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 CURRENT TRENDS IN DIFFERENTIATION THEORY

 by Andrew Bruckner*

 Since the appearance of Zahorski 's article C~ó~ in

 1950, a great deal of work has been accomplished con-

 cerning the differentiation of real functions . Much of

 this work has, in fact, been accomplished during the last

 decade, and even this most recent work has involved a

 number of different directions of inquiry.

 Our purpose here is to discus's some of these directions

 of inquiry in a largely expository manner. While we state

 some of the recent results in precise form, our purpose is

 .nore to impart the flavor of the subject than it is to pro-

 vide a complete up-to-date catalogue of the results. For

 that reason, our style is often informal, none of the

 chapters is intended to fully summarize the present state of

 knowledge, and we have omitted certain topics of current

 interest. Notable among the omitted topics are the important

 works by Laczkovich and Petruska on extensions to, approxi-

 mations of, and separation by, derivatives; by Garg on the

 delicate differentiability structure of functions; by

 S. Marcus and others on the stationary and determining sets

 of various classes of functions; and by various authors on

 certain generalized derivatives.

 The author was supported in part by an NSF grant.
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 I. DIFFERENTIATION AND CHANGES OF SCALE

 Perhaps the simplest example of a continuous function

 which fails to be dif ferentiable at some point is the

 function F(x) = |x|. The corner appearing on the graph of

 F disappears however, when F is composed with the homeo-

 morphism h(x) = x° of onto itself: that is, the

 function (F o h) (x) = |xJ| is everywhere dif ferentiable

 whereas F is not. In short, we have been able to create

 differentiability via a homeomorphic change of variables.

 In recent years there have been a number of studies of

 the effect of changes of scales on various classes of

 functions, particularly classes related to differentiation

 theory. Most of the results of these studies have intrinsic

 value to the study of differentiation, of course, but they

 also can be applied in a variety of ways. For motivational

 reasons, we shall begin our discussion with statements of a

 few of these results and some applications. We do this in

 Section 1, below. Then in Section 2 we consider some general

 questions; we devote Section 3 to a summary of known results

 and end with a brief discussion of related questions.

 1. Applications of Theorems on Changes of Scale.

 To give an indication of the kinds of applications to

 which these change-of- scale theorems give rise, let us begin

 with a single such theorem (and some variants) and discuss

 several applications.
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 Our starting point is the following theorem C20j,

 Theorem. A function ? defined on the interval CO, II

 can be transformed into one with a bounded derivative via

 a homeomorphic change of variables if and only if F is

 continuous and of bounded variation on "0,1].

 We discuss several applications of this theorem and its

 modifications .

 a) Dif ferentiable Cantor- like Functions.

 The Cantor function fails to be differentiable at any

 point of the Cantor set. Yet, this function is continuous

 and of bounded variation and can therefore be transformed into

 one with a bounded derivative. The transformed function is,

 of course, a Cantor-like function: that is, it is constant

 on each interval contiguous to some nowhere-dense perfect

 set, but not constant on any open interval containing points

 of that set. And it is differentiable, with a bounded

 derivative :

 b) Nowhere Monotone Functions.

 A continuous nowhere-differentiable function cannot be

 monotonie on any interval. Almost one hundred years ago,

 the problem arose of determining whether or not a differentiable

 function could be nowhere monotonie. Around the turn of

 the century, a number of authors published examples of such

 functions. Unfortunately, their complicated constructions

 contained errors. Finally, in 1915, Denjoy ~21] presented

 a (correct) lengthy study of such functions. Needless to
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 say, his constructions were quite complicated.

 The machinery available to contemporary mathematicians

 allowed for simpler proofs of existence of dif ferentiable

 nowhere monotonie functions. Thus, Zahorski [76] obtained

 such functions by using his deep results about derivatives,

 Goffman C 3 1 3 based a proof of existence on properties of the

 density topology, Petruska and Laczkovich [60] used work they

 had developed concerning extensions of derivatives and Weil

 [74] based a proof on the Baire Category Theorem.

 Interesting "elementary" proofs were recently advanced by

 Katznelson and Stromberg [40] and by 31azek, Borak and

 Maly [ó].

 Suppose we wished to construct such a function from

 scratch. How could we proceed? A natural attempt would be

 to try to make judicious use of Pompeiu derivatives.

 Pompeiu [61] constructed a dif ferentiable increasing function

 F such that F' > 0 on a dense set and F' = 0 on another dense

 set. Perhaps one can construct two such functions F and G

 so that F-G has the desired properties. One can, but it

 isn't easy! There just are too many things that have to be

 controlled simultaneously. Our theorem is helpful here,

 however [59]. Let A be a measurable set with the property

 that both A and its complement A intersect each subinterval

 of [0,1] in a set of positive measure. Let F(x) =
 X X

 / X'(t)dt, G(x) = ' Í xiftJdt. A Then F' = 1 on a dense set, 0 • ' 0 A
 G' = 1 on a different dense set and the function F-G is an

 absolutely continuous nowhere monotonie function. It isn't
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 differentiable everywhere, of course, but cur theorem

 guarantees the existence of a homeomorphism h of 10, 1~

 onto itself such that (?-G) oh is differentiable (with a

 bounded derivative). It is clear that this function is

 nowhere monotonie because monotonicity cannot be created

 or destroyed by a homeomorphic change of scale.

 Incidentally, Pompeiu derivatives exhibit a number of

 interesting properties, and such derivatives are not

 difficult to construct by elementar;/- means 1-92, C"~-

 We mention in passing that Solomon Marcus has pointed out

 that a bounded Pompeiu derivative furnishes an example of

 a bounded derivative which fails to be Riemann integrable

 on any interval and this fact follows from completely

 elementary considerations (the lower Darboux sums must be

 0).

 c) Parametric Representation of Rectifiable Curves.

 Suppose we are told that a rectifiable curve y ir. R,

 has parametric representation x = x(t), y = yft), ÍQ <_ t <_ 1)

 with X and v differentiable with bounded derivatives. Wh at

 does that say about y? Does it imply, for example, "hat

 Y has a tangent at each point, the tangent being vertical

 at points at which x' vanishes? The answer is that it says

 no thing , beyond the obvious (that y is a continuous recti-

 fiable curve). This follows from a small variant of our

 theorem C20]. Since y is a rectifiable curve, it admits a

 parametric representation with coordinate functions con-

 tinuous and of bounded variation. The variant of our theorem
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 allows us to choose a homeomorphic change of scale which

 simultaneously transforms the coordinate functions into ones

 with bounded derivatives.

 d) Level Sets of Functions.

 Independently, Fleissner and Foran C2S] and Kaplan and

 Slobodnik C39] proved that a function F can be transformed

 into a differentiable function via a homeomorphic change

 of variables if and only if F is continuous and of generalized

 bounded variation (V3G*) . Because a differentiable -function

 must have almost every level set finite, the same must be

 true of each continuous function which is VBG * . This fact

 is well known L66j, but it provides an example of the way

 a change of scale theorem can be used to establish a structure

 property for a class of functions when that property is known

 ror an appropriate subclass. The property must, of course,

 be one that is invariant under homeomorphic changes of

 variables .

