Real Analysis Exchange Vol. 5 (1979-80)

G. Petruska, Department I of Analysis Eötvös Lorand University, Budapest, Hungary

On a problem of M. Laczkovich

Let f(x,y) be a function of two real variables. Suppose that the second order partial derivative $f_{xy}(x,y)$ exists at every point. Then the function $g(x,y) = f_{x}(x,y)$ satisfies the following conditions:

(a) $g(\cdot, y_0)$ is a Baire l function for every fixed y_0 ($g(\cdot, y_0)$) is the derivative of $f(\cdot, y_0)$);

(b) $g(x_0, \cdot)$ is continuous for every fixed x_0 (in fact, it is differentiable).

It is easily seen that a function with properties (a) and (b) belongs to the second class of Baire. Consequently, f_{xy} is a Baire 3 function.

M. Laczkovich raised the problem whether f_{xy} is a Baire 1 function. We answer this question in the negative. Our method of construction gives a Baire 2 function; thus, the problem whether f_{xy} is always a Baire 2 function remains open. It should be added that nothing analogous can be said about f, since f_{xy} may be identically zero even for a nonmeasurable function f.

To carry out our construction we need a result of Zahorski (see [1], p. 29, Lemma 12).

267

<u>Zahorski's Lemma</u>. If H_1 and H_2 are disjoint \mathscr{Y}_{δ} sets in [0,1] and if they are closed in the Denjoy topology, then there exists a function, a, approximately continuous on [0,1] such that

```
a(x) = 0 (x \in H_1),

a(x) = 1 (x \in H_2),

0 < a(x) < 1 (x \notin H_1 \cup H_2)
```

We recall some well known facts about the Denjoy (or density) topology and approximately continuous functions.

(1) The Denjoy open (or briefly D-open) sets are those having (inner) density 1 at each of their points.

(2) These sets are measurable, form the Denjoy topology, and the D-continuous real functions are exactly the approximately continuous functions.

(3) Each approximately continuous function is aBaire l function and, if it is bounded, it is aderivative (of its integral).

The reader unfamiliar with these concepts and results is referred to [2] or [3]. Without loss of generality we may confine our construction to the unit square $0 \le x \le 1$, $0 \le y \le 1$.

<u>Theorem</u>. There is a function f(x,y) such that $f_{xy}(x,y)$ exists at every point of the square $0 \le x \le 1$, $0 \leq y \leq 1$ but $f_{xy}(x, y)$ is not a Baire 1 function.

<u>Proof.</u> Let a continuous function $\varphi(x)$ ($0 \le x \le 1$) satisfying $0 \le \varphi(x) \le 1$ be given in advance. Let $s_n(x,y) = 2^{-n} \cdot \sin[n2^n \cdot (y - \varphi(x))]$ (n = 1, 2, ...).

We need the following properties of s_n:

(4)
$$|\mathbf{s}_{n}| \leq 2^{-n};$$

(5) $|\frac{\partial \mathbf{s}_{n}}{\partial \mathbf{y}}| \leq n;$
(6) $\frac{\partial \mathbf{s}_{n}}{\partial \mathbf{y}}(\mathbf{x}, \boldsymbol{\varphi}(\mathbf{x})) = n;$

(7) s_n is continuous.

Let r_1, r_2, \ldots be an enumeration of the rational numbers of [0,1], let G_0 be the empty set and let a_0 be the zero function on [0,1]. We are going to construct by induction numbers ζ_k , sets G_k and functions a_k with the following properties:

(i) $\zeta_k \in [0,1], |\zeta_k - r_k| < 2^{-k};$

(ii) $G_k \supset G_{k-1}$, G_k is a \mathscr{J}_{δ} and D-closed set in [0,1] such that both G_k and [0,1]\G_k are dense in [0,1];

(iii) a_k is an approximately continuous function
on [0,1] such that

 $a_k(\zeta_k) = 1,$ $a_k(x) = 0 \quad (x \in G_k),$ $0 < a_k(x) \le 1 \text{ and } a_{k-1}(x) < 2^{-k+1} \quad (x \notin G_k)$ (k = 1, 2, ...) Put $\zeta_1 = r_1$ and let $G_1 \in [0,1] \setminus \{r_1\}$ be an arbitrary \mathscr{A}_{δ} set of measure 0, dense in [0,1]. By Zahorski's Lemma we can find a_1 fulfilling (iii) with k = 1. It is obvious that conditions (i) and (ii) are fulfilled for k = 1 as well.

Suppose that n is a natural number and that we have already constructed ζ_k, G_k and a_k $(k \leq n)$ such that the conditions (i) - (iii) hold for $k = 1, \ldots, n$. Define $A_n = \{x; a_n(x) \geq 2^{-n}\}$. According to (2) and (3), A_n is a \mathscr{Y}_{δ} and D-closed set. Obviously $A_n \cap G_n = \emptyset$. Set $G_{n+1} = A_n \cup G_n$. It follows easily from (ii) with k = n and from the Baire category theorem that $[0,1] \setminus G_{n+1}$ is dense. We see that (ii) holds with k = n + 1. In particular, we can select a number $\zeta_{n+1} \in [0,1] \setminus G_{n+1}$ with $|\zeta_{n+1} - r_{n+1}| < 2^{-n-1}$. Now we apply Zahorski's lemma to the pair of sets $G_{n+1}, \{\zeta_{n+1}\}$ and we obtain a function a_{n+1} such that (iii) holds with k = n + 1. This completes our construction.

