboux Baire one function defined on

 p

 En since f g M. Therefore also the function f g = f(fg)
 is a real Interval-Darboux Baire one function on E .

 n

 2
 Thus f £ M.

 Lemma 3^ Let f be a nonnegative Interval-Darboux

 Baire one function defined on E . Let I be an open

 intérval in E and a e E„ such that a e T - I. If f is
 n n

 discontinuous from I at a and f(a) > 0, then f ¿ M.

 Proof. Let f be a nonnegative Interval-Darboux

 Baire one function defined on En which is discontinuous
 from I at a. We can assume that a is a vertex of I.

 Then there exist two numbers a anc* ß such that a, = SJJP

 inf f(Jn) < sup ^(Jn) = ß ^or each sequence

 { n=l converSi-nS fr°ni I to a. Then asf(a):sß*

 If a = i"(a)j then there exists an open interval J

 with one vertex a contained in I such that f(J) c <*>)•

 If a, < f(a)> we take a number y from (aj f(a)).

 Nowj we define a function g on Ī by: g(x) =

 max (a?2f(x)) for eaoh x * 7 " Mani g(a> s "

 fflèj) lf « = f <a) and g<x> = max (vfgf(x) ) for each
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 X e I - {a} and g(a) = ì if a < f(a). The function g is
 a real Interval-Darboux Ba ire one function on T. By the

 extension lemma j there exists a real Interval-Darboux

 Baire one extension h of g defined on E . The function

 fh is not a real Interval-Darboux function on E since
 n

 we have:

 (fh) (x) = 1 for each x ç J - {a} and (fh) (a) ¿ 1
 if a = f (a) anc*

 (fh)(x) = "1 for each x ą Ī - {a} which satisfies

 y <;2f (x) , (fh) (x) = 2f^x) < 1 for each x g T - fa}

 which satisfies 2f(x) < Y and (fh)(a) = >1 if

 a < f (a) .

 Therefore f ¿ M.

 Lemma 4. Let f be a nonnegative Interval-Darboux

 Baire one function defined on E which is discontinuous
 n

 from an open interval I at a, a ç E . If f (ī - [a] ) c

 (Ojoo)j then f M.

 Proof. Let f be as we assume in the lemma. Then

 we can assume that a is a vertex of I. Then there

 exist two numbers a and p such that a = sup inf f(J ) <
 n n

 inf sup f(Jn) = 3 for each sequence converging

 from I to a. According to Lemma 3> f ^ M if f(a) > 0.

 Let f(a) = 0. Then a = 0. Let g be a function

 defined on T by :g(x) = f°r each x ģ Ī - [a] and

 g (a) = mļn (ļ g) • It is easy to prove that g is a real
 Interval-Darboux Baire one function on T. By the ex-
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 tension lemma, there exists a real Interval-Darboux

 J3aire one function h defined on E which extends g.
 n

 The function fh is not a real Interval-Darboux function

 on En since (fh)(x) = 1 for each x ç I - [a] and
 (fh) (a) = 0.

 Therefore f ¿ M.

 Lemma 5 • Let f be a nonnegative Interval-

 Darboux Baire one function defined on E which is
 n

 discontinuous from an open interval I at a, a ç E .

 Let f(l) c (0,»). If f is discontinuous from every

 interval J at each point z ç I such that f(z) = 0,

 J c I and z í J - J, then f ¿ M.

 Proof. According to Lemma 3> f ^ M if f(a) > 0.

 Let f(a) = 0. Let J = (a^a . . . ,an;b^j . . . ,b ) be such
 an open interval for which J c I and min f(J)= 0. Then

 we define a number (fjJ) as follows: (fjJ) = max

 {i : if z = (z^.o.jz^) g J is such that f(z) = 0,
 then the cardinal number of the set { j £ [1, 2 , n} :

 z. J ¿ {a., b .} is at most n - i} . Since f(J) c J J J

 Jcl and min f(J)= 0, we have (fjJ) ž 1. Thus also

 (fSl)sl.