 It may be interesting to note for comparison that if we

 weaken differentiability to differentiability a.e., the

 result or the paragraph above fails completely. Such a

 function can have every level set perfect. To see this we

 invoke another change of variables theorem together with an

 example of Gillis ' .

 Gillis i~30j constructed a continuous function G for

 which every level set is perfect. Then, in Cl3] it was shown

 that a function G can be transformed into one vfhich is

 differentiable a.e. if and only if G is continuous on a dense



 set. The resulting function G : h is still a Gillis-like

 function - (every level set is perfect), and it is

 dif ferentiable a.e. Mote (G o h) ' vanishes wherever it

 exists. In this connection, it is interesting to observe

 that a singular function (i.e., a continuous nonconstant

 function of bounded variation whose derivative vanishes a.e.),

 must also have an infinite derivative on some c-dense set.

 2. The General Situation.

 Let us formulate some questions pertaining to the

 effects of changes of scale on a class of functions. Let

 's be a class of functions defined on, say, the interval "0,11.

 Let * denote the class of (increasing) homeomorp'nisms of

 CO, 1] onto itself and let denote the set of all

 functions of the form f o h where f í ? and h € "W .

 A systematic study of the effects of ^ on J? might

 include consideration of the following questions:

 (i) Does- ir z s = r ? In other words, is the class 7

 invariant under homeoraorphic changes of variables? The

 class of continuous functions, the class of functions of

 bounded variations and the class of functions for which each

 level set is finite furnish examples for which the answer

 to our question is affirmative. Usually classes of

 functions differentiable in seme generalized sense and the

 classes of their (generalized) derivatives are not

 invariant under such a change of scale.

 If the answer to (i) is negative, there are several

 other questions which arise naturally:
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 (ii) How can we characterize the class ><?

 Observe that the class ^ 0 n consists of those functions

 which can be transformed into the class J- by a suitable

 homeomorphic change of variable. The theorem of the previous

 section shows that for 5" the class of functions with bounded

 derivatives, > o 'X is the class of continuous functions of

 bounded variation.

 (iii) How can we characterise the class

 ■£* = { f € J* : f o h í ^ for every h ć fr } ?

 Here we are calling for a characterization of those

 functions in ¿r which remain in 5 under all homeomorphic

 changes of scale. Note that o in general.

 (iv) How can we characterize the class

 r{ * - { h € >< : f o h € j' for all f ć ?}? (i.e., under which

 homeomorphic changes of variable does £ remain invariant?)

 One can, of course, ask the analogous questions for

 changes of scale of the range of the functions in 5?. Thus,

 if we now denote by ^ the class of increasing homeomorphisms

 of R-, onto itself we can call for characterizations of the
 J.

 classes ° , ■?* and?=f*, where the notations have the obvious

 meaning .

 3. Summary of Recent Work.

 Much work pertaining to the questions we discussed above

 has been accomplished in recent years. We summarize some

 of this work in the chart below. The numbers appearing in

 brackets are references to proofs of the assertions on the
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 chart. The numbers appearing in parar. cheias refer to

 remarks following the chart. A blank space indicates the

 entry is either a trivial one or one unknown to us.

 For additional discussions and some proofs see 1233, C7~-

 V/e shall use the notation below to represent certain

 classes of functions related to differentiation theory:

 C'. is the class of continuously differentiable functions.

 is the class of dif ferentiable functions with

 bounded derivatives .

 i is the class of dif ferentiable functions.

 is the class of functions differentiable a.e.

 i is the class of aocroxiaately dif ferentiable
 ap ...

 functions .

 A , is the class of functions aooroxi-natelv differentiable
 apae ,

 2. . £ .

 L is the class of functions for which each point is

 a Lebesgue point.

 A ' is the class of derivatives.

 bd' is the class of bounced derivatives.

 C is the class of asoroxiaatelv continuous functions,
 ap ...

 In addition, the notations C, 3V and 73 G * will have

 their usual meaning .



 INNER CHANGES OF SCALE

 sjń ¿ř o )h *

 C' (DC17] I :
 àb C and BV l20][17j j
 A C and VBG* [2511139] ļ
 A Continuous on dense ļ ,
 ae set Cl3](4) ļ ¡ h" absolutely

 i i continuous [29]

 ¿ap i !
 A j Each interval contains > j h absolutely _
 P j a nonempty perfect set ■ • continuous _29l _

 • P such that FfP is ;
 continuous, fl 3] ļ

 L j Darboux Baire 1 TSljCSoj! C l-*5]C11](9)
 A ' ; Darboux Baire I [51X51] i C (2)f42j
 bA' j Bounded Darboux ] C

 j Baire 1 l51]L55] ļ
 ! _ .1

 C Darboux Baire I [32] ļ C LIO] _ : h preserves
 P i : density ooints
 ; i 1 LIO] (3)

 OUTER CHANGES OF SCALE

 C' I ;

 Ab ! S' (5) rz6],r-] j
 A j S' (3) C26] I
 A ļ (3) ; r - 4] - I ae ļ ; - -
 A ! j
 ap i :

 Aapae :
 L (6) l35j Bounded functions

 in C
 aP :

 à1 j (7) ' Linear [20]
 bA ' ; (7) CaDC/S] Linear CZOZCl-I
 Cap ; Cap Lap
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 Remarks About the Chart.
 X

 (1) The class C' o consists o£ those functions

 which are continuous, of bounded variation and whose set

 V of points of varying -nono tonicity ¡nap into a set of

 measure zero. A point x is said to be a point of varying

 ¡nonotonicity for f it there is no neighborhood of x on

 which f is constant and no neighborhood on which f is

 strictly monotonie. For example, for the Cantor function

 f, V is the Cantor set. Since f (V) = CO »II in this case,

 f 4 C' 3
 (2) The condition obtained by Laczkovich and Petruska

 C-t2] is too complicated to state here. It is closely

 related to the condition that 1/h ' be continuous and of

 bounded variation.

 (5) The condition is that if xQ is a point of density

 of E, then h ^(x0) is a point of density of the set h'^(E).
 (4) The characterization for o & can be formulated

 in a manner which allows comoarison with the class ¿ a V
 apae

 as follows: F t á , o ^ if and onlv if each interval contains
 ae ,

 a perfect set P such that F is continuous at each point or" P.

 (For F € - „ _ „ „ o & we require onlv * relative continui tv.}
 apae „ _ „ „ *

 N'ote that d „ o ^ contains, in oarticular, • all Baire 1 ae „ •

 functions, and ¿aoae 3 * contains all measurable functions
 and all functions with the property of Bai rs .

 (3} The condition 5' is related to Latin's condition

 (Nr) . A function F satisfies condition S' if there is no
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 interval which is contained in the image under F o£ sets of

 arbitrarily small measure.

 (6) Hancock's conditions are quite complicated. In

 addition to the obvious requirement of approximate continuity,

 each member f of L must satisfy certain growth and

 density-like conditions. In particular, if f is approximately

 continuous and its set of non-Lebesgue points is denumerable,

 then f £ >' o L.

 (7) Characterizations of the classes # o ¡l' and & o bA '

 are not known. The inclusions ^ o A' and 3 bû' ^ 7K,
 3 4

 follow from the work of Preiss [63] and Zahorski L 7 6 J ,

 respectively. Both inclusions are proper.

