G. Petruska, Department I of Analysis

Eötvös Loránd University, Budapest, Hungary

On a problem of M. Laczkovich

Let $f(x, y)$ be a function of two real variables. Suppose that the second order partial derivative $f_{x y}(x, y)$ exists at every point. Then the function $g(x, y)=f_{x}(x, y)$ satisfies the following conditions:
(a) $g\left(\cdot, Y_{O}\right)$ is a Baire 1 function for every fixed Y_{O} $\left(g\left(\cdot, Y_{O}\right)\right.$ is the derivative of $\left.f\left(\cdot, Y_{O}\right)\right)$;
(b) $g\left(x_{0}, \cdot\right)$ is continuous for every fixed x_{0} (in fact, it is differentiable).

It is easily seen that a function with properties
(a) and (b) belongs to the second class of Baire. Consequently, $f_{x y}$ is a Baire 3 function.
M. Laczkovich raised the problem whether $f_{x y}$ is a Baire 1 function. We answer this question in the negative. Our method of construction gives a Baire 2 function; thus, the problem whether $f_{x y}$ is always a Baire 2 function remains open. It should be added that nothing analogous can be said about f, since $f_{x y}$ may be identically zero even for a nonmeasurable function f.

To carry out our construction we need a result of Zahorski (see [1], p. 29, Lemma 12).

Zahorski's Lemma. If H_{1} and H_{2} are disjoint \& sets in $[0,1]$ and if they are closed in the Denjoy topology, then there exists a function, a, approximately continuous on $[0,1]$ such that

$$
\begin{aligned}
& a(x)=0 \quad\left(x \in H_{1}\right), \\
& a(x)=1\left(x \in H_{2}\right) \\
& 0<a(x)<1 \quad\left(x \notin H_{1} \cup H_{2}\right)
\end{aligned}
$$

We recall some well known facts about the Denjoy (or density) topology and approximately continuous functions.
(1) The Denjoy open (or briefly D-open) sets are those having (inner) density 1 at each of their points.
(2) These sets are measurable, form the Denjoy topology, and the D-continuous real functions are exactly the approximately continuous functions.
(3) Each approximately continuous function is a Baire 1 function and, if it is bounded, it is a derivative (of its integral).

The reader unfamiliar with these concepts and results is referred to [2] or [3]. Without loss of generality we may confine our construction to the unit square $0 \leqq x \leqq 1, ~ 0 \leqq Y \leqq 1$.

Theorem. There is a function $f(x, y)$ such that $f_{x y}(x, y)$ exists at every point of the square $0 \leqq x \leqq 1$,
$0 \leqq Y \leqq 1$ but $f_{X Y}(x, y)$ is not a Baire 1 function.

Proof. Let a continuous function $\varphi(x) \quad(0 \leqq x \leqq 1)$
satisfying $0 \leqq \varphi(x) \leqq 1$ be given in advance. Let
$s_{n}(x, y)=2^{-n} \cdot \sin \left[n 2^{n} \cdot(y-\varphi(x))\right] \quad(n=1,2, \ldots)$.
We need the following properties of s_{n} :
(4) $\left|s_{n}\right| \leqq 2^{-n}$;
(5) $\left|\frac{\partial s_{n}}{\partial y}\right| \leqq n$;
(6) $\frac{\partial s_{n}}{\partial y}(x, \varphi(x))=n$;
(7) s_{n} is continuous.

Let r_{1}, r_{2}, \ldots be an enumeration of the rational numbers of $[0,1]$, let G_{O} be the empty set and let a_{0} be the zero function on $[0,1]$. We are going to construct by induction numbers $\zeta_{k^{\prime}}$ sets G_{k} and functions a_{k} with the following properties:
(i) $\zeta_{k} \in[0,1],\left|\zeta_{k}-r_{k}\right|<2^{-k}$;
(ii) $G_{k} \supset G_{k-1}, G_{k}$ is a \mathscr{H}_{δ} and D-closed set in $[0,1]$ such that both G_{k} and $[0,1] \backslash G_{k}$ are dense in $[0,1]$;
(iii) a_{k} is an approximately continuous function on $[0,1]$ such that

$$
\begin{gathered}
a_{k}\left(\zeta_{k}\right)=1 \\
a_{k}(x)=0 \quad\left(x \leq G_{k}\right) \\
0<a_{k}(x) \leqq 1 \text { and } a_{k-1}(x)<2^{-k+1}\left(x \notin G_{k}\right) \\
(k=1,2, \ldots) .
\end{gathered}
$$

Put $\zeta_{1}=r_{1}$ and let $G_{1} \in[0,1] \backslash\left\{r_{1}\right\}$ be an arbitrary $\&_{\delta}$ set of measure 0 , dense in $[0,1]$. By Zahorski's Lemma we can find a_{1} fulfilling (iii) with $k=1$. It is obvious that conditions (i) and (ii) are fulfilled for $k=1$ as well.

Suppose that n is a natural number and that we have already constructed ζ_{k}, G_{k} and $a_{k}(k \leqq n)$ such that the conditions (i) - (iii) hold for $k=1, \ldots, n$. Define $A_{n}=\left\{x ; a_{n}(x) \geqq 2^{-n}\right\}$. According to (2) and (3), A_{n} is a and D-closed set. Obviously $A_{n} \cap G_{n}^{-}=\varnothing$. Set $G_{n+1}=A_{n} \cup G_{n}$. It follows easily from (ii) with $k=n$ and from the Baire category theorem that $[0,1] \backslash G_{n+1}$ is dense. We see that (ii) holds with $k=n+1$. In particular, we can select a number $\zeta_{n+1} \subseteq[0,1] \backslash G_{n+1}$ with $\left|\zeta_{n+1}-r_{n+1}\right|<2^{-n-1}$. Now we apply zahorski's lemma to the pair of sets $G_{n+1},\left\{\zeta_{n+1}\right\}$ and we obtain a function a_{n+1} such that (iii) holds with $k=n+1$. This completes our construction.