 It is easy to prove that for each z ç T satisfying

 f(z) = 0 there exists a positive number n (z) such that

 sup f(J) s a(z) f°r each open interval which is con-

 tained in I and for which z ç J - J.

 If there exists an open interval J = (a^,...^ j

 bļ,...^ ) contained in I for which (f;J) = n, then
 0 ¿ fz ¡= J : f ( z ) =0} c fu = (u ) g J :

 Tļ
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 ui € f ai j for each 1 = 1, 2,..., n} . But, then
 the set {z ç J : f(z) = 0} is finite and therefore
 there exists an open interval Y contained in J such

 that f is discontinuous from Y at a point y e Y - Y

 and f(Y - {y}) c (0,»). According to Lemma 4, f ¿ M.

 Let K be a positive integer satisfying n-l¡>ks(f;I)

 with the following property: If there exists such an

 open interval J contained in I for which min f(7)= 0 and

 (fjJ) ;► fc+l, then f does not belong to M.

 Now j suppose there exists an open interval J

 contained in I such that (fjJ) = fc. We shall prove

 that f does not belong to M. Then there exists a

 point z = (z^j . . . zn) g 7, f(z) = 0 and n-K different

 positive intergers i^, . . . , i-n 2, . . . , n]

 such that z^ ç [a^jb^} iff i ç. [1, 2, . . . , n} -

 {i^ . i } . Then there exists a positive number

 €0 such that < z± - çQ < z± + €0 < bŁ for s = 1,
 ss s s

 2S . . . , n-fc. Let 0 < ç ^ €q an(* = C (xi> * * * ,xn)

 6 J : xŁ = z± for i <={1, 2, . n} - {i^..., i-n_K}
 and z. -Ç^x. ¿ z. + e for s = 1, 2, . n-fc} .

 s s Łs

 We shall prove: If there exists an ç such that

 0 < £ s çQ and f (B ) = {0} , then f ^ M.

 Let 0 < Ç £ and f (B ) = {0} . For n = 1, 2, 3> • •
 1 °°

 we put B = [v £ B : a(v)ž- } • Then we have: B = (J B n . £ n=i n

 Since B is of the second category of Baire in itself,

 there exists an n such that B is not nondense in B .
 n Ç
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 Thus j for s = 1, 2, n-K, there must exist numbers

 c. and d. such that z. - ç ^ c. <d. «s z. + ç
 ""'s xs s 1s 1s 1s

 for s = 1, 2, . n-k and C = fv ç B,: c ^ v. ^ d.
 € is 1s s

 for s = 1, 2, n-K}c Bn. But, then for each
 u ç C, for each open interval Y which is contained in

 J and for which u v. e Y - Y there exists a v in n Y« v. n

 Therefore 0 = inf f(Y) < pj- £ sup f(Y). This implies
 that f is discontinuous from Y at u. Thus f(u) = 0

 and a(u) s pj- or according to Lemma 3j f M. Therefore
 we can assume that C c B .

 n

 Let ç (a^jb^) for i ç • ••* ^-3 - C ^i1 * * * J *
 Let Y be the open interval [(xļ,...}x ) ç : min
 (y1ìZ1) < < max (yłjZ1) for i 6 {1, 2, . . . , n) -
 { • • * > for s = 1, 2, • • • s

 S S S

 n-K} . Let t g Y - C. Then a. <zj_ - € £ c- ^ ss Ls

 t. ¿ d ¡£ z. + g < b for s = 1, 2, . , n-fc
 s s s s

 and the set [i e(l, 2, . . . , n} - { i^ . . . , Łn_fc} :

 ti j4 z.} is nonempty. Therefore t g J and the cardinal

 number of the set [i f{lj 2, n] : t^ ¿ {aj_> b^}}
 is at least n-fc+1. Thus f(t)>0 since (fjJ) = K. This

 implies that [v £ Y : f(v) =0} = C. Let g be a func-

 tion defined by : g(u) = f"01" u ç Y - C and g(u) = n

 for u ç C. From the generalization of the theorem of

 Young, we conclude that g is a real Interval-Darboux

 Baire one function on Y. From the extension lemma,
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 there exists a real In te rval -Darb oux Baire one function

 h defined on En which extends g. Butj f ¿ M since
 (fh)(u) = 1 for each u ç Y - C and (fh)(u) = 0 for

 each u ç C.