 (3) Bary f4] showed that COo Aa_. In the same paper ' CL 6 '

 she showed C o A„Ä o . a e

 (9) An interesting application of Maximoff 's theorem is

 due to Lipiński C45]. He expressed „C'ôj as a union of sets
 whose intersection is C.

 4. Related Questions.

 There are many other questions one could ask concerning

 the composition fon, (ft?, his). For example, one

 could replace by a more restrictive class of homeomorpnisms

 or by a larger class of functions. Thus, Tolstoff Z ~ 0 j

 studied the composition ¡i o D, where D denotes the diffeo-

 morphisms of F 0 , 1 J onto itself, and Laczkovich and Petruska

 l4Z3 studied the composition f 3 c, f 6 A', c a convex

 homeomorphism . Similarly, in ~10] one finds a characterization

 of those homeomorpnisms h whose inverses are infinitely
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 dir r erentiab le such that f o h c C whenever : ć C
 ap ap

 One of the early researches of these types of

 questions is the work C~3] oi Wilkosz. He studied functions
 ?

 f such that both f and z" are in bď , and showed that this

 class consists of the bounded approximately continuous

 functions. He viewed f^ as the product f • f because he

 was interested in products of derivatives, but one can also
 ? ~>

 view f" as the composition s 3 f where s(x) = x". We can

 view Wilkosz' result as a special case of the theorem that

 co f £ bď for c strictly convex and fí bď if and only if

 f $ C fl2]. It follows from this theorem, for examole,
 ao

 that ir 0 < k < : £ K < » and r ~ l' , then z" z l' 1: and

 only if 1/f € ď. Also, the equality provides a test for

 approximate continuity. For example, the fact that the
 i ■)

 function f(x) = sin - (-(0) = 0} is in bü', but fw is not,

 oroves f ¿ C„„.
 ap

 One finds in C 1 2 J additional theorems which show how

 totally devastated some derivatives are under every nowhere

 linear homeomorphism change of scale of the range.

 Similar questions involving the structure of ? 3 or

 H o •> for other classes of functions have also been answered.

 5ee for example L2]Cl9-C333 and C 1 5 j which deal with Fourier

 series and Baire 1 equivalent functions, respectively. See

 also the survey article "23] by Foran for further discussions

 of change of scale theorems within the class of continuous

 functions and for statements of some open problems.

 ^ ?



 As a final remark, we mention that transformations

 involving inner and outer homeomorphisms simultaneously can

 also be studied. We can ask the same kind of questions

 we asked before in connection with classes of the form

 J»'o í o where the notation has obvious meaning. For

 example, if 5- - à or tne classes 3> o"# (in both

 cases) consist of those continuous functions f such that

 (*){y:f *(y) is finite} is c-dense in the range of f.
 This result (for i) was recently proved in C39j, but both

 results follow immediately from our first theorem (Section 1)

 together with a theorem of Bary C-*, p- 635] according to

 which %• o C3V consists of those continuous functions for

 which (*) is met. (See also C2S].).
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 II. MONOTONICITY

 During the last few years, a plethora of theorems,

 each concluding that a function is monotonie, has appeared

 in the literature. This is due in part to the fact that a

 number of authors have become interested in various sorts of

 generalised derivatives, and each such generalised derivative

 can give rise to a variety of mono tonici ty theorems. Many

 of these theorems follow a certain format which we examine

 in Section 1, below. Then in Section 2 we discuss a few

 results of a more abstract nature.

 1. A Format for Monotonicity Theorems.

 Many of the theorems which generalize the elementary

 theorem that a function ? whose derivative is positive on

 an interval Ig is increasing on Ig follow a certain format.
 One assumes that F meets some regularity condition (e.g.,

 f € C, f € Cap or f c -^^) , that some sort of generalized
 derivative exists except, perhaps, on some set which is

 small (e.g., countable) and that this generalized derivative

 is nonnegative except on some (possibly larger) small set.

 For the elementary theorem, the regularity condition is

 differentiability, and both small sets are empty. Often,

 a new monotonicity theorem improves an older one in that one

 or more of the hypotheses of the older theorem are weakened

 a bit. Although the weakening of a part of a hypothesis

 may appear minor, this weakening could require an entirely

 different sort of proof based on very delicate arguments.
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 We shall consider only one chain of theorems as an

 illustration of the preceding remarks. The interested

 reader may wish to consult the original articles appearing

 in this chain to get a real grasp of the work involved in

 establishing such a chain.

 Our starting point is the following theorem of Goldowski

 and Tonelli established in 1923 and 1930. See Saks [66] for

 a proof.

 Theorem (Goldowski and Tonelli) . Let F satisfy the

 following conditions on Ig.
 Ci) ? is continuous.

 Cii) F' exists (finite or infinite), except perhaps on

 a denumerable set.

 (iii) F ' >_ 0 a . e .

 Then F is nondecreas ing on Ig.
 In 1959, Tols toff [59] obtained the following improvement

 of this theorem:

 Theorem fToistoff]. Let F satisfy the following conditions

 on IQ :

 (i) F is approximately continuous.

 (ii) Fļp exists (finite or infinite) except perhaps
 on a denumerable set.

 fiii) F ' > 0 a. e.
 ap -

 Then F is continuous and nondecreas ing on Ig.
 Another generalization of the Goldowski-Toneili theorem

 was obtained by Zahorski C^6j in 1950.
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 Theorem CZahorskil- Let ? satisfy the following

 conditions on Iq.
 (i) F has the Darboux property.

 (ii) F' exists (finite or infinite) except perhaps on

 a ¿enumerable set.

 (iii) F' >_ 0 a. e.

 Then F is continuous and nondecreasing on Iq.

 It is now natural to ask the question: "Can one take

 the weaker of each pair of hypotheses in the last two

 theorems, and still infer mono tonicity of F?"

 This question has a negative answer r 6 2 j » but if one

 assumes also that F is in the first class of Saire, the

 question has a positive answer. (Observe that the hypotheses

 of Zahorski' s theorem imply F is in the first class of 3aire.)

 The following theorem was established in L3jCó3~.

 Theorem. Let F satisfy the following conditions on 1^.
 Ci) F has the Darboux property and is in the first

 class of Baire.

 (ii) Fļp exists (finite or infinite) except, perhaps,
 on a denume rabie set.

 (iii) Fļp > 0 a. e.
 Then F is continuous and nondecreasing in Ig.

 Technically speaking, what we loosely called a "chain"

 of theorems is not really a chain since neither Zahorski 's

 theorem nor Tols toff ' 5 generalizes the other.

 Let us focus, for a moment, on the structure of the

 four theorems we stated and on the kinds of generalization
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 frequently in tne recent literature.