Define

(9)
$$g(\mathbf{x},\mathbf{y}) = \sum_{n=1}^{\infty} a_n(\mathbf{x}) s_n(\mathbf{x},\mathbf{y})$$

Since $0 \leq a_n \leq 1$ and $|s_n| \leq 2^{-n}$, the series on the right hand side is uniformly convergent. It follows that $g(\cdot, y_0)$ is approximately continuous and bounded for any fixed y_0 . Putting

(10)
$$f(x, y) = \int_{0}^{x} g(t, y) dt$$

we obtain a function with $f_x = g$.

Next we prove that g_y exists. Fix an $x_0 \in [0,1]$. ∞ If $x_0 \notin \bigcup_{n=1}^{\infty} G_n$, then, by (iii), $a_n(x_0) < 2^{-n}$ for each n. Thus, by (5), the series

$$\sum_{n=1}^{\infty} a_n(x_0) \frac{\partial s_n}{\partial y} (x_0, \cdot)$$

is uniformly convergent. Hence,

(11)
$$g_{y}(x_{0}, y) = \sum_{n=1}^{\infty} a_{n}(x_{0}) \frac{\partial s_{n}}{\partial y} (x_{0}, y)$$

If, however, there is an index N such that $x_0 \in G_N$, then (see (ii) and (iii)) $a_n(x_0) = 0$ for each $n \ge N$ and (ll) holds again. We have, in any case,

(12)
$$f_{xy}(x,y) = g_{y}(x,y) = \sum_{n=1}^{\infty} na_{n}(x) \cos[n2^{n} \cdot (y - \varphi(x))]$$

æ

Let S be any open disc in the unit square and let M > 1. Since, by (i), the sequence $\{\zeta_n\}$ is dense in [0,1], we can find integers v,k and j such that

(13)
$$2^{\nu} - \nu^2 > M, \quad k > 2^{\nu}, \text{ and}$$

 $(\zeta_{k}, \varphi(\zeta_{k}) + j \frac{2\pi}{2^{\nu}}) \in S .$ (Obviously $\nu > 0, -2^{\nu} < j < 2^{\nu}$.) Set $y = \varphi(\zeta_{k}) + j \frac{2\pi}{2^{\nu}}$. As

$$\left|\sum_{n=1}^{\nu-1} \operatorname{na}_{n}(\zeta_{k}) \cos\left(\operatorname{nj} \frac{2\pi}{2^{\nu}} 2^{n}\right)\right| \leq \sum_{n=1}^{\nu-1} n < \nu^{2}$$

and

$$\sum_{n=\nu}^{\infty} \operatorname{na}_{n}(\zeta_{k}) \cos(nj \frac{2\pi}{2^{\nu}} 2^{n}) = \sum_{n=\nu}^{\infty} \operatorname{na}_{n}(\zeta_{k})$$
$$\geq ka_{k}(\zeta_{k}) = k > 2^{\nu},$$

we have, by (12), $f_{xy}(\zeta_k, y) > M$ and hence, $\sup_{S} f_{xy} = +\infty$. This shows that f_{xy} does not belong to the first class of Baire. We remark that

(iv) $f_{xy}(x,y) = 0$ on the dense set $G_1 \times [0,1]$ (This follows immediately from (12), (ii) and (iii).);

(v) the function φ plays no particular role in the proof (we could take $\varphi \equiv 0$). It only gives a little flexibility in locating the points where f_{xy} takes great values.

Problems.

1. May f_{xy} belong to the third but not to the second class of Baire? If both f_{xy} and f_{yx} exist, then, by a theorem of M. Laczkovich, f_x and f_y are Baire 1 functions; thus, f_{xy} and f_{yx} are Baire 2 functions.

2. Is there a function f such that f and f exist everywhere while f does not exist at any point?

3. Suppose that both f_{xy} and f_{yx} exist everywhere. Do they agree at some points? Are they necessarily Baire 1 functions? It is easily seen that f_{xy} and f_{yx} have the same upper and the same lower envelope. Therefore, if one of them is continuous at a given point P, so is the other and $f_{xy}(P) = f_{yx}(P)$. Hence, if f_{xy} and f_{yx} are Baire 1 functions, they agree on a dense ϑ_{δ} set.

272

References

- [1] Z. Zahorski, Sur la première dérivée, Trans. Amer.
 Math. Soc., 69/1950/, 1-54.
- [2] A.M. Bruckner, Differentiation of Real Functions /Lecture Notes in Mathematics, No. 659/, Springer Verlag, 1978.
- [3] G. Goffmann, C. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math.
 J. 28/1961/, 497-506.

Received December 17, 1979