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 A generalization of the total differential

 and of the Lipschitz condition.

 Slobodniic in [3] has proved that if f fulfiUs loc-

 ally the approximate Lipschitz condition (that is, there

 exists a number 'K and, for every xQ, there exists a

 measurable set Ax such that its density at xQ is equal
 O

 to 1 and, for every x€A , |f(x) - f(x )| s :X I x - x |),

 then f fttlfiUs the ordinary Lipschitz condition. Replac-

 ing " density equal to 1 " by some weaker condition such

 as " unilateral lower densities greater that f " we shall

 give several similar results for the real function of one

 or two real variables .

 Let m (A) and n^A) denote the Lebesgue measure for the
 set A on the line and on the plane, respectively.

 Definition 1.

 Let f be a real function defined on the real line.

 If there exists a number S >0 and, for every xj- R, there
 exists a measurable set E such that

 o

 1) lim inf m (E H [xQ, xQ + h]) t
 h^0+

 h

 and
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 lim inf m (E n [x - h, x_]
 h^+ - -

 h

 .2) for every xsEx , ļf(x) - f(xQ)|*K|x - xQļ ,
 O

 then f is said to fulfill the strongly preponderant

 approximate Lips chi tz condition.

 Definition 2.

 2
 Let f be a real function defined on R .

 2
 If there exists a number K > 0 and, for every (xQ}yQ)eR ,
 there exists a measurable set E/ ' such that

 { o,fo}

 1) lim inf nu(E/ ( °'yo) ) n[x ,x +h] * [y ,y +h] )
 h*0+ ( °'yo) )

 h¿

 lim inf m2(E(x #y } n[x0yx0+h] * Cy0-h,yQ]) ^
 lwO+

 h¿

 lim inf m2(E(x ^ ) n[x0-h,xQ] *[yoJyo+h]) ?
 h^0+

 and a

 lim inf m9(S(x V } n[x0-h,xQ] * [y -k,y ]) t
 h*0+ V 0 0

 h"

 2) for every (xay)eE/ x
 { xo,yo' 3

 |f(x,y) - f(xQ,y0)| s S ļļ (x,y) - (xQjy0) || ,
 then f is said to fulfill the strongly preponderant

 approximate Lipschitz condition.
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 At present j we shall formulate two theorems giving

 the relationship between the strongly preponderant approx-

 mate Lipschitz condition and the ordinary Lipschitz con-

 dition.

 Theorem 1.

 If the real function f defined on the line fulfills

 the strongly preponderant approximate Lipschitz condi-

 tion with the number then f fulfills the ordinary

 Lipschitz condition with the same number.

 Theorem 2.

 If the real function f defined on fulfills the

 strongly preponderant approximate Lipschitz condition

 with the number K, then f fulfills' the ordinary Lip-

 schitz condition with the number 2K.

 The function £(x,y) = y defined on R shows that the

 number K in Theorem 2 cannot be preserved because, for
 v 2

 every (xQ.,yo)eR v , there exists a set

 ^(xoJyo) = [(x,y)sR2:. |x-xQļ â Lļy-yQ| L > 1} such that,

 for every (x,y)eE^x y

 , . ,
 f(x,y) . - f(x , ° ,y^| ° i k/ ° ° k/ ¡ 1 + L-.

 The number L is Isss than 1 and the function

 jmr
 f(x,y) = y fulfills the ordinary Lipschitz condition

 with the number 1. Considering certain regular sets

 E

 (x0jyo) definition -> we can formulate the
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 preponderant approximate Lipscnitz condition which

 assures the preservation of the number S in the or-

 dinary Lips chit z condition. It is the >jr -regular

 approximate Lipschitz condition.