 Condition (i) is a regularity condition. One can

 replace it with some other such condition, (e.g., symmetric

 continuity, preponderant continuity, qualitative continuity,

 etc.). It is then natural to deal with an appropriate

 generalized derivative (e.g. the symmetric derivative,

 preponderant derivative or qualitative derivative). Now,

 in each of our theorems the exceptional set of generalised

 nondif ferentiability was taken to be at most denumerable,

 and the set on which the generalized derivative was not

 known to be ncnnegative was taken to be a null set. And

 this is typical of many such theorems. What other possi-

 bilities are there for these exceptional sets? The negative

 of the Cantor function shows that care must be taken in

 attempting to replace the denumerable exceptional sets in

 condition (ii) by sets in some a-ideal including nondenumer-

 able sets, and it is clear that a a-ideal containing sets

 of positive measure would very likely not work as exceptional

 sets for condition (iii). Roughly speaking, the denumera-

 bility of the exceptional sets in (ii) may stem from the

 principle that denumerable sets cannot influence growth

 patterns of continuous functions very much. ('.ve state this

 principle vaguely because we know of no precise formulation

 of it - but denumerably many exceptions are often allowed

 in the hypotheses of theorems involving growth of continuous

 functions.) iv'hile the hypotheses of our four theorems did
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 noc always require continuity, the General Reduction

 Theorem of Section I below indicates that various ether

 hypotheses can be reduced to the continuous case. On the

 other hand, the set on which generalized derivative rails

 to exist is usually a 3orel set. Nondenumerab le 3orel

 sets always contain perfect sets of ¡neasure tero. Usually

 a Cantor- like function can then be constructed as a

 counterexample .

 Regarding the exceptional sets in (iii) being null sets,

 we remark that if a set H has positive measure, there will

 always be a diff erentiable function ? such that

 0 p OF' < 0 } CL S. Thus,, the null sets form a natural

 o-ideal of exceptional sets in (iii).

 3ut there are other possibilities obtained by controlling

 the growth of the function on the exceptional sets. For

 example, here is a theorem with a ver;/ simple proof.

 Theorem . Let F satisfy the following conditions in

 V
 (i) F is continuous.

 Ci i j F (A) has measure tero, where A = (?' does not exist},

 (iii) F(3) has measure zero, where 3 = (c' < 0>.

 Then F is nondecreas ing .

 This theorem differs from the others we stated in that

 we are concerned with the images of the exceptional sets

 rather than the sets themselves. Many monotonicity theorems

 are of this sort, but they usually are stated in terms
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 of the images of the sets where some extreme derivate

 (rather than the derivative) is not positive. For

 example, if the set on which D+F <_ 0 maps onto a set with

 empty interior and F is continuous, then F is nondecreasing .

 (The same simple proof works.) We cannot change the

 hypothesis to {D*F _< 0} has measure zero, however, (consider

 the negative of the Cantor function), but we would be able

 to make this change if we also assumed that D+F is in the

 first class of Baire Lł4j. We mentioned this now in

 anticipation of one of the open problems which we discuss

 in Chapter V.

 We close this section by mentioning that a number of

 monotonicity theorems involving the growth of a function on

 an exceptional set can be found in Saks [66], Leonard C44] and

 Redheffer A relatively up-to-date bibliography of

 papers dealing with monotonicity theorems involving a

 variety of generalized derivatives can be found in f7j.

 2. Reduction Theorems and Abstract Theorems.

 The theorems in Section 1 were all specific in nature:

 each involved a specific (perhaps generalised) derivative.

 We chose the few theorems that we did because they offered

 some sort of perspective on the way in which increasingly

 more general theorems developed historically. 3ut the

 large number of choices one has for regularity conditions,

 for generalized derivatives and for exceptional small sets

 makes it clear that the total number of "reasonable"
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 monotonici tv conjectures is enormous. How can one trans-

 form the resulting chaos into order? Or, phrased

 differently, how can one get a hold on the distinction

 between a theorem and a plausible, but false, conjecture?

 These questions are, of course, difficult to answer -

 they are not even well posed. 3ut âçme recent results are

 of such a nature as to make it possible to obtain a whole

 family of theorems from a single theorem. The four results

 we shall discuss are of two types: "reduction" theorems

 which allow one to obtain monotonicity theorems about a

 large class of functions from analogous theorems about a

 smaller class; and "abstract" theorems, in which the

 definition of the generalised derivative is abstract rather

 than specific. (Our discussion will clarify what this

 means.) For example, an immediate - application of our first

 reduction theorem gives Zahorski' s theorem from the Goidowski-

 Tonelli theorem and an immediate application of our first

 abstract theorem is a monotonicity theorem in terms of

 extreme approximate derived numbers.

 We mention that our statement about chaos and order

 is a serious one. So many monotonicity theorems have been

 proved in the last few years that it is really difficult to

 sort them out. And a catalogue of theorems and counter-

 examples would have only limited value. What is needed are

 real insights about what distinguishes a theorem from a

 false conjecture.
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 Let us turn to our first reduction theorem. Roughly

 speaking, it asserts that any monotonicity theorem valid

 for the class of continuous functions of bounded variation

 is also valid for the (much) larger class of Darboux

 functions in Baire class 1 (^50^) . (A mild side condition
 is necessary here.) Thus, if one knows a function is in

 and satisfies some conditions (probably involving

 some generalised derivative being nonnegative on some large

 • set) and wonders whether this condition implies that the

 function is increasing, we can (roughly speaking) assume the

 function is continuous and even of bounded variation and

 check whether the condition suffices under that stronger

 hypothesis .

 '.Ve need a bit of notation. Let Ig be a fixed interval

 and CP a family of functions defined on Ig. For each interval
 I C i let <P(l) denote the restrictions of the functions

 in & to the interval I. Let T^d'enote the family of non-

 decreasing functions on Ig, let if denote the family of

 functions of bounded variation on Ig and let Si denote the

 functions which are V3G on Ig. As usual, C will denote the

 continuous functions on Ig.

 General Reduction Theorem L 3 1 . If,

 (i) C ^(I)c?l( I) for every I d Ig and

 (ii) ^(I) >23(1) for every I C Ig, then

 dB & 1Ū>( I ) <C C 7Jl I ) for every I C- Ig.
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 In essence, this theorem tells us that if a property

 (given by the family S> ) , is sufficiently strong to

 guarantee that a continuous function or bounded variation

 possessing that property must be nondecreas ing , and that a

 Darboux-3aire, 1 function possessing that property is V3G,

 then the property is also sufficiently strong to imply that

 each function in that possesses the property is continuous

 and nondecreas ing . The theorem does not mention derivatives

 or generalised derivatives explicitly, but a typical such

 property will usually involve some generalised derivative.

 For example, if denotes the family of functions F such

 that F' exists (finite or infinite) except perhaps on a

 denumerable set, and F' 0 a . e . , then our Reduction Theorem

 allows us to infer Zahorski 's theorem from the Goldowski-

 Tonelli theorem (In this case (?C¿3. This is often true

 when the class <? is given in ternis of generalised derivatives.)

 Using the Reduction Theorem, Leonard C-U] has obtained

 a number of monotonicity theorems involving various sorts of

 generalized derivatives, (e.g., preponderant derivatives,

 qualitative derivatives, unilateral derivatives, and Dini

 derivatives). In addition, Sullen and Mukhopadhyay [13]

 and O'Malley C57j have applied the theorem to obtain mono-

 tonicity criteria in terms of Peano derivatives and selective

 derivatives respectively. Some of these, as well as other

 applications of the Reduction Theorem are discussed in Z^Z-

 A more specific reduction theorem was recently proved

 by O'Malley and Weil C^9~. It is more specific because it

 3 1



 deals only with the approximate derivative.