 If there does not exists an ç such that f(B^) = {0]
 and 0 < ç ¿ then there exists a w ç B - fvçJ :

 u ti
 i

 f(v) = 0} for ti = 2 ^en ^(w) > According to
 Lemma f ^ M if there exists an open interval Y

 such that YcJjWçY-Y and f is discontinuous from

 Y at w.

 Let us assume that f is not discontinuous from

 any open interval Y at w such that Y c J and w ç Y - Y.

 Let a > 0 and B = ft ř B : w. - a < t. < w. +
 W'CT 'n ' Łs Ls Łs

 a for s = 1 j 2, n-k} . It is easy to prove that

 there exists a positive number such that f (t) > > 0

 for each t ą B . Let W = ufB L : a > 03 f(B ) c W } Q L W5(J W j Q

 (0,oo)}. There exists such a positive number m that

 W = [t € Ī : fci = zi for 1 Ç f1' 2> n) "f1!5 * ' * jin-fc5
 and w. - uj < t . < w. + w for s = 1, 2, . . . , n-k} .

 s 1s 1s

 It is evident that w ^ max { ļ w . -z. | : s = 1, 2, ..,3
 """s """s

 n-k} < ì Çq an(^ í"(W) c (Oj»). Since W - W is compact, we

 have min f(W) = 0. It also holds: a. < z. - £q < 1s -"-s

 W. - U) < w, + UL. < z + g < b. for s = 1,2 ,...,n-lc.
 s s -"-s s

 Let v. e(a.,b.) and let c. = min (z., ^ y.), d. = i i i i ^ i i

 max (z.,^) for i ç [1, 2, nfy{ 1.1, . . . , in_fc} • Let
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 c, = w. - u)j d. = w. + «J for s = 1,2,..., n-K.
 s s ^-s xs

 Let Y = (c,j...,c v jd, s.ę.,d )•. Then Y c J c I. v 1 n 1 n'

 Let t e Y and {i ç { 1, 2, . . . ,n) -f i± , . . . , i-n_K} :

 ti 0' Then the cardinal number of the set
 { iç{l,2, . . . ,n} : t^ least n-K+1.
 Since t ç J then f(t) is a positive number. If f

 is such a point of Y for which t^ = for i ç

 [ 1) 2, . . • , nj - £ i-j^ , . . . , and c ^ - w^ - yj
 S s

 < t. < w. + ou = d. for s = 1, 2, ..., n-fc, then
 s 1s Ls

 t ç W. Since f(W) c (03»)j f(t) > 0. Therefore

 it must hold that t ç W - W for each t £ Y satisfying

 f(t) » 0. But, then the cardinal number of the set

 {i ç[l, 2, . . . ,n] : t^ ¿ {c^j d^} } is at most n - (k+1)
 for each t ç Y satisfying f(t) = 0. Therefore

 (f;Y)äK+l. From the definition of the number k, we

 get that f does not belong to M.

 From the induction principie, it is clear that we

 have proved the following : If there exists such an

 open interval J contained in I for which (fjJ)^l5

 then f çt M. But, then f ^ M since (f;I) si and the

 lemma is proved.