 Definition 3-

 Let tir :R+-*R be a strongly non-decreasing function

 for which there exists a number C > 0 such that, for

 every x-^x^R* ,

 £ !x2 " X1 Is! '^X2^ " *(*1)1 s C,x2 ' xl'*
 2

 (x0íy0)sR • Denote by I (xQjy0) the following family
 of rectangles :

 1) (xQ,yo) is the point of intersection of diagonals

 of all rectangles in ? (xQ,yo)
 2) the right upper vertex of every rectangle lies on

 the graph of the function y =» iļr (x - xQ) 4- yQ

 3) edges of the rectangles are parallel to the coor-

 dinate axes . "vie shall call such a family of rectangles

 a ģ-regular family of rectangles.

 If the lower density of the set U fr C (where fr C
 Ce*(x0,y0)

 denotes the edge C) is greater than then $ (xoJyo)
 is said to be a thick iļr-regular family of rectangles.

 If the density of the set (J fr C is equal to 1,
 MC'o'īo)

 then $(x0jy0) is said to be a very thiclc fr-regular
 family of rectangles .

 Definition k.

 2
 Let f be a real function defined on R . If there
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 p

 exists a number K > 0 and, for every (xQjy0)e R' 3
 there exists a thick, '¿-regular family of rectangles

 such that-> for (x,y)s U fr C ,
 cs«(x0,70)

 |f(x,y) - f(x0,y0)|s K II (x,y) - (xQ,yQ) || , then f is
 said to fulfill the ¡¿-regular approximate Lipschitz

 condition-

 Theorem 3
 o

 Let f be a real function defined on H". If f

 fulfills the .¡(-regular approximate Lipschitz condi-

 tion with the number K, then f fulfills the ordinary

 Lipschitz condition with the same number.

 On the ground of the definition of the regular

 family of rectangles, we shall introduce a definition

 of a iļf -regular approximate differential. It is a gen-

 eralization of the regular approximate differential

 which was discussed by Padell in [1]. Fadell has

 proved a theorem similar to Theorem 4 for the function

 *(x) = X.

 Definition 5-

 Let f be a real function defined on S c R~. vie

 shall say that f has a regular approximate differen-

 tial at (xQjy0) s S if and only if there exists a very

 thicfc iļr -regular family of rectangles ?(x0->y0) such that

 fj U fr C H S has a total differential at (x ,y ) .
 c^(x0,y0)

 •Theorem ¿i.

 Let f be a continuous real function defined on
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 2
 the open bounded subset ScR . If we assume that f has

 first partial derivatives almost everywhere on 3, then

 f has the ^ -regular approximate differential almost

 everywhere on S.

 The last -ment ione d theorem is based on the following

 lemma .

 Lemma.

 p

 If (x0jy0) zR is a point of the linear density
 2

 of the measurable set SCR in the directions of the

 coordinate axes, then there exists a very thick

 ^-regular family of rectangles ?(xo,yQ) such that the

 lines passing through (x ,y0), parallel to the coor-
 dinate axes, intersect the edges of every rectangle at

 points of the set S.

 The following theorem is a generalization of the

 theorem proved by Slobodnilc in [3].

 Theorem 5-

 Let f be a real function defined on the open
 2

 convex subset ScR . If f has a ^ -regular approxi-

 mate differential at every point of S and if there

 exists a number & > 0 such that

 SUP I * f ,j,-ap(x,3r) Ux,7) - (x»,y',))|sK
 ? ((x,y),(x', y')) si

 for every (x,y)e 3 (where 7 f(x,y) denotes a gradient

 of f and o((x,y), (x',y' ,)) denotes a distance between

 (x,y) and (x',ył) , then f is differentiable on S and

 7f(x,y) = vf (x,y) and, for every (x,y), (x> ,y' )eS,
 tlr-ap
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 |f(x*y) - f(x'iy')l s s il (x^) - (x'^') II .

 Theorem 6.

 If the real function f defined on the rectangle
 2

 ? c R fulfills the lý -regular approximate Lipschitz

 condition, then f has a total differential almost

 everywhere on P.
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