 Specific Reduction Theorem. If

 A0>(I)C 71 CI) for all I <CIQ
 then

 AapS>CI) CTI CI) for all IClfl ,

 Thus, a property sufficiently strong to imply mono-

 tonicity for differentiate functions is also sufficiently

 strong to imply monotonicity for approximately diff erentiable

 functions. It is easy to verify that if the condition is

 given in terms of properties of the ordinary derivative,

 one could also state it in terms of approximate derivatives.

 For example, the fact that a diff erentiable function with

 a nonnegative derivative a.e. .-is nondecreasing , implies

 that the same conclusion is valid for an approximately

 differentiable function whose approximate derivative is

 nonnegative a.e.

 The O'Malley-Weil theorem requires everywhe re

 differentiability. It would be of interest to know how much

 weakening of that requirement is possible. It would also

 be of interest to know what other generalized derivatives

 admit similar reduction theorems. Perhaps there exists a

 very general reduction theorem which could be applied to a

 number of generalized derivatives. If so, a great deal of

 order could be restored to the present chaotic state of

 af f ai rs .
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 Let us turn now co a discussion or what we called

 abscracc mono conici cy theorems. The g enerali :ed derivacives

 which appear in che liceracure usually involve some sort of

 difference quotient approaching a limit in some sense. One

 such generalized derivative differs from another in the

 manner in which x is to approach Xq in the calculations of
 the limit. Thus, the approximate derivative requires approach

 through a set having density 1 at Xg ; the preponderant
 derivative weakens that requirement to a "preponderance of

 density" and the quaiicacive derivacive replaces the nocion

 of densicy wich chac of category.

 Two recently- s tudied notions of derivative indicate

 the method of approach in more general teras. O'Malley r 5 73

 defined a notion of selective derivacive as follows: From

 each interval select a ooinc P . from Che interior of I.
 • i

 The collection of points obtained in this way is called a

 selection 5. For Xg £ R and a given selection 5, we define

 the selective derivacive sF' of che funccion F at :<g as

 *<?rx 0)
 sF'(x) =» lim

 h-0 LXg,Xg+h] '0

 if Chis limie exiscs. (The nocacion ~Xg,Xg+h] denoces che

 incerval decermined by the poincs Xg and Xg+h even if h < 0.)
 Using che General Reducción Theorem, O'Malley oocained

 che following resulc.
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 O'Malley's Abstract Mo no toni ci ty Theorem. Let S be

 a selection and let F satisfy the following conditions

 on Iq :

 (i) F É J6'31

 (ii) sF' exists except, perhaps, on some denumerable set

 (iii) sF' >_ 0 a.e.

 Then F is continuous and nondecreasing on Ig.

 We consider O'Malley's theorem an abstract one because

 judicious choices of selections can give rise to monotonicity

 theorems involving specific generalized derivatives. For

 example, if F has an approximate derivative (possibly

 infinite) at each point of Ig, then there is a selection S

 such that sF' = F1q on Ig. Thus each approximate derivative
 can be realized as a selective derivative. Thus, we can

 infer from O'Malley's theorem that an approximately differenti-

 able function whose approximate derivative is nonnegative a.e.

 must be continuous and nondecreasing. This result has been

 known for some time, of course, but another of O'Malley's

 monotonicity theorems has as an immediate corollary a mono-

 tonicity theorem in terms of extreme approximate derivates

 which was new at the time: If F is measurable, F' > 0 a.e.
 - ap -

 and F' > - = every'vhere ' , then F is nondecreasing f 5 7 j .
 - ap '

 It is now natural to ask which of the other generalized

 derivatives can be realized as selective derivatives (even

 almost everywhere). Positive results in this direction could

 3 <+



 lead to new monotonicitv theorems, and could also lead

 to a better understanding of what makes monotonicitv

 theorems work.

 We discuss very briefly another abstract monotoni-

 city theorem due to Mastaler z- Wavrrynctak [50]. Here

 one assigns to each x £ Ig a family T(x) of subsets of

 Ig meeting certain natural conditions. Each set in
 T(x) is called a T-neighborhood of x. The notion of

 a T- limit of a function ? at a point x is also defined

 in a natural manner, as is the T-derivative , ?Ļ. If,

 for example, T(x) is the family of sets containing x

 for which x is a density point, -then Fi.(x) = ?' fx).
 i ¿ID

 The main theorem asserts that if F and T satisfy certain

 conditions and FZ. _> 0 a.e. on Ig, then F is nondecreas ing

 and continuous on Ig. A special case of this abstract
 theorem is Zahorski 's theorem of Section 1.

 The theorem could possibly be useful for obtaining

 certain kinds of monotonicitv theorems. Such theorems

 would be of a special nature, however, because the con-

 clusion involves not only the monotonicitv and continuity

 of the function, but also that the function be dir ferentiable

 except, perhaps, on a denumerable set. Note, however,

 that th.is is also true of the theorems we discussed in

 Section 1, because a monotonie function is differentia bla

 at each point of approximate differentiaoilty . And even

 when differentiability except, perhaps, on a denumerable

 set, is not a conclusion of a monotonicitv theorem,
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 continuity usually is. This is so because the regularity

 part of the hypotheses of many monotonici ty theorems

 includes the Darboux property, and a monotonie Darboux

 function must be continuous. Theorems for which the con-

 clusion is simply that the function be monotonie do exist,

 of course. Some such theorems actually provide

 characterisations of monotonie functions. See, for example,

 Saks [66] for such characterizations with Zygmund's con-

 dition (lim F(x-h) <_ F(x) <_ lim^FCx+h) for all x) for
 h-0 h->-0 '

 regularity and Lee [45] with the regularity condition

 involving a notion of semi- abso lute continuity.
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 III. DIFFERENTIATION OF TYPICAL

 CONTINUOUS FUNCTIONS

 The first example of a continuous nowhere difieren tiable

 function is widely assumed to be due to Weiers trass (about

 1375), although there appears to be some evidence that Bolzano

 had constructed such a function somewhat earlier. It was

 not until 1931 that the existence of such function was proved

 by use of the 3aire Category theorem (see Banach [3] and

 Marurkiewicz [34]). Shortly thereafter. Marcinkiewicz ' -ló ;

 and Jarnik C3ój[3T][33] used the 3aire Category theorem to

 show that typical continuous functions exhibit a great deal

 of pathology with respect to differentiation properties.

 (Here, and throughout this chapter, we shall use the term

 "typical continuous function" to mean that the set of functions

 which exhibit the property we are discussing is residual in

 the complete metric, space C = CfO,!].) More recently, other

 authors have obtained a number of similar results, each showing

 that the typical continuous function behaves pathologically

 with respect to differentiation and/or generalized differenti-

 ation.

 In Section 1, we discuss some of the pathological behavior

 of typical continuous functions. Then, in Section 2, we

 present a result which indicates that the behavior, while

 pathological, is also very ''regular" in nature.