 Theorem 3- (Maximal multiplicative family for

 the family of all real Interval-Darboux Baire one

 functions) A real function f defined on En belongs to
 the maximal multiplicative family M for the family of

 all real Interval-Darboux Baire one functions defined

 298



 on En iff f is a real Interval-Darboux Baire one

 function on En with the following property:
 If f is discontinuous from an open interval I

 at a point a., then f(a) = 0 and there exists a

 sequence [an3ñ=i converging to a such that f(an)=0

 for all n and either an € I f°r n = 1, 2, 3> ••• or

 ^ ç I - I and there exists a sequence {In3ñ=i
 open intervals contained in I such that f is not dis-

 continuous from I at a .
 n n

 Proof. Let f be a real Interval-Darboux Baire

 one function defined on Eß with the property mentioned
 in the theorem. Let g be a real Interval-Darboux

 Baire one function defined on E . Then fg is a Baire

 one function on En. To prove that fg is also an

 Interval-Darboux function on EnJ we use the generaliza-

 tion of the theorem of Young. Let a ç En¿ let. I be
 an open interval such that a ç T - I. If f is not

 discontinuous from I at a, then sļjp inf f(Jn) =

 igf sup f(Jn) f°r each sequence {Jn3"=i °Pen ^n~
 tervals converging from I to a. Then it holds : f(a) =

 sup inf f(J v ) = inf sup ť f(J v ) since f is an Intervāl- sup us v n' n ť v ny

 Darboux function on E . According to Theorem 1, there

 exists a sequence {xn}^-i points such that

 xn €Jn and g^xn^ € " ïïJ g(a) +

 for all n. We have : f(a) = s^p inf f(Jn) s lim inf

 f(x ) ¿ lim sup f(x ) £ inf fi sup f(J ) = f(a). Therefore n n-*» n fi n
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 nā (f(xn)g(xn)) = f(a)s(a) and xn € I.

 If f is discontinuous from I at a, then f(a) = 0

 and there exists a sequence f arl3 n=l conver§i-nS to a

 such that f(a) v = 0 for all n, * and either a„ g ^ I v n' * n ^

 for n = 1, 2 , ... or an ç T - I for n = 1, 2, 3* • ••
 and there exists a sequence {In}ñ=i open intervals
 contained in I such that f is not discontinuous from

 I at a . In the first case, we have : a el ^ for n n n ^

 n = 1, 2, 3, ... and lim (f(an)g(an)) = 0 = f(a)g(a).
 n-»co

 In the second case, we prove, as shown above, that

 for each n = 1, 2, ... there exists a sequence

 { xn 3 ™=i of Points of ln such that lim (f(xn 3 K)s(xn 3 J) 3 IC-ko 3 3

 = f(an)g(an) = 0. Let te be such a positive integer

 for which Jim X 3 = a and |f(x 3 )|< ¿ for n = 3 n 3 n

 1, 2, 3 j ••• • Then we have : 1 fx„ „ ļ™ is a
 1 fx„ n'Vn=l „

 sequence of points in I converging to a such that lim
 n--*»

 (f(x v )s(xn v. )) = f(a)g(a). From the generali- n,n v ł v. n

 zation of the theorem of Young, it follows that the

 function fg is an Interval-Darboux function.

 So we have proved that f ç M.

 Now, let f ç M. Since f = f*l, f is a real

 Interval-Darboux Baire one function. Let I be an

 open interval, a ç En and a g T-I. Let f be discontinuous
 2

 from I at a. Then f is also discontinuous from I at a.

 p
 According to Lemmas 2, 3> and 5j f (a) =0 and
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 there exists a sequence {an}™_]_ of points in I converging
 2

 to a that f (an) = 0 for n = 1, 2, 3, . .., and either

 an £ I for n = 1, 2, 3j . . . or aß ç I - I for n =

 1, 2, 3j • •• and there exists a sequence {Jn3ñ=i
 2

 open intervals contained in I such that f is not dis-

 continuous from J at a . Therefore f(a) =0 and there
 n n

 exists a sequence {an}ñ=i P°i-nts i-n "Ī converging
 to a such that f(an) = 0 for n = 1,2,3*... and either
 a fl for n = 1, 2. 3> •••or a p Ī - I and there
 n n

 exists a sequence open intervals contained

 in I such that f is not discontinuous from J at a .
 n n
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