Define

$$
\begin{equation*}
g(x, y)=\sum_{n=1}^{\infty} a_{n}(x) s_{n}(x, y) \tag{9}
\end{equation*}
$$

Since $0 \leqq a_{n} \leqq 1$ and $\left|s_{n}\right| \leqq 2^{-n}$, the series on the right hand side is uniformly convergent. It follows that $g\left(\because Y_{O}\right)$ is approximately continuous and bounded for any fixed Y_{O}. Putting

$$
\begin{equation*}
f(x, y)=\int_{0}^{x} g(t, y) d t \tag{10}
\end{equation*}
$$

we obtain a function with $f_{x}=g$.
. Next we prove that g_{y} exists. Fix an $x_{0} \in[0,1]$. If $x_{0} \notin \bigcup_{n=1} G_{n^{\prime}}$.then, by (iii), $a_{n}\left(x_{0}\right)<2^{-n}$ for each n. Thus, by (5), the series

$$
\sum_{n=1}^{\infty} a_{n}\left(x_{0}\right) \frac{\lambda s_{n}}{\partial y}\left(x_{0}, \cdot\right)
$$

is uniformly convergent. Hence,

$$
\begin{equation*}
g_{y}\left(x_{0}, y\right)=\sum_{n=1}^{\infty} a_{n}\left(x_{0}\right) \frac{\partial s_{n}}{\partial y}\left(x_{0}, y^{\prime}\right. \tag{11}
\end{equation*}
$$

If, however, there is an index N such that $X_{O} \in G_{N}$, then (see (ii) and (iii)) $a_{n}\left(x_{0}\right)=0$ for each $n \geqq N$ and (ll) holds again. We have, in any case,
(12) $f_{x y}(x, y)=g_{y}(x, y)=\sum_{n=1}^{\infty} n a_{n}(x) \cos \left[n 2^{n} \cdot(y-\varphi(x))\right]$.

Let S be any open disc in the unit square and let
$M>1$. Since, by (i), the sequence $\left\{\zeta_{n}\right\}$ is dense in [0,1], we can find integers ν, k and j such that

$$
\begin{align*}
& 2^{\nu}-\nu^{2}>M, \quad k>2^{\nu}, \quad \text { and } \tag{13}\\
& \left(\zeta_{k}, \varphi\left(\zeta_{k}\right)+j \frac{2 \pi}{2 \nu}\right) \in S
\end{align*}
$$

(Obviously $\nu>0,-2^{\nu}<j<2^{\nu}$.) set $y=\varphi\left(\zeta_{k}\right)+j \frac{2 \pi}{2^{\nu}}$.
As

$$
\left|\sum_{n=1}^{\nu-1} n a_{n}\left(\zeta_{k}\right) \cos \left(n j \frac{2 \pi}{2^{\nu}} 2^{n}\right)\right| \leqq \sum_{n=1}^{\nu-1} n<v^{2}
$$

and

$$
\begin{gathered}
\sum_{n=v}^{\infty} n a_{n}\left(\zeta_{k}\right) \cos \left(n j \frac{2 \pi}{2^{\nu}} 2^{n}\right)=\sum_{n=v}^{\infty} n a_{n}\left(\zeta_{k}\right) \\
\geqq k a_{k}\left(\zeta_{k}\right)=k>2^{\nu}
\end{gathered}
$$

we have, by (12), $f_{X Y}\left(\zeta_{k}, y\right)>M$ and hence, $\sup _{S} f_{X Y}=+\infty$. This shows that $f_{x y}$ does not belong to the first class of Baire.

We remark that
(iv) $f_{x y}(x, y)=0$ on the dense set $G_{1} \times[0,1]$
(This follows immediately from (12), (ii) and (iii).);
(v) the function φ plays no particular role in the proof (we could take $\varphi \equiv 0$). It only gives a little flexibility in locating the points where $f_{x y}$ takes great values.

Problems.

1. May $f_{x y}$ belong to the third but not to the second class of Baire? If both $f_{x y}$ and $f_{Y x}$ exist, then, by a theorem of M. Laczkovich, f_{x} and f_{y} are Baire 1 functions; thus, $f_{x y}$ and $f_{y x}$ are Baire 2 functions.
2. Is there a function f such that f_{y} and $f_{x y}$ exist everywhere while $f_{y x}$ does not exist at any point?
3. Suppose that both $f_{x y}$ and $f_{y x}$ exist everywhere. Do they agree at some points? Are they necessarily Baire 1 functions? It is easily seen that $f_{x y}$ and $f_{y x}$ have the same upper and the same lower envelope. Therefore, if one of them is continuous at a given point P, so is the other and $f_{x y}(P)=f_{y x}(P)$. Hence, if $f_{x y}$ and $f_{y x}$ are Baire l functions, they agree on a dense 3_{δ} set.

References

[1] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc., 69/1950/, 1-54.
[2] A.M. Bruckner, Differentiation of Real Functions /Lecture Notes in Mathematics, No. 659/, Springer Verlag, 1978.
[3] G. Goffmann, C. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28/1961/. 497-506.