 1. Pathology.

 Our starting point is the nowhere differentiability of a

 tvoical continuous function. Now, to sav that F is nowhere
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 dif fere.ntiable is to say that at no point does F have a

 finite (two-sided) derivative. What happens if we allow

 derivatives to be infinite? Or if we allow derivatives to

 be one-sided? An inspection of the standard category

 argument shows that one can, by perhaps modifying the

 arguments a bit, allow either of these relaxations in the

 definition of the derivative and still conclude that a

 typical continuous function is nowhere dif f erentiable (in

 the relaxed sense). But one cannot allow both relaxations

 simultaneously without losing the result! In fact, Saks

 [65] showed that a typical continuous function has an

 infinite unilateral derivative on a nondenumerable set.

 It was not until 1925 that the existence of a continuous

 function with no finite or infinite unilateral derivative

 at any point was proved. Besicovich constructed such a

 function in [5].

 What happens if one replaces the ordinary derivative

 with some generalized derivative? Does one still get no-

 where (generalized) differentiability of typical continuous

 functions? The answer depends, of course, on the specific

 generalized derivative one considers. Thus, Jarnik [58] has

 shown that a typical continuous function is nowhere approxi-

 mately dif f erentiable , Xcstryko [-U] has obtained the

 analogous result for symmetric differentiation, and Evans

 [25] for approximate symmetric differentiation. In the

 other direction, Marcinkiewicz [-16], Jarnik [57] and Scholz

 [67] proved that typical continuous functions are differenti -

 able almost everywhere in certain generalized senses. We
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 discuss Schölt' result, the strongest of the three.

 Suppose, first, that E is a set having the origin

 as a point of density and F is a function for which
 F fx+h") - c Cxi

 lim - ^ - *ht - • exists ror some x. This limit is then the
 h-0 n
 h€E
 approximate derivative of F at the point x. If the limit

 exists for almost every x, then F is approximately different-

 iate a.e. in some strong sense because the same set E is

 involved for a.e. x.

 Let us_ weaken the requirement by asking only that the

 upoer density of E at the origin is 1, i.e., that

 Tim h " 1 u C E H C 0 , h j ) = 1.
 h-0

 Ffx+h"1 -Ffxl - _ .
 Ir lim - >

 h-0 n
 htE

 E-differentiaole at x. .Vow the typical continuous F is

 nowhere approximately dif f erentiable , but there always will

 be a- set E with unit upper density at the origin such that

 F is E-diff erentiable a.e. There is a problem here, however.

 How do we know that different choices of 5 won't lead to

 entirely different E-derivatives? ''/e don't! A typical F

 can have many different E-derivatives. Not only "can" -

 it does'. How many? Scholz proved the following remarkable

 theorem.

 Theorem . Let F be a typical continuous function and

 let f be an arbitrary measurable function. Then there

 exists a set E having unit upper density at the origin such

 that f is the E-derivative of F for almost everv x.
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 Thus, not only is a typical continuous function a.e.

 differentiable in Scholz' sense, but we are free to pick

 in advance what its derivative is to be

 By taking constant values for f in Scholz' theorem,

 one sees immediately that a typical continuous F has every

 real number as an essential derived number a.e. This

 is Jarnik's theorem [37j. Jarnik also proved in [56] that

 every extended real number is an ordinary derived number

 of F at every point. These results give some sort of indi-

 cation of how badly nondif f erentiable a typical continuous

 function is.

 2. Regularity.

 The results of Scholz and Jarnik that we mentioned at

 the end of Section 1 suggest a great deal of pathology in

 -the differentiability structure of typical continuous functions.

 But they also ¡night suggest a regularity of sorts: two

 typical continuous functions behave very much alike. To

 obtain a clearer picture of this regularity, we shall discuss

 the manner in which the graphs of typical continuous functions

 intersect straight lines.

 We mentioned in Chapter I that Gillis constructed a con-

 tinuous function whose graph intersects each horizontal line

 in a perfect set. He claimed even more; namely that each

 nonvertical line intersects the graph in a perfect set. This

 latter claim was incorrect, however. In fact, Garg has



 observed that the graph of a continuous function must

 intersect man/ lines in sets containing isolated points.

 Suppose, for the moment, that Gillis' claim had been

 correct. Then the graph of Gillis' function would pro-

 vide a "clear picture" of a continuous function for which

 each real number is a (bilateral) derived number at each

 point of CO , 1) .

 Now Gillis' claim was not correct, but there are

 continous functions which behave very much like Gillis'

 was supposed to. In fact, the typical continuous function

 does! To formulate this typical behavior, we need a bit

 of terminology. Let 9 be a direction, let F be in C

 and let Lg denote the family of lines in the direction 9
 which intersect the graph of F. We say that F behaves

 normally in the direction 9 if the graph of F intersects

 (i) the two extreme lines of Lg in singletons,
 (ii) the lines of some denumerable "dense" subset

 of Lg in the union of a nowhere dense per-
 fect set with a singleton,

 (iii) all other lines of Lg in a nowhere dense
 perfect set.

 Theorem Ció]. The typical continuous function behaves

 normally except in a denumerable dense set of directions.

 In each exceptional direction, the behavior is normal

 except for a single line for which the intersection con-

 tains exactly two isolated points.



 This theorem lends substance to the statement

 "typical functions look alike."

 Because of the existence of isolated points in the

 intersections of the graph of F with certain lines, one

 cannot "see" the nondifferentiabi li ty of F as easily as

 one could from Gillis1 claimed function. (These isolated

 points arise from relative strict extrema of functions

 of the form F(x) - yx) . 3ut much of the nondiff erentiabili ty

 structure appears plausible from the picture, and, in

 fact, much of it follows from some of the preliminary

 theorems needed to prove the stated theorem. It would be

 of interest to obtain an improvement to the stated theorem -

 one from which many of the results we discussed in Section 1

 could be visualized.

 Finally, we mention that every continuous function F

 possesses a certain type of "internal" differentiability

 structure [14]. Each nonempty perfect set ? contains a non-

 empty perfect subset Q such that F t Q is differentiable .

 Furthermore for x outside some ¿enumerable set, there exists

 a perfect set P containing x as a two-sided limit point

 such that F'P is differentiable.

 Let us call a set A a differentiable road for F

 provided F 'A is differentiable. The statements of the pre-

 ceding paragraph indicate something about the kinds of

 differentiable roads possessed by all continuous functions.

 In the other direction, the typical continuous function

 U2



 possesses no di f f erer.t iab le road of positive measure and

 no dense dir ferentiable road. This last fact can be

 contrasted with a theorem of Blumberg 's which asserts that

 every function f possesses a dense continuity road (i.e.

 a dense set D such that FfD is continuous).

 There is a great deal known about nowhere dif ferentia'ole

 functions - both typical and nontypical - that we have not

 been able to discuss in this short chapter. We refer the

 interested reader to a number of recent papers on the sub-

 ject by !<. M. Gar g .
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 IV. THE ALGEBRA GENERATED BY d'

 7 1
 Consider the function F(x) = x"sin - (F(0) = 0)

 A

 with derivative F'(x) = -cos ^ + 2x sin ^ C F ' (0) = Ū) .
 Simple considerations of the expression for F' show that

 the function f(x) = cos ^ (f(0) = 0) must be a derivative.
 3ut one can also show that the function f^ = f-f is not

 a derivative. This example shows that the product of two

 derivatives need not itself be a derivative. Two questions

 now arise:

 (i) Under what circumstances is the product of two

 (or more) derivatives itself a derivative? and

 Cii) How can one characterise the class of functions

 expressible as a product of two (or of n) derivatives?

