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Introduction:

Let Cﬁ(x) denote the ultraspherical (Gegenbauer)
. )
polyanomial of degree ? and [an}n=0 bel? sequance
of complex numbers such that Iim |aqlﬁ’< 1. The
Na® )
following facts can be easily shown (see [1], {&4]):
L) The set {Ch (x)},_, is orthogonal and compleste

over (-1,1) with respect to the measure
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ii) Cﬁ (x) satisfies the ordinary differential squatioa
.

(l-x2) yv"'-(2u + L)xy' + n (a+2y)y = O.

n
1ii) The function f(x,y) = nzo 2, (x24y2)2 cu ’(x-iy )2)
is a solution far the siagular partial differential
equation
93% + QE% £L2u df =0.
dx~ Y~ Vi dY
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It is also well known that if Tim |a_|
Noe :

<i,
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-
shen the ssriss £(z) =3 a_C'{z) converges to 2 nolomcrphic

function in soma2 neighdo

then the series may diverge everywhere (ia the classical
sensa). However, we have shown in 2 recent work [5]
that the seriss converges to a hyperfunction on

-1,1

——d

. A anyperfunction on{-1,1] is a contiauous

linear functional sn the space of analytic functions

on [-1,1] provided with a certain tcpology [2]. If
the growth rate of the sequencs [an}:=0 is restricted,

o

0q

. .

2 = O(np) for some integer p, then we show that

th

(0]

series converges to a generalized function (Schwartz
distribution) on (-1,1) which is 2 continuous linear
functional on-the space of C”-functions with support
in(-1,1). Since generalized functions and contiauous
functions are clo§ely related 2.g. every generalized
function £ with compact support is the %th distribu-
tional derivative of some ccntinuous function F(x),

we will be able to study the dehavior of the seris
-] . a .

£(x) =% a,Ci(x) via F(x). Instead of looking at
n=0 =

the glotal propertiss of £(x) as it is usually dcne

[ 7]

we shall sxamine the local behavior of F(x) in some
neighborhocod of x~¢(-1,1) and try tc interpret it

~
in terms of £(x). To be more specific, we shall

show that if the normalized xth Peano derivative of
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2xists, and is ecqual to say y, then the

-] : . . D 13
sariss g ach“(xo) is Abel summable to y. Under 2

slightly strongar condition it can be shown that the

associated power series ¢ (z)= § aqhﬁzn,'which con-
n=0 -

varges for lz| < 1, approaches its boundary value

¢(3) as z » 8 radially where |g| = 1 and Xy = %(s+%).

2. Definitions and Notations:

Let I denote the interval (-1,1) and CS(I)

denote the space of C=functions with support

in I. A generalized function (g.f) £ on I is

a contiauous linear functional on the topolcgical
linear space Cy (I). The action of f on g (x)eCh(I)

is denoted by (%(x),¢(x)>. The g.f f(xx.+ xo)
X-%4

is defined by {f(u +x5), 0(x)) = <f(X):xl¢ ()

We say that f(x) has a value 2t x4 if limé‘(kxﬂca),qs(x»
A =0

exists for all ¢ ¢ CJ(I). It has been shown
{3] that f has the value A at Xy if and only if

thers exists an integer kX =2 O and a continuous

function F(x) such that F(K) = { and

lim F(x e = Y- Clearly, this 1is equivalsnt
<, - T
X=Xy (%X-Xq) <!

to saying that the normalized kth Peano derivative

of F(x) at Xy exists and is equal to v.
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Summadility thecrems:

The results of this secticn alcng with the details
of the proofs will be published elsewhers,

J

Proposition Let Ean1:=o oe a sequencs of complax

aumbers such that an=0(;p) for some integsr D.
Then there exists a generalized function £

such that ‘the series §

an n
n=0

. Proof: Consider the function F(x) =
: <

Q a : : -
amo il —ch (x) X ()

(a+u) I

where 2k 2 2y+ p + 1. F(x) is continuous on

. -1
[(-1,1] since max lcg (x)] = ol Using the
Xe[-l,l]
. 2 *
facts that L Cl(x) = -{n+y)CH (x) where
2.4° 4 2
L= (1-x7)3:2 - (a1+l)x3§ - 4~ a2nd that L is a continuous

operator cn the space of generalized functions
we can apply L to =q.(l) and this finishes

the proof.

Theorem 1.
Let [ be a generalized function with support in

r~J

I given by £(x) = & a Cp (x). If f nas a value
n=0 :

-r ‘cn - 3 ¥ a o)
y at Xg ¢ L, thenn=g 2, Cg(xo) is Abel summables tc v.
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watch of the ovroof: By the hypothasis there

axist a non-negative intaeger k and 2 contiauous

function F(x) such that (%) = £(x), =2ad

. F = . Thererfore
tim By = - e :
XX o} -

0
rEO nﬁ"('l(x )I‘n = q;:;oh;ud;(xo)rn<f’(l'x2)u-%cl:l(x)>
_ ; (_l)‘&h:luctl(x )rn<‘5‘ (l X )“l i‘C“(X)>
n=0 )

= fl[gifﬂ-égl G< (xo,x r)dx where
-1

) w @ ‘ kK
4 _ o n d 2\u-
G (xo,x,r)- XX nior hgycg(xo) (E;k(l-x e Cg(xg

We show that G‘(xo,x,r) is a quasi-positive %ernel
and then we use the theory of singular integrals
(5] to show that the limit of eq.(2) when

r -1 is vy.
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the {ul-th distrizusicnal darivative <of £ has 2 vralue
y at Xoe.l..
2 M0 3 <
Then #(z) = £ ah “z" - ¢(8) as z » 3 radially where
a= ’
1
- k + —
xg = (3 +3)

Sketch of the proof: We show that ¢ (z) can be given by

o(a) - (2, Lzt

’ (l—2xz+zg)“
- k dk' Q-Xg)“-%
- ('l) <F: K > > .
dx®  (lL-2xz+z<)H

[V

Using an argument similer t3 the one given in Theorem 1

yialds the result.
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