~

Real Analysis Ezchange Vol. 5 (13979-80)
Ewa Lazarow, University of Lodz, 90-238 Lodz, Poland

ralizat £ the iffarentia
A generalization of the total differ ial

and of the Lipschitz condition.

Slobodnik in [3] has proved that if £ fulfills loc-
ally the approximate Lipschitz condition (that is, there
exists a number K and, for every Xy there exists a
measurable set Axo such that its density at X, is equal
to 1 and, for every xeleo, l£(x) - £(x,) s€ | x - x.]),
then f fulfills the ordinary Lipschitz condition. Replac-
ing " density equal to 1 " by some weaker condition such
as " unilateral lower densities greatsr that % " we shall

give several similar results for the real function of one

or two real variables.

Let m(A) and mZ(A) denote the Lebesgue measure for the
set A on the line and on the plane, respectively.
Definition 1.

Let £ be a real function defined on the real line.
If there.exists a number X >0 and, for every xoe R, there

exists 2 measurabls set Ex such that
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X o
naot ) > %

2) for every xeI_ , |£(x) - f(xo)lsle - x,0
then £ is said to fulfill the strongly preponderant
approximate Lipschitz conditicn.

Definition 2.

Let f be a real function defined on R-.

If there exists 2 number K > 0 and, for every (xo,yo)eR2,

there exists a measurable set E(x 7 ) such that
0’Yo

1) 1lim iﬁf mg(E(x )7 ) n[xo,xo-f-h] x [yo,yo+h])
0°Yo
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h‘-)0+ - > 2,
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Lin inf my(E(y Ly ) Nlxg-,x,] x [yg-huy,d) ;
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If(x’y) = f(xoiyo)l s K ” (x’y) = (xo,yo)“ 2
then f is said to fulfill the strongly preponderant

approximate Lipschitz condition.
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At present, we shall formulate two theorems giving
the relationship between the strongly dreponderant approx-
mate Lipschitz condifion and the crdinary Lipschitz con-
dicion.

Theorem 1.

If the real function f defined on the line fulfills
the strongly preponderant approximate Lipschitz condi-
tion with the number X, then f fulfills the ordinary
Lipschitz condition with the same number.

Theorem 2.

If the real function f defined on R> fulfills the
strongly preponderant approximate Lipschitz condition
with the number X, then f fulfills the ordinary Lip-
schitz condition with the number 2K.

The function f(x,y) = y defined on R2 shows that the
number K in Theorem 2 cannot be preservéd because, for

2
every (xo,yo)gR', there exists a set

E 2
(xo,yo) = {(x,y)eR™ Ix-xo!s L[y-yol L > 1} such that,

for every (X’Y)eb(xo’yo) ,
. L ” (x’y) = (xo’yo)” *
£Gray) = £(ouv g = e
The number L is less than 1 and the function

J1 12
f(x,y) =y fulfills the ordinary Lipschitz condition

with the number 1. Considering certain regular sets

E(xo,yo) in definition 2, we can formulate the
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preponderant approximate Lipschitz condition which
assures the preservation of the number X in the or-
dinary Lipschitz condition. It is the j-regular
approximate Lipschitz conditcion.
Definition 3.

Let m:R+»R be a strongly non-decreasing function
for which there exists a number C > 0 such that, for
svery xl,x29R+ R

g 1xp - xy Isl w(xy) - w(x))] < Clxy - xp].

Let (xo,yo)eRz. Denote by 5(xo,yo) the following family
of rectangles:

1) (x,s¥,) is the point of intersection of diagonals
of all rectangles in 3(x_,7,)

2) the right upper wvertex of every rectangle lies on
the graph of the function y = y(x - xo) + ¥,

3) edges of the rectangles are parallel to the coor-
dinate axes. We shall call such a2 family of rectanglss
a y-regular family of rectangles.

If the lower density of the set J fr C (where fr C
Ced (x,57,)

denotes the edge C) is greater than %, then @(xo,yo)
is said to be a thick y=-regular family of rectangles.

If the density of the set (U fr C is equal to 1,
Ced (x,,7,)

then é(xo,yo) is said to be a very thick ¢-regular
family of rectangles.
Definition &.

Let £ be a real function defined on 32. If there
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axists a number K > 0 and, for every (xo,yo)g 32,

there exists a thick %-regular family of rectangises

3(x_,7_.) such that, for (x,y)e U frcC |,
o’’o S .
Ced (2,7,)

|£(x,7) - f(xo,yo)[s K I (x,5) - (x5595) 1l 5 then £ is
said to fulfill the j-regular approximate Lipschitz
condition.

Theorem 3
. 2 -
Let £ be a real function defined on =, If ¢

fulfills the y-regular approximate Lipschitz condi-
tion with the number X, then f fulfills the ordinary
Lipschitz condition with the same number.

On the zround of the definition of the jy-regular
family of rectangles, we shall introduce a definition
of a y-regular approximate differential. It is a gen-
eralization of the regular aporoximate differential
which was discussed by Fadell in {1]. Fadell has
proved a theorem similar to Theorem 4 for the function
¥ (x) = x.

Definition 5.
Let £ be a real function defined on § € R2. We

shall say that f has a jy-regular approximate differen-
tial at (xo,yo) ¢S if and only if there =xists a very
thick y-regular family of rsctangles §(xo,yo) such that
T L fr €N S has a total differential at (x_,y.).
‘ Ced (X N4 ) o°"o
e 0) o)
Theorsm &,

Let f be a continuous real function defined on
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the open bounded subset ScRa. I we assume that { has

first partial derivatives almost everywhere on S, then
f has the jy-regular approximats differential almost
everywhere on S.

The last-mentioned theorem is based on the following
lemma.

Lemma..

If (x,,7,) <R® is a point of the linear density
of the measurable set SC32 in the directions of the
coordinata axes, then there exists a very thick
g-regular family of rectangles é(xo,yo) such that the

lines passing through (x ), parallel to the coor-

0°Yo
dinate axes, intersect the edges of every rectangle at
points of the set S.

The following theorem is a generalization of the
theorem proved oy Slobodnik in [3].
Theorem 5.

Let £ be a real function defined on the open
convex subset ScR2. If £ has a jy-regular approxi-
mate differential af every point of S and if there

exists a number X > O such that

sup | v 8 ap(®y) ((x7) - (x,5',))[sK
P ((x57)s(x", v')) s1

for every (x,¥)e S (where v f(x,y) denotes a gradient

-

of © and o((x,¥),(x',y',)) denotes a distance between
(x,7) and (x',y') , then f is differentiable on S and
vf(x,y) = vf w-ap(x’y) and, for svery (x,¥),(x',7"')eS,

185



|£(x,y) = £(xt,y")| s B ] (x,7) = (x'55) || .
Theorem 5.

If the real function f defined on the rectangle
P < R™ fulfills the j-regular approximate Lipschitz
conditiod, then © has a total differential almost

everywhere on P.
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