 The first of these questions has been studied exten-

 sively and the present state of knowledge has been summarized

 and discussed by Fie is s ner in the recent survey [24]. We

 have nothing to add to chat survey.

 The second question was posed by Solomon Marcus in 197 7.

 While little work has been done on that question (and none

 of it published), it offers a number of interesting possi-

 bilities and it raises the larger question of characterizing

 Alg à', the algebra of functions generated by i'.

 A bit is known regarding the second question. My two

 colleagues S. Agronsky and R. Biskner and I observed that

 the characteristic function of a closed set is always

 expressible as a product of two derivatives, but the
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 character is rie function of a nonempty proper open subset

 of R can never be represented as a product of any number

 of derivatives. These results have been extended in a

 number of ways by J. Marik, who also showed the existence

 of functions representable as a product of n+1 (but not

 of n) derivatives (for each n a 2,5,...) . His work in this

 connection leads to the following very instructive example.

 Let G » RMO} and let f be a function continuous on G such

 that 1 < f < Ü on G and such that the sets {f = 1} and

 if = 2; have density 1/2 at 0. For each a£R let f 3 f •

 on G and f (0) ' = a. Then ■'N '

 (i) £ i' if and only if a » 4»

 Cii) f is a oroduct of no more than n derivatives

 if and only if a >_ ( (l+2^n)/2) .
 One can show that { C (l + 2"^n) /2) n} decreases to /2. Thus,

 for a < /2, f cannot be reoresented as a finite product of
 - a

 derivatives. As we lower the value of a from 4 to /2,

 we require increasingly more derivatives for a product -

 rsDresentation of the otherwise well-behaved functions f , ' • 'N , '

 the representation disappearing entirely when a = /T.

 Let us complicate things a bit. What functions f can

 be expressed in the form f = g' * h'k' Cg.^.k € a)? Mo

 complete answer is known to this question, but some

 interesting results have been obtained by Marik. For

 example, if f is locally bounded and for each x € R there

 exists a function c?,c continuous on R - {x; such that

 lim f (t) - cfx(t) = 0, then f can be represented in that form,
 t+x

 - 5



 In particular, each function possessing finite unilateral

 limits at each point admits the representation. The

 same is valid for each function of the form / a„-<c , where
 ^ CT/

 A.

 the sets E^. are closed pairwise disjoint sets and the

 numbers are nonnegative with £ a^ < ». The function
 /0 if X is irrational

 f Çx) = •( , , furnishes an example.
 - if X = ° in lowest terms
 s q q

 if a function f admits the representation f = g' + h ' k '

 it must, of course, be in 3-^. What else must be true? The
 answer to that question does not seem to be known. In fact

 we have no example of a 3aire 1 function not representab le

 in that form to offer! If there are such functions, then it

 becomes natural to ask whether ßj = Alg â'. If the answer
 is affirmative, then one can establish without difficulty

 that there must be a oositive integer 3 N such that each f £ ¡3, 3 i

 can be expressed in terms of sums and products of no more

 than M derivatives. If the answer is negative, then there

 are many questions to ask. We mention that each t ć C', is

 expressible as a uniform limit of functions in Alg A'. In

 fact each f è can be expressed as a uniform limit of

 functions of the form g ' + hk ' (g,h,k £ ') . why of that

 particular form? V/e shall answer that question, but we pre-

 fer to postpone the answer until we have briefly discussed the

 class of functions f representable in the form f = g' +• hk1

 Cg,h,k c a), which seems to be of some interest. This class

 is discussed in [1] and denoted there by Ca'].

 I ¡ n



 Suppose we know g, h and !< ars dir ferentiab le on R

 and f * g' * hk' . '.v'hat does that say abou: £? If k' is

 summable then the product hk', and therefore f, must be a

 derivative. But, in general, hk' £ ď, so f ; d'. None-

 theless, f must possess some derivative- like structure.

 For example, there must exist a dense open set T and

 functions F£a and G differentiable on T such that ?' = f

 on RNT and G' = f on I. The existence of such T, F and G

 are also sufficient for f to be in C a ' j - Several other

 characterizations of [i'] can be found in [1],

 One of the features of the class [a'] which may make

 it useful is that it contains certain important classes of

 functions related to differentiation theory. Thus, each

 approximately continuous function, each approximate derivative,

 and each function in O'Malley's class -S? is in Ca'J- For the

 approximate derivative heavy use is made of a property

 obtained by 0' Mai ley [53],

 Mow the fact that 3* C.[j' ] implies immediately that a

 Baire 1 function with finite range is in Ca'] and this implies

 that T3ļ is contained in the uniform closure of Ii'].
 The fact that a' C.[a'] mav be useful to an understanding

 ap

 of why an approximate derivative possesses so many properties

 of a derivative. Ve discuss this question in Chapter V, below.

 What role does the function g' play in the representation

 f = g' * hk ' ? Can we, for example, represent each function in

 [i'] as hk' with h,k € A? The answer is negative. In fact

 even an approximately continuous approximate derivative w i th

 only one point of discontinuity cannot always be expressed



 in that form, or even as a product of two or more derivatives.

 The central problem is probably that of characterising

 Alg à'. But there are also many questions, some of which

 may be rather difficult, concerning the structures of functions

 which admit certain specific representations in terms of

 derivatives. Solutions to some of these problems could possi-

 bly require a deeper understanding of the structure of deri-

 vatives than we currently have. If so, the methods of a

 solution might be more important than the answers themselves.
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 v. OPEN PROBLEMS

 We have already mentioned a number of open problems

 in differentiation theory. We now turn to discussions

 of three additional problems. (We shall not discuss the

 important problem of characterizing derivatives because

 that problem has- been discussed extensively elsewhere [7]).

 1. Derivatives Versus Approximate Derivatives.

 Although the notion of approximate derivative is nore

 general than That of (ordinary) derivative, each approximate

 derivative possesses many of the properties of derivatives.

 In fact, each of the many properties shown (since 1930} to

 be valid for ordinary derivatives has also been shown

 (since i960) to be valid for approximate derivatives. The

 timing is not surprising: the Zahorski 1950 article C"6]

 was the starting point for many of the investigations about

 derivatives, and the Goffman- Neugebauer 1960 article [3 2 3

 was the starting point for many of the corresponding investi-

 gations about approximate derivatives. The chart below

 summarizes some of the results.
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 ProDertv ¿
 ap

 y Den joy [22] Marcus [-13]

 770 , Zahorski [76] Weil [72]

 ~/riļ Zahorski [76] *

 y Weil [75] Weil [73]
 T* Pre is s [63]** Preis s [63]

 ~Tļy Preiss [63]*** Preiss [63]
 tt;5 Preiss [63] Preiss [63]

 *Zahorski showed that bA ' C Tnx . Since bà' = b¿ ' , the
 T 3.D

 corresponding result b^ Cm ^ is trivially valid.

 **and *** -These results involve derivatives and approxi-
 mate derivatives which are allowed to be infinite.
 Preiss characterized the associated sets for such
 functions and found no distinction between the classes

 of derivatives and approximate derivatives with respect
 to associated sets.

 In addition, recent investigations [27], [59], have

 shown that much of the behavior of an approximate derivative

 F' can be accounted for on the set on which F' = F'.
 ap ap

 Some of the similarities in behavior can be explained

 by the fact that an approximate derivative is also a

 selective derivative (see Chapter II), and some can be

 explained bv the representation r F' = 3 g ' + hk ' is . ee Chaoter u IV). y r ap 3 . u y

 But there still are two problems which we believe should be

 addressed :

 1) Find a more satisfying explanation for the

 similarities, ideally one which could apply equally well to

 explain why some other generalised derivatives behaves so

 much like ordinary derivatives while some others do not.
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 2) Find a singla property of derivatives that is not

 also a property of approximate derivatives.

 In connection with 2) , we mention that the known

 differences between approximate derivatives and ordinary

 derivatives seem to involve the primitives, or, what amounts

 to the same thing, integration. For example, if f 3 F1q,
 then F need not be continuous and f need not be integrable

 in the Denjoy sense.

 2. The Baire Class of Extreme Derivates of Continuous Functions.

 Suppose a continuous function F has nonnegative extreme

 deriva tes a. e. Must F be nondecreasing? We saw in Chapter II

 that the negative of the Cantor function provides a negative

 answer to this question, but we also mentioned that if we had

 also required that D F £ "û, , we would have obtained an

 affirmative answer to the question. This situation is typical

 in the sense that the assumption D*F £ z3, often allows
 desirable conclusions which are not valid without that

 assumption. For example, Mukhopadhyay [3ój has shown that

 che Dini de riva ces of a continuous function possess some

 Zahorski - like properties under certain conditions including

 membership in ¿2-, . In particular, if

 (i) F €C, Cii) D + Fc^, (iii) D"? > d"f > D. F and
 Civ) < DF < » except perhaps for some denumerable set,

 then D + F It follows readily from this result that the

 derivative (possibly infinite) of a continuous function is

 in Zahorski 's class .

 Z i»



 The aforementioned theorems, and others like them,

 suggest the problem of determining conditions under which

 the Dini derivates of a continuous function are in .

 This problem seems to have been first posed by Solomon Marcus

 in 1960 [47]. Let's take a moment to discuss what is known.

 a) If D+F £ , then D+F must be continuous on a

 residual set. This implies that F is dif ferentiable on a

 residual set. The converses are not valid, as the negative

 of the Cantor function shows .

 b) The Dini derivates of a continuous function are

 always in t?7 , although they can be very badly behaved. The

 function F- - G of Chapter I, Section lb, satisfies a Lipscnitz

 condition but each of its Dini derivates takes on every value

 between -1 and +1 continuum many times on every subinterval

 of (0,1). It is possible to construct an absolutely continuous

 function F such that D1"? takes each rational value on a

 set having positive measure in each interval and each

 irrational value on a null set having continuum many points

 in each interval [9]. Thus, the fact that D^F € 75-, is not

 very helpful in taming D F,

 c) We cannot conclude that D + F 6. ¿3-, from the knowledge

 that some other Dini derivate is in /3^ [44].
 d) Marcus [47] proved that a necessary condition for all

 Dini derivates to be in ß ^ is that the set of points of non-

 differentiability be the union of a null set of the first

 category with a nowhere dense set. Leonard [44] showed that
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 a sufficient condition is that this set be a ¿enumerable

 set of type G,5 .

 e) R. Keston has given examples of continuous functions

 ? and G such that D+F £. 73p D+G €. but D+(F+G)¿ J3,. (He
 did not publish this result.)

 f) The Dini derivates of a continuous function F are

 semi-3aire 1. Thus, for example (D+F < c} £ Fff for each c 6 R,
 but CD* F > ci- need not be.

 g) Results analogous to those in f) for functions F in

 Baire class i have recently been advanced by Misix [531.

 Hajek [34] has shown that the extreme bilateral derivates of

 an arbitrary function are in 75-,. (One can ask for conditions

 under which these derivates are in Ö, . )

 One reason the problem of finding conditions which are

 both necessary and sufficient for D' F to be in is difficult

 is that it is not immediately apparent what kind of conditions

 one should seek. The discussion in b), above, shows that

 standard regularity conditions on F do not offer much promise

 of being sufficient. And the fact that one Dini derivate can

 be in without ail four Dini derivates being in Z3, suggests

 that conditions involving restricted differentiability are of

 limited value. (More precisely, conditions involving

 differentiability of the functions FÍP, ? perfect, cannot be

 both necessary and sufficient for a specific derivate to be

 in Z3-, . It is conceivable that such conditions could

 characterise those functions all of whose derivates are in 3-, • )
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 3. Approximate Continuity of Derivatives.

 It is easy to prove that the set of points of continuity

 of a derivative must be a dense set of type G , . One can also

 prove without much difficulty [7] that each such set must be

 the set of continuity of some derivative.

 We pose the analogous problem of characterizing the set

 of points of approximate continuity of a derivative.

 Not much is known about this set. The following remarks

 may lend some perspective to the problem.

 a) A derivative, being measurable, must be approximately

 continuous a.e.

 b) A derivative, being continuous on a residual set, must

 also be approximately continuous on a residual set.

 c) Thus, the set of points of approximate discontinuity

 of a derivative must be a first-category null set. It seems

 likelv that each null set of tvpe F is the set of points of
 J

 approximate discontinuity of some derivative."

 d) Let M be an arbitrary null set. Then X'¡ is approxi-
 mately continuous exactly on ~N. (Thus, each null set is the

 set of approximate discontinuity of some measurable function.)

 Now the upper and lower essential boundaries of coincide

 everywhere, but does not agree with these boundaries on N.

 This situation cannot occur for a bounded derivative since

 oa'C/ti^. One might, therefore, be able to obtain a necessary

 condition on the set of approximate continuity of a derivative

 through the use of essential boundaries. If this condition

 were also sufficient, we would very likely have a characteri-

 zation valid for those functions whose values lie between



 the values or the essential boundaries at each point; i.e.,

 for

 if: ess lim f(x) <_ 1 ss s lim fix)} for all x« .
 x - xo X - xo

 There are certain related questions one can ask. For

 example, the "typical" bounded derivative is approximately

 discontinuous on some dense set. (More precisely, if bů'

 is furnished with the sup norm, then if Ł bi ' : f is

 approximately continuous on some interval; is a first cate-

 gory subset of bď.) The proof of this statement is not

 difficult ["]. How much stronger a statement is possible?

 Most likely, any pathology (with respect to approximate

 continuity) possible of a derivative will be typical of

 bounded derivatives.

 We mention one more question because an answer to this

 question would have been useful on several occasions.

 Suppose f,g £ ¿ ' , f continuous exactly en À and g approximately

 continuous exactly on 3. If A C3, does there exist h ć ¿ '

 such that h is continuous exactly on A and approximately con-

 tinuous exactly on B